Computer Aided Geometric Design Fall Semester 2024

Mathematical background: Linear algebra

renjiec@ustc.edu.cn

<http://staff.ustc.edu.cn/~renjiec>

Vector Spaces

Vectors

Vectors are arrows in space

Classically: 2 or 3 dim. Euclidean space

"Adding" Vectors:

concatenation

Vector Operations $2.0 \cdot v$ $1.5 \cdot v$ \mathbf{v} $-1.0 \cdot v$

Scalar Multiplication:

Scaling vectors (incl. mirroring)

You can combine it…

Linear Combinations:

This is basically all you can do.

$$
r = \sum_{i=1}^n \lambda_i v_i
$$

Vector Spaces

- Definition: A *vector space* over a field F (e.g. $\mathbb R$) is a set V together with two operations
	- Addition of vectors $\boldsymbol{u} = \boldsymbol{v} + \boldsymbol{w}$
	- Multiplication with scalars $w = \lambda v$ such that
	- 1. $\forall u, v, w \in V$: $(u + v) + w = u + (v + w)$
	- 2. $\forall u, v \in V$: $u + v = v + u$
	- 3. $\exists \mathbf{0}_V \in V: \forall v \in V: v + \mathbf{0}_V = v$
	- 4. $\forall v \in V: \exists w \in V: v + w = 0$

- 5. $\forall v \in V, \lambda, \mu \in F: \lambda(\mu v) = (\lambda \mu)v$
- 6. for $1_F \in F: \forall v \in V: 1_F v = v$
- 7. $\forall \lambda \in F: \forall v, w \in V: \lambda(v + w) = \lambda v + \lambda w$

8.
$$
\forall \lambda, \mu \in F, \nu \in V: (\lambda + \mu)\nu = \lambda \nu + \mu \nu
$$

compatible with the addition

Vector spaces

• **Subspaces**

- A non-empty subset $W \subset V$ is a *subspace* if W is a vector space (w.r.t the induced addition and scalar multiplication).
- Only need to check if the addition and scalar multiplication are closed. $v, w \in W$ $\Rightarrow v + w \in W$ $v \in W, \lambda \in F \Rightarrow \lambda v = W$
- What are the subspaces of \mathbb{R}^3 ?

Examples Spaces

• **Function spaces:**

- Space of all functions $f: \mathbb{R} \to \mathbb{R}$
- Addition: $(f + g)(x) = f(x) + g(x)$
- Scalar multiplication: $(\lambda f)(x) = \lambda f(x)$
- Check the definition

Examples Spaces

• **Function spaces:**

- Domains and codomain need to be $\mathbb R$
- For example: space of all functions $f \colon [0,1]^5 \to \mathbb{R}^8$
- Codomain must be a vector space (Why?)

Examples of Subspaces

• **Continuous / differentiable functions**

- The continuous / differentiable functions form a subspace of the space of all functions $f: D \subset R^m \to R^n$
- Why?

• **Polynomials**

- The polynomials form a subspace of the space of functions $f: \mathbb{R} \to \mathbb{R}$
- The polynomials of degree $\leq n$ again form a subspace
- Adding polynomials

$$
\sum_{i=1}^{n} a_i x^i + \sum_{i=1}^{n} b_i x^i = \sum_{i=1}^{n} (a_i + b_i) x^i
$$

Constructing Spaces

Linear Span

- The *linear span* of a subset $S \subset V$ is the "smallest subspace" of V that contains S
- What does that mean?
	- For any subspace W such that $S \subset W \subset V$, we have $span(S) \subset W$
- Construction: Any $v \in span(S)$ is a finite linear combination of elements \circ f S

$$
v = \sum_{i=1}^{n} \lambda_i s^i
$$

Spanning set

• A subset $S \subset V$ is a *spanning set* of V if $span(S) = V$

Vector spaces

• **Linear independence**

• A subset $S \subset V$ is *linearly independent* if no vector of S is a finite linear combination of the other vectors of S

• **Basis**

• A *basis* of a vector space is a linearly independent spanning set.

