计算机图形学 Computer Graphics

陈仁杰
renjiec＠ustc．edu．cn http：／／staff．ustc．edu．cn／${ }^{\sim}$ renjiec

Polygonal Meshes

- Boundary representations of objects

Meshes as Approximations of Smooth Surfaces

- Piecewise linear approximation
- Error is $\mathrm{O}\left(\mathrm{h}^{2}\right)$

Meshes as Approximations of Smooth Surfaces

- Piecewise linear approximation
- Error is $\mathrm{O}\left(\mathrm{h}^{2}\right)$

$$
\begin{gathered}
\text { \#faces vs. approximation } \\
\text { error }
\end{gathered}
$$

Polygonal Meshes

- Polygonal meshes are a good representation
- approximation $\mathrm{O}\left(\mathrm{h}^{2}\right)$
- arbitrary topology
- piecewise smooth surfaces
- adaptive refinement
- efficient rendering

Polygon

- Vertices:

$$
v_{0}, v_{1}, \ldots, v_{n-1}
$$

- Edges:
$\left\{\left(v_{0}, v_{1}\right), \ldots,\left(v_{n-2}, v_{n-1}\right)\right\}$
- Closed: $\quad v_{0}=v_{n-1}$
- Planar: all vertices on a plane
- Simple: not self-intersecting

Polygonal Mesh

A finite set M of closed, simple polygons Q_{i} is a polygonal mesh

- The intersection of two polygons in M is either empty, a vertex, or an edge

Polygonal Mesh

A finite set M of closed, simple polygons Q_{i} is a polygonal mesh

- The intersection of two polygons in M is either empty, a vertex, or an edge
- Every edge belongs to at least one polygon

Polygonal Mesh

A finite set M of closed, simple polygons Q_{i} is a polygonal mesh

- The intersection of two polygons in M is either empty, a vertex, or an edge
- Every edge belongs to at least one polygon
- Each Q_{i} defines a face of the polygonal mesh

Polygonal Mesh

A finite set M of closed, simple polygons Q_{i} is a polygonal mesh

- The intersection of two polygons in M is either empty, a vertex, or an edge
- Every edge belongs to at least one polygon
- Each Q_{i} defines a face of the polygonal mesh

Polygonal Mesh

A finite set M of closed, simple polygons Q_{i} is a polygonal mesh

- The intersection of two polygons in M is either empty, a vertex, or an edge
- Every edge belongs to at least one polygon
- Each Q_{i} defines a face of the polygonal mesh

Polygonal Mesh

A finite set M of closed, simple polygons Q_{i} is a polygonal mesh

- The intersection of two polygons in M is either empty, a vertex, or an edge
- Every edge belongs to at least one polygon
- Each Q_{i} defines a face of the polygonal mesh

Polygonal Mesh

Vertex degree or valence: \#incident edges

Polygonal Mesh

Vertex degree or valence: \#incident edges

Polygonal Mesh

Boundary: the set of all edges that belong to only one polygon

- Either empty or forms closed loops
- If empty, then the polygonal mesh is closed

Triangle Meshes

- Connectivity: vertices, edges, triangles

$$
\begin{aligned}
& V=\left\{v_{1}, \ldots, v_{n}\right\} \\
& E=\left\{e_{1}, \ldots, e_{k}\right\}, \quad e_{i} \in V \times V \\
& F=\left\{f_{1}, \ldots, f_{m}\right\}, \quad f_{i} \in V \times V \times V
\end{aligned}
$$

- Geometry: vertex positions

$$
P=\left\{\mathbf{p}_{1}, \ldots, \mathbf{p}_{n}\right\}, \quad \mathbf{p}_{i} \in \mathbb{R}^{3}
$$

Manifolds

A surface is a closed 2-manifold if it is everywhere locally homeomorphic to a disk

Manifolds

For every point x in M , there is an open ball $B_{x}(r)$ of radius $r>0$ centered at x such that $M \cap B_{x}$ is homeomorphic to an open disk

$$
B_{\mathbf{x}}(r)=\left\{\mathbf{y} \in \mathbb{R}^{3} \text { s.t. }\|\mathbf{y}-\mathbf{x}\|<r\right\}
$$

Manifolds

Manifold with boundary: a vicinity of each boundary point is homeomorphic to a half-disk

Examples

For each case, decide if it is a 2-manifold (possibly with boundary) or not.
If not, explain why not.

