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Vector Spaces



Vectors

Vectors are arrows in space

Classically: 2 or 3 dim. Euclidean space



“Adding” Vectors:

concatenation

Vector Operations



Vector Operations

Scalar Multiplication:

Scaling vectors (incl. mirroring)



You can combine it…

Linear Combinations:

This is basically all you can do.

𝒓 =

𝑖=1

𝑛

𝜆𝑖𝒗𝑖



Vector Spaces

• Definition: A vector space over a field 𝐹 (e.g. ℝ) is a set 𝑉 together 
with two operations
• Addition of vectors 𝒖 = 𝒗 +𝒘

• Multiplication with scalars 𝒘 = 𝜆𝒗

such that

1. ∀𝒖, 𝒗,𝒘 ∈ 𝑉: 𝒖 + 𝒗 + 𝒘 = 𝒖 + 𝒗 +𝒘

2. ∀𝒖, 𝒗 ∈ 𝑉: 𝒖 + 𝒗 = 𝒗 + 𝒖

3. ∃𝟎𝑉 ∈ 𝑉: ∀𝑣 ∈ 𝑉: 𝒗 + 𝟎𝑽 = 𝒗

4. ∀𝒗 ∈ 𝑉: ∃𝒘 ∈ 𝑉: 𝒗 + 𝒘 = 𝟎𝑉

5. ∀𝒗 ∈ 𝑉, 𝜆, 𝜇 ∈ 𝐹: 𝜆 𝜇𝒗 = 𝜆𝜇 𝒗

6. for 1𝐹 ∈ 𝐹: ∀𝑣 ∈ 𝑉: 1𝐹𝒗 = 𝒗

7. ∀𝜆 ∈ 𝐹: ∀𝒗,𝒘 ∈ 𝑉: 𝜆 𝒗 + 𝒘 = 𝜆𝒗 + 𝜆𝒘

8. ∀𝜆, 𝜇 ∈ 𝐹, 𝒗 ∈ 𝑉: 𝜆 + 𝜇 𝒗 = 𝜆𝒗 + 𝜇𝒗

𝑽,+ is an Abelian group
The multiplication is 

compatible with the addition



Vector spaces

• Subspaces
• A non-empty subset 𝑊 ⊂ 𝑉 is a subspace if 𝑊 is a vector space (w.r.t the 

induced addition and scalar multiplication).

• Only need to check if the addition and scalar multiplication are closed.
𝒗,𝒘 ∈ 𝑊 ⇒ 𝒗 +𝒘 ∈ 𝑊
𝒗 ∈ 𝑊, 𝜆 ∈ 𝐹 ⇒ 𝜆𝒗 = 𝑊

• What are the subspaces of ℝ3?



Examples Spaces

• Function spaces:
• Space of all functions 𝑓:ℝ → ℝ

• Addition: 𝑓 + 𝑔 𝑥 = 𝑓 𝑥 + 𝑔 𝑥

• Scalar multiplication: 𝜆𝑓 𝑥 = 𝜆𝑓 𝑥

• Check the definition



Examples Spaces

• Function spaces:
• Domains and codomain need to be ℝ

• For example: space of all functions 𝑓: 0,1 5 → ℝ8

• Codomain must be a vector space (Why?)



Examples of Subspaces

• Continuous / differentiable functions
• The continuous / differentiable functions form a subspace of the space of all 

functions 𝑓: 𝐷 ⊂ 𝑅𝑚 → 𝑅𝑛

• Why?

• Polynomials
• The polynomials form a subspace of the space of functions 𝑓:ℝ → ℝ

• The polynomials of degree ≤ 𝑛 again form a subspace

• Adding polynomials


𝑖=1

𝑛

𝑎𝑖𝑥
𝑖 +

𝑖=1

𝑛

𝑏𝑖𝑥
𝑖 =

𝑖=1

𝑛

𝑎𝑖 + 𝑏𝑖 𝑥
𝑖



Constructing Spaces

Linear Span
• The linear span of a subset 𝑆 ⊂ 𝑉 is the “smallest subspace” of 𝑉 that 

contains 𝑆
• What does that mean?