Dimension

• **Lemma**

• If V has a finite basis of n elements, then all bases of V have n elements

• **Dimension**

- If V has a finite basis, then the dimension of V is the number of elements of the basis
- If V has no finite basis, then the dimension of V is infinite

Examples

- Polynomials of degree $\leq n$
	- A basis? What is the dimension? Solution:
	- An example of a basis is $\{1, x, x^2, ..., x^n\}$
	- Dimension is $n + 1$
- **Space of all polynomials**
	- A basis? What is the dimension? Solution:
	- An example of a basis is $\{1, x, x^2, ...$
	- Dimension is infinite

Finite dimensional vector spaces

• **Vector spaces**

- Any finite-dim., real vector space is isomorphic to \mathbb{R}^n
	- Array of numbers
	- Behave like arrows in a flat (Euclidean) geometry
- Proof:
	- Construct basis
	- Represent as span of basis vectors

Isomorphism is not unique, since we can choose different bases

Another Example of a Vector Space

Representation of a triangle mesh in ℝ

- Vertices : a finite set $\{v_1, ..., v_n\}$ of points in \mathbb{R}^3
- Faces: a list of triplets, e.g. $\{2, 34, 7\}, \ldots, \{14, 7, 5\}\}$

Another Example of a Vector Space

• **Shape space**

- Vary the vertices, but keep the face list fixed
- Is isomorphic to \mathbb{R}^{3n}

Definition

- A map $L: V \rightarrow W$ between vector spaces V, W is linear if
	- $\forall v_1, v_2 \in V: L(v_1 + v_2) = L(v_1) + L(v_2)$
	- $\forall v \in V, \lambda \in F: L(\lambda v) = \lambda L(v)$

This means that L is compatible with the linear structure of V and W

Definition

- A map $L: V \rightarrow W$ between vector spaces V, W is linear if
	- $\forall v_1, v_2 \in V: L(v_1 + v_2) = L(v_1) + L(v_2)$
	- $\forall v \in V, \lambda \in F: L(\lambda v) = \lambda L(v)$

Some properties

- $L(0_V) = 0_W$
- Proof: $L(\theta_V) = L(\theta \theta_v) = 0 L(\theta_V) = \theta_W$

Definition

- A map $L: V \rightarrow W$ between vector spaces V, W is linear if
	- $\forall v_1, v_2 \in V: L(v_1 + v_2) = L(v_1) + L(v_2)$
	- $\forall v \in V, \lambda \in F: L(\lambda v) = \lambda L(v)$

Some properties

- The image $L(V)$ is a subspace of W
- Proof: Show addition and scalar multiplication is closed

 $L(v_1) + L(v_2) = L(v_1 + v_2) \in W$ $\lambda L(v) = L(\lambda v) \in W$

Definition

- A map $L: V \rightarrow W$ between vector spaces V, W is linear if
	- $\forall v_1, v_2 \in V: L(v_1 + v_2) = L(v_1) + L(v_2)$
	- $\forall v \in V, \lambda \in F: L(\lambda v) = \lambda L(v)$

Some properties

- The set of linear maps from V to W forms a **subspace** of the space of all functions
- Proof: If L, \overline{L} are linear, then $L + \overline{L}$ is linear If L is linear, then λL is linear

Linear Map Representation

Construction

- A linear map $L: V \rightarrow W$ is uniquely determined if we specify the image of each basis vector of a basis of V
- Proof: We have $v = \sum_j \alpha_j v_j$, hence $L(v) = L \mid$ j $\alpha_j v_j$ | = \sum j $\alpha_j L(v_j)$

Matrix Representation

- Let V and W be vector spaces with respective bases $v = (v_1, v_2, ..., v_n)$ and $w =$ $(w_1, w_2, ..., w_m)$
- Suppose $L: V \rightarrow W$ is a linear mapping, such that $L(v_1) = a_{11}w_1 + a_{21}w_2 + \cdots + a_{m1}w_m$

 $L(v_n) = a_{1n}w_1 + a_{2n}w_2 + \cdots + a_{mn}w_m$

…………………………………………………

• The matrix representation of L w.r.t. the basis v and w is

$$
A = \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{pmatrix}
$$

The j^{th} -column of A is formed by the coefficients of $L\big(\nu_j\big)$

Example

- $L: \mathbb{R}^2 \to \mathbb{R}^3$, s. t. $(x, y) \to (x + 3y, 2x + 5y, 7x + 9y)$
- Find the matrix representation of L w.r.t the standard bases of \mathbb{R}^2 and \mathbb{R}^3
- Answer: $L(1,0) = (1,2,7)$, $L(0,1) = (3,5,9)$, hence the matrix of L, w.r.t the standard bases is the 3×2 matrix

$$
\begin{pmatrix} 1 & 3 \ 2 & 5 \ 7 & 9 \end{pmatrix}
$$

Matrix Representation

Explicitely

• The coefficients α_j and β_i are related by $\beta_i = \sum_j a_{ij} \alpha_j$

$$
L(v) = L\left(\sum_{j} \alpha_{j} v_{j}\right) = \sum_{j} \alpha_{j} L(v_{j}) = \sum_{j} \alpha_{j} \sum_{i} a_{ij} w_{i}
$$

$$
= \sum_{i} \left(\sum_{j} a_{ij} \alpha_{j}\right) w_{i} = \sum_{i} \beta_{i} w_{i} = w
$$