Case 1

Case 2

Case 3

Case 4

Case 5

Examples

- Bonus cases

Case 6

Manifolds

- In a manifold mesh, there are at most 2 faces sharing an edge
- Boundary edges: have one incident face
- Interior edges have two incident faces
- A manifold vertex has 1 connected ring of faces around it , or 1 connected half-ring (boundary)

non-manifold
edge

non-manifold vertex

Manifolds

- If closed and not intersecting, a manifold divides the space into inside and outside
- A closed manifold polygonal mesh is called polyhedron

Orientation

Every face of a polygonal mesh is orientable

- Clockwise vs. counterclockwise order of face vertices
- Defines sign/direction of the surface normal

Orientation

- Consistent orientation of neighboring faces:

Orientability

A polygonal mesh is orientable, if the incident faces to every edge can be consistently oriented

- If the faces are consistently oriented for every edge, the mesh is oriented

Klein bottle

Möbius strip

Notes

- Every non-orientable closed mesh embedded in \mathbb{R}^{3} intersects itself
- The surface of a polyhedron is always orientable

Global Topology of Meshes

Genus: $1 / 2 \times$ the maximal number of closed paths that do not disconnect the graph.

- Informally, the number of handles ("donut holes").

Global Topology of Meshes

Genus: $1 / 2 \times$ the maximal number of closed paths that do not disconnect the graph.

- Informally, the number of handles ("donut holes").

Global Topology of Meshes

Genus: $1 / 2 \times$ the maximal number of closed paths that do not disconnect the graph.

- Informally, the number of handles ("donut holes").

Genus 0

Genus 1

Genus 2

Genus 3

Euler-Poincaré Formula

Theorem (Euler): The value

$$
\chi(M)=v-e+f
$$

is constant for a given surface topology, no matter which (manifold) mesh we choose.

- v: \# vertices
- e: \# edges
- f : \# faces

Euler-Poincaré Formula

- For orientable meshes:

$$
v-e+f=2(c-g)-b=\chi(M)
$$

- c: \# connected components
- g : genus
- b: \# boundary loops

$$
\chi(\circlearrowleft)=2 \quad \chi(\circlearrowleft)=0
$$

Regularity

- Triangle mesh: average valence $=6$
- Quad mesh: average valence $=4$

- Regular mesh: all faces have the same number of edges and all vertex degrees are equal
- Quasi-regular mesh:
- a lot of vertices have degree 6 (4). Sometimes also refers to mostly equilateral faces.

Regularity

- Quasi-regular

Regularity

- Quasi-regular

Regularity

- Semi-regular mesh: connectivity is a result
 of $\mathrm{N}>0$ subdivision steps

Regularity

- Semi-regular mesh: connectivity is a result
 of $\mathrm{N}>0$ subdivision steps

Triangulation

Polygonal mesh where every face is a triangle

- Simplifies data structures
- Simplifies rendering
- Simplifies algorithms
- Each face planar and convex
- Any polygon can be triangulated

Triangulation

- Polygonal mesh where every face is a triangle
- Simplifies data structures
- Simplifies rendering
- Simplifies algorithms
- Each face planar and convex
- Any polygon can be triangulated

Polygonal vs. Triangle Meshes

- Triangles are flat and convex
- Easy rasterization, normals
- Uniformity (same \# of vertices)
- 3-way symmetry is less natural
- General polygons are flexible
- Quads have natural symmetry
- Can be non-planar, non-convex
- Difficult for graphics hardware
- Varying number of vertices

Polygonal vs. Triangle Meshes

- Edge loops are ideal for editing

Polygonal vs. Triangle Meshes

- Quality of triangle meshes
- Uniform Area
- Angles close to 60
- Quality of quadrilateral meshes
- Number of irregular vertices
- Angles close to 90
- Good edge flow

Polygonal vs. Triangle Meshes

E. Van Egeraat

Data Structures

- What should be stored?
- Geometry: 3D coordinates
- Connectivity
- Adjacency relationships
- Attributes
- Normal, color, texture coordinates
- Per vertex, face, edge

Data Structures

What should be supported?