• For any subspace 𝑊 such that 𝑆 ⊂ 𝑊 ⊂ 𝑉, we have 𝑠𝑝𝑎𝑛 𝑆 ⊂ 𝑊

• Construction: Any 𝑣 ∈ 𝑠𝑝𝑎𝑛 𝑆 is a finite linear combination of elements 
of 𝑆

𝑣 =
𝑖=1

𝑛

𝜆𝑖𝑠
𝑖

Spanning set
• A subset 𝑆 ⊂ 𝑉 is a spanning set of 𝑉 if 𝑠𝑝𝑎𝑛 𝑆 = 𝑉



Vector spaces

• Linear independence
• A subset 𝑆 ⊂ 𝑉 is linearly independent if no vector of 𝑆 is a finite linear 

combination of the other vectors of 𝑆

• Basis
• A basis of a vector space is a linearly independent spanning set.



Dimension

• Lemma
• If 𝑉 has a finite basis of 𝑛 elements, then all bases of 𝑉 have 𝑛 elements

• Dimension
• If 𝑉 has a finite basis, then the dimension of 𝑉 is the number of elements 

of the basis

• If 𝑉 has no finite basis, then the dimension of 𝑉 is infinite



Examples

• Polynomials of degree ≤ 𝒏
• A basis? What is the dimension?

Solution:

• An example of a basis is 1, 𝑥, 𝑥2, … , 𝑥𝑛

• Dimension is 𝑛 + 1

• Space of all polynomials
• A basis? What is the dimension?

Solution:

• An example of a basis is 1, 𝑥, 𝑥2, …
• Dimension is infinite



Finite dimensional vector spaces

• Vector spaces
• Any finite-dim., real vector space is isomorphic to ℝ𝑛

• Array of numbers

• Behave like arrows in a flat (Euclidean) geometry

• Proof:
• Construct basis

• Represent as span of basis vectors

Isomorphism is not unique, since we can choose different bases



Another Example of a Vector Space

Representation of a triangle mesh in ℝ𝟑

• Vertices : a finite set 𝑣1, … , 𝑣𝑛 of points in ℝ3

• Faces: a list of triplets, e.g. 2, 34, 7 ,… , 14, 7, 5



Another Example of a Vector Space

• Shape space
• Vary the vertices, but keep the face list fixed

• Is isomorphic to ℝ3𝑛



Linear Maps



Linear Maps

Definition
• A map 𝐿: 𝑉 → 𝑊 between vector spaces 𝑉,𝑊 is linear if 

• ∀𝑣1, 𝑣2 ∈ 𝑉: 𝐿 𝑣1 + 𝑣2 = 𝐿 𝑣1 + 𝐿 𝑣2
• ∀𝑣 ∈ 𝑉, 𝜆 ∈ 𝐹: 𝐿 𝜆𝑣 = 𝜆𝐿 𝑣

This means that 𝐿 is compatible with the linear structure of 
𝑉 and 𝑊



Linear Maps

Definition
• A map 𝐿: 𝑉 → 𝑊 between vector spaces 𝑉,𝑊 is linear if 

• ∀𝑣1, 𝑣2 ∈ 𝑉: 𝐿 𝑣1 + 𝑣2 = 𝐿 𝑣1 + 𝐿 𝑣2
• ∀𝑣 ∈ 𝑉, 𝜆 ∈ 𝐹: 𝐿 𝜆𝑣 = 𝜆𝐿 𝑣

Some properties
• 𝐿 0𝑉 = 0𝑊
• Proof: 𝐿 0𝑉 = 𝐿 0 0𝑣 = 0𝐿 0𝑉 = 0𝑊



Linear Maps

Definition
• A map 𝐿: 𝑉 → 𝑊 between vector spaces 𝑉,𝑊 is linear if 

• ∀𝑣1, 𝑣2 ∈ 𝑉: 𝐿 𝑣1 + 𝑣2 = 𝐿 𝑣1 + 𝐿 𝑣2
• ∀𝑣 ∈ 𝑉, 𝜆 ∈ 𝐹: 𝐿 𝜆𝑣 = 𝜆𝐿 𝑣

Some properties
• The image 𝐿 𝑉 is a subspace of 𝑊
• Proof: Show addition and scalar multiplication is closed