This can be written as a matrix-vector product

$$
\begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{pmatrix} \begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{pmatrix} = \begin{pmatrix} \beta_1 \\ \vdots \\ \beta_m \end{pmatrix}
$$

Example Matrices

Shearing

- Consider the standard basis of \mathbb{R}^2
	- Matrix?
	- First row

$$
A\begin{pmatrix}1\\0\end{pmatrix} = \begin{pmatrix}1\\0\end{pmatrix}
$$

=

1.3

1

 \overline{A}

 \bm{A}

0

1

• Second row

Example Matrices

Shearing

- Consider the standard basis of \mathbb{R}^2
	- Matrix?
	- First row

$$
A\begin{pmatrix}1\\0\end{pmatrix} = \begin{pmatrix}1\\0\end{pmatrix}
$$

=

1.3

1

• Second row

$$
A = \begin{pmatrix} 1 & 1.3 \\ 0 & 1 \end{pmatrix}
$$

 \overline{A}

0

1

Reminder: Properties of Matrices

Symmetric Orthogonal • $A^T = A$ A $T = A^{-1}$

Product is not commutive!

• Find an example with $AB \neq BA$

Product of symmetric matrices may not be symmetric

• Find an example

Product of orthogonal matrices is orthogonal $(AB)^{T} = B^{T}A^{T} = B^{-1}A^{-1} = (AB)^{-1}$

Example of Matrices

Rotation of the plane

- Linear?
- Consider standard basis of \mathbb{R}^2 Matrix?

 $\cos \alpha - \sin \alpha$ $\sin \alpha$ cos α

• Transposition reverse orientation of the rotation $\cos \alpha$ $\sin \alpha$

 $-\sin \alpha$ cos α

Hence matrix is orthogonal $A^T = A^{-1}$

Examples of Linear Maps

Linear operators on a function space

Derivatives

• Differentiation maps functions to functions

$$
\frac{\partial}{\partial x} : C^i(\mathbb{R}) \mapsto C^{i-1}(\mathbb{R})
$$

$$
f \mapsto \frac{\partial}{\partial x} f
$$

Why is it linear?

• Basic rules of differentiation

$$
\frac{\partial}{\partial x}(f+g) = \frac{\partial}{\partial x}f + \frac{\partial}{\partial x}g \quad \text{and} \quad \frac{\partial}{\partial x}(\lambda f) = \lambda \frac{\partial}{\partial x}f
$$

Matrix Representation

Derivative on a space of polynomials

- Consider polynomials of degree \leq 3 and the monomial basis
- What is the matrix representation of the derivative?
- Solution: Evaluate $\frac{\partial}{\partial x}$ $\frac{\partial}{\partial x}$ on the basis

•
$$
\frac{\partial}{\partial x} 1 = 0
$$
, $\frac{\partial}{\partial x} x = 1$, $\frac{\partial}{\partial x} x^2 = 2x$, $\frac{\partial}{\partial x} x^3 = 3x^2$

Results are the columns of the matrix

$$
\begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 \end{pmatrix}
$$

Examples of Linear Maps

Integrals on $C^0([a, b])$

• Integration maps a continuous function to a number

$$
I: C^{0}([a, b]) \mapsto \mathbb{R}
$$

$$
I(f) = \int_{a}^{b} f dx
$$

• The map is linear:

$$
\int_{a}^{b} (f+g)dx = \int_{a}^{b} fdx + \int_{a}^{b} gdx
$$

$$
\int_{a}^{b} \lambda fdx = \lambda \int_{a}^{b} fdx
$$

Matrix Representation

Integrals on a space of polynomials

- Consider polynomials of degree \leq 3 over the interval $[0,1]$ and the monomial basis.
- What is the matrix representation of the integral?
- Solution: Evaluate \int_0^1 dx on the basis

$$
\int_0^1 1 dx = 1, \qquad \int_0^1 x dx = \frac{1}{2}, \qquad \int_0^1 x^2 dx = \frac{1}{3}, \qquad \int_0^1 x^3 dx = \frac{1}{4}
$$

Results are the columns of the matrix

$$
\begin{pmatrix}\n1 & \frac{1}{2} & \frac{1}{3} & \frac{1}{4}\n\end{pmatrix}
$$

Matrix representation of

• M maps e_i to $\Phi_B^{-1} \circ L \circ \Phi_A(e_i)$

• Basis transformation

Basis Transformations M \mathbb{R}^m \mathbb{R}^n Φ_A Φ_B L \overline{T} S W $\Phi_{\tilde{B}}$ $\Phi_{\tilde{A}}$ \mathbb{R}^n \mathbb{R}^m $\widetilde{\pmb{V}}$ $=$ SMT⁻¹ \widetilde{M}

In the special case that V equals W :