- Rendering
- Geometry queries
- What are the vertices of face \#2?
- Is vertex A adjacent to vertex H?
- Which faces are adjacent to face \#1?
- Modifications
- Remove/add a vertex/face
- Vertex split, edge collapse

Data Structures

How good is a data structure?

- Time to construct
- Time to answer a query
- Time to perform an operation
- Space complexity
- Redundancy

Criteria for design

- Expected number of vertices
- Available memory
- Required operations
- Distribution of operations

Triangle List

- STL format (used in CAD)
- Storage
- Face: 3 positions
- 4 bytes per coordinate (single precision)
- 36 bytes per face
- Euler: $f=2 v$
- $72 \times v$ bytes for a mesh with v vertices
- No connectivity information

Triangles			
0	x 0	y 0	z 0
1	x 1	x 1	z 1
2	x 2	y 2	z 2
3	x 3	y 3	z 3
4	x 4	y 4	z 4
5	x 5	y 5	z 5
6	x 6	y 6	z 6
\ldots	\ldots	\ldots	\ldots

Indexed Face Set

- Used in formats OBJ, OFF, WRL
- Storage
- Vertex: position
- Face: vertex indices
- 12 bytes per vertex
- 12 bytes per face
- $36 \times v$ bytes for the mesh

Vertices			
vO	x0	y0	z0
v1	x 1	x 1	z1
v2	x2	y2	z2
v3	x3	y3	z3
v4	x4	y4	z4
v5	x5	y5	z5
v6	$\times 6$	y6	z6
...

Triangles			
$\mathrm{t0}$	$\mathrm{v0}$	v 1	v 2
t 1	$\mathrm{v0}$	v 1	v 3
t 2	v 2	v 4	v 3
t 3	v 5	v 2	v 6
\ldots	\ldots	\ldots	\ldots

- No explicit neighborhood info

Indexed Face Set: Problems

- Information about neighbors is not explicit
- Finding neighboring vertices/edges/faces costs $O(\# V)$ time!
- Local mesh modifications cost $O(V)$

- Breadth-first search costs $O(k \times \# V)$ where $k=\#$ found vertices

Neighborhood Relations

All possible neighborhood relationships:

1. Vertex - Vertex	VV
2. Vertex - Edge	VE
3. Vertex - Face	VF
4. Edge - Vertex	EV
5. Edge - Edge	EE
6. Edge - Face	EF
7. Face - Vertex	FV
8. Face - Edge	FE
9. Face - Face	FF

We'd like $O(1)$ time for queries and local updates of these relationships

Halfedge data structure

Introduce orientation into data structure

- Oriented edges

Halfedge data structure

Introduce orientation into data structure

- Oriented edges

Halfedge data structure

Introduce orientation into data structure

- Oriented edges
- Vertex
- Position
- 1 outgoing halfedge index

- Halfedge
- 1 origin vertex index
- 1 incident face index
- 3 next, prev, twin halfedge indices
- Face
- 1 adjacent halfedge index
- Easy traversal, full connectivity

Halfedge data structure

- One-ring traversal
- Start at vertex

Halfedge data structure

- One-ring traversal
- Start at vertex
- Outgoing halfedge

Halfedge data structure

- One-ring traversal
- Start at vertex
- Outgoing halfedge
- Twin halfedge

Halfedge data structure

- One-ring traversal
- Start at vertex
- Outgoing halfedge
- Twin halfedge
- Next halfedge

Halfedge data structure

- One-ring traversal
- Start at vertex
- Outgoing halfedge
- Twin halfedge
- Next halfedge
- Twin ...

Halfedge data structure

- Pros: (assuming bounded vertex valence)
- $O(1)$ time for neighborhood relationship queries
- $O(1)$ time and space for local modifications (edge collapse, vertex insertion...)
- Cons:
- Heavy - requires storing and managing extra pointers
- Not as trivial as Indexed Face Set for rendering with OpenGL/DirectX

Halfedge Libraries

- CGAL
- www.cgal.org
- Computational geometry
- OpenMesh
- www.openmesh.org
- Mesh processing
- PMP-library
- http://www.pmp-library.org/
- VCG/Meshlab
- https://www.meshlab.net/

References

- Polygon Mesh Processing Book, Chapter 2

Polygon Mesh Processing

Thank you!
Questions?