𝐿 𝑣1 + 𝐿 𝑣2 = 𝐿 𝑣1 + 𝑣2 ∈ 𝑊
𝜆𝐿 𝑣 = 𝐿 𝜆𝑣 ∈ 𝑊



Linear Maps

Definition
• A map 𝐿: 𝑉 → 𝑊 between vector spaces 𝑉,𝑊 is linear if 

• ∀𝑣1, 𝑣2 ∈ 𝑉: 𝐿 𝑣1 + 𝑣2 = 𝐿 𝑣1 + 𝐿 𝑣2
• ∀𝑣 ∈ 𝑉, 𝜆 ∈ 𝐹: 𝐿 𝜆𝑣 = 𝜆𝐿 𝑣

Some properties
• The set of linear maps from 𝑉 to 𝑊 forms a subspace of the 

space of all functions
• Proof:    If 𝐿, ෨𝐿 are linear, then 𝐿 + ෨𝐿 is linear

If 𝐿 is linear, then 𝜆𝐿 is linear



Linear Map Representation

Construction
• A linear map 𝐿: 𝑉 → 𝑊 is uniquely determined if we specify the image of 

each basis vector of a basis of 𝑉

• Proof: We have 𝑣 = σ𝑗 𝛼j𝑣𝑗 , hence

𝐿 𝑣 = 𝐿 

𝑗

𝛼𝑗𝑣𝑗 =

𝑗

𝛼𝑗𝐿 𝑣𝑗



Matrix Representation

• Let 𝑉 and 𝑊 be vector spaces with respective bases 𝑣 = 𝑣1, 𝑣2, … , 𝑣𝑛 and 𝑤 =
𝑤1, 𝑤2, … , 𝑤𝑚

• Suppose 𝐿: 𝑉 → 𝑊 is a linear mapping, such that 

𝐿 𝑣1 = 𝑎11𝑤1 + 𝑎21𝑤2 +⋯+ 𝑎𝑚1𝑤𝑚

…………………………………………………

𝐿 𝑣𝑛 = 𝑎1𝑛𝑤1 + 𝑎2𝑛𝑤2 +⋯+ 𝑎𝑚𝑛𝑤𝑚

• The matrix representation of 𝐿 w.r.t. the basis 𝑣 and 𝑤 is 

𝐴 =

𝑎11 ⋯ 𝑎1𝑛
⋮ ⋱ ⋮

𝑎𝑚1 ⋯ 𝑎𝑚𝑛

The 𝑗𝑡ℎ-column of 𝐴 is formed by the coefficients of 𝐿 𝑣𝑗



Example

• 𝐿:ℝ2 → ℝ3, 𝑠. 𝑡. 𝑥, 𝑦 → 𝑥 + 3𝑦, 2𝑥 + 5𝑦, 7𝑥 + 9𝑦

• Find the matrix representation of 𝐿 w.r.t the standard bases of ℝ2

and ℝ3

• Answer: 𝐿 1,0 = 1,2,7 , 𝐿 0,1 = 3,5,9 , hence the matrix of 𝐿, 
w.r.t the standard bases is the 3 × 2 matrix

1 3
2 5
7 9



Explicitely
• The coefficients 𝛼𝑗 and 𝛽𝑖 are related by 𝛽𝑖 = σ𝑗 𝑎𝑖𝑗𝛼𝑗

𝐿 𝑣 = 𝐿 

𝑗

𝛼𝑗𝑣𝑗 =

𝑗

𝛼𝑗𝐿 𝑣𝑗 =

𝑗

𝛼𝑗

𝑖

𝑎𝑖𝑗𝑤𝑖

=

𝑖



𝑗

𝑎𝑖𝑗𝛼𝑗 𝑤𝑖

This can be written as a matrix-vector product
𝑎11 ⋯ 𝑎1𝑛
⋮ ⋱ ⋮

𝑎𝑚1 ⋯ 𝑎𝑚𝑛

𝛼1
⋮
𝛼𝑛

=
𝛽1
⋮
𝛽𝑚

=

𝑖

𝛽𝑖 𝑤𝑖 = 𝑤

Matrix Representation



Example Matrices

Shearing
• Consider the standard basis of ℝ2

• Matrix?

• First row

𝐴
1
0

=
1
0

• Second row

𝐴
0
1

=
1.3
1

𝐴 =



Example Matrices

Shearing
• Consider the standard basis of ℝ2

• Matrix?

• First row

𝐴
1
0

=
1
0

• Second row

𝐴
0
1

=
1.3
1

𝐴 =
1 1.3
0 1



Reminder: Properties of Matrices

Symmetric                          Orthogonal
• 𝐴𝑇 = 𝐴 𝐴𝑇 = 𝐴−1

Product is not commutive!
• Find an example with 𝐴𝐵 ≠ 𝐵𝐴

Product of symmetric matrices may not be symmetric
• Find an example

Product of orthogonal matrices is orthogonal
𝐴𝐵 𝑇 = 𝐵𝑇𝐴𝑇 = 𝐵−1𝐴−1 = 𝐴𝐵 −1



Example of Matrices

Rotation of the plane
• Linear?

• Consider standard basis of ℝ2

Matrix?
cos 𝛼 − sin𝛼
sin 𝛼 cos 𝛼

• Transposition reverse orientation of the rotation
cos 𝛼 sin𝛼
−sin𝛼 cos 𝛼

Hence matrix is orthogonal 𝐴𝑇 = 𝐴−1



Examples of Linear Maps

Linear operators on a function space

Derivatives
• Differentiation maps functions to functions

𝜕

𝜕𝑥
: 𝐶𝑖 ℝ ↦ 𝐶𝑖−1 ℝ

𝑓 ↦
𝜕

𝜕𝑥
𝑓

Why is it linear?
• Basic rules of differentiation
𝜕

𝜕𝑥
𝑓 + 𝑔 =

𝜕

𝜕𝑥
𝑓 +

𝜕

𝜕𝑥
𝑔 and      

𝜕

𝜕𝑥
𝜆𝑓 = 𝜆

𝜕

𝜕𝑥
𝑓



Matrix Representation

Derivative on a space of polynomials
• Consider polynomials of degree ≤ 3 and the monomial basis

• What is the matrix representation of the derivative?

• Solution: Evaluate 
𝜕

𝜕𝑥
on the basis

•
𝜕

𝜕𝑥
1 = 0, 

𝜕

𝜕𝑥
𝑥 = 1, 

𝜕

𝜕𝑥
𝑥2 = 2𝑥, 

𝜕

𝜕𝑥
𝑥3 = 3𝑥2

Results are the columns of the matrix
0 1 0 0
0 0 2 0
0 0 0 3
0 0 0 0



Examples of Linear Maps

Integrals on 𝑪𝟎 𝒂, 𝒃
• Integration maps a continuous function to a number

𝐼: 𝐶0 𝑎, 𝑏 ↦ ℝ

𝐼 𝑓 = න
𝑎

𝑏

𝑓𝑑𝑥

• The map is linear:

න
𝑎

𝑏

𝑓 + 𝑔 𝑑𝑥 = න
𝑎

𝑏

𝑓𝑑𝑥 + න
𝑎

𝑏

𝑔𝑑𝑥

න
𝑎

𝑏

𝜆𝑓𝑑𝑥 = 𝜆න
𝑎

𝑏

𝑓𝑑𝑥



Matrix Representation

Integrals on a space of polynomials
• Consider polynomials of degree≤ 3 over the interval 0,1 and the monomial 

basis.

• What is the matrix representation of the integral?

• Solution: Evaluate 
0

1
𝑑𝑥 on the basis

0
1
1𝑑𝑥 = 0      ,1

1
𝑥𝑑𝑥 =

1

2
0     ,

1
𝑥2𝑑𝑥 =

1

3
0      ,

1
𝑥3𝑑𝑥 =

1

4

Results are the columns of the matrix

1
1

2

1

3

1

4



Basis Transformations

Matrix representation of 𝑳

• 𝐴 = 𝑣1, 𝑣2, … , 𝑣𝑛 𝐵 = 𝑤1, 𝑤2, … , 𝑤𝑛

• Φ𝐴 𝑒𝑖 = 𝑣𝑖 Φ𝐵 𝑒𝑖 = 𝑤𝑖

• 𝑀 maps 𝑒𝑖 to Φ𝐵
−1 ∘ 𝐿 ∘ Φ𝐴 𝑒𝑖



Basis Transformations

• Basis transformation

• 𝐴 = 𝑣1, 𝑣2, … , 𝑣𝑛 ሚ𝐴 = 𝑣1, 𝑣2, … , 𝑣𝑛
• Φ𝐴 𝑒𝑖 = 𝑣𝑖 Φ ෨𝐴 𝑒𝑖 = 𝑣𝑖
• 𝑇 maps 𝑒𝑖 to Φ ෨𝐴

−1 ∘ Φ𝐴 𝑒𝑖



Basis Transformations



Basis Transformations

෩𝑀 = 𝑆𝑀𝑇−1



Basis Transformations

In the special case that 𝑉 equals 𝑊:

෩𝑀 = 𝑇𝑀𝑇−1


