

计算机图形学 Computer Graphics

陈仁杰 renjiec@ustc.edu.cn http://staff.ustc.edu.cn/~renjiec

Boundary representations of objects

Meshes as Approximations of Smooth Surfaces

Piecewise linear approximation
 Error is O(h²)

Meshes as Approximations of Smooth Surfaces

Piecewise linear approximation
 Error is O(h²) #faces vs. apr

- Polygonal meshes are a good representation
 - approximation O(h²)
 - arbitrary topology
 - piecewise smooth surfaces
 - adaptive refinement
 - efficient rendering

Polygon

- Vertices: $v_0, v_1, \ldots, v_{n-1}$
- $\{(v_0, v_1), \ldots, (v_{n-2}, v_{n-1})\}$ • Edges:
- Closed: $v_0 = v_{n-1}$
- Planar: all vertices on a plane
- Simple: not self-intersecting

- A finite set M of closed, simple polygons Q_i is a polygonal mesh
- The intersection of two polygons in M is either empty, a vertex, or an edge

- A finite set M of closed, simple polygons Q_i is a polygonal mesh
- The intersection of two polygons in M is either empty, a vertex, or an edge
- Every edge belongs to at least one polygon

A finite set M of closed, simple polygons Q_i is a polygonal mesh

• The intersection of two polygons in M is either empty, a vertex, or an edge

• Every edge belongs to at least one polygon

• Each Q_i defines a face of the polygonal mesh

- The intersection of two polygons in M is either empty, a vertex, or an edge
- Every edge belongs to at least one polygon
- Each Q_i defines a face of the polygonal mesh

A finite set M of closed, simple polygons Q_i is a polygonal mesh

- The intersection of two polygons in M is either empty, a vertex, or an edge
- Every edge belongs to at least one polygon
- Each Q_i defines a face of the polygonal mesh

A finite set M of closed, simple polygons Q_i is a polygonal mesh

- The intersection of two polygons in M is either empty, a vertex, or an edge
- Every edge belongs to at least one polygon
- Each Q_i defines a face of the polygonal mesh

A finite set M of closed, simple polygons Q_i is a polygonal mesh

Vertex degree or valence: #incident edges

Vertex degree or valence: #incident edges

Boundary: the set of all edges that belong to only one polygon

• Either empty or forms closed loops

• If empty, then the polygonal mesh is closed

Triangle Meshes

- Connectivity: vertices, edges, triangles $V = \{v_1, \ldots, v_n\}$ $E = \{e_1, \dots, e_k\}, \quad e_i \in V \times V$ $F = \{f_1, \dots, f_m\}, \quad f_i \in V \times V \times V$
- Geometry: vertex positions

$$P = \{\mathbf{p}_1, \ldots, \mathbf{p}_n\}, \quad \mathbf{p}_i$$

 $\in \mathbb{R}^3$

A surface is a closed 2-manifold if it is everywhere locally homeomorphic to a disk

For every point x in M, there is an open ball $B_x(r)$ of radius r > 0 centered at x such that $M \cap B_x$ is homeomorphic to an open disk

 $B_{\mathbf{x}}(r) = \{ \mathbf{y} \in \mathbb{R}^3 \ s.t. \ \|\mathbf{y} - \mathbf{x}\| < r \}$

Manifold with boundary: a vicinity of each boundary point is homeomorphic to a half-disk

Examples

- not.
- If not, explain why not.

Case 3 Case 1 Case 2 Case 4

For each case, decide if it is a 2-manifold (possibly with boundary) or

Case 5

Examples

Bonus cases

Case 6

Case 7

Case 8

- In a manifold mesh, there are at most 2 faces sharing an edge Boundary edges: have one incident face

 - Interior edges have two incident faces
- A manifold vertex has 1 connected ring of faces around it, or 1 connected half-ring (boundary)

- and outside
- A closed manifold polygonal mesh is called polyhedron

• If closed and not intersecting, a manifold divides the space into inside

Orientation

Every face of a polygonal mesh is orientable

- Clockwise vs. counterclockwise order of face vertices
- Defines sign/direction of the surface normal

orientable ler of face vertices ce normal

Orientation

• Consistent orientation of neighboring faces:

Orientability

A polygonal mesh is orientable, if the incident faces to every edge can be consistently oriented

• If the faces are consistently oriented for every edge, the mesh is oriented

Notes

- Every non-orientable closed mesh embedded in \mathbb{R}^3 intersects itself
- The surface of a polyhedron is always orientable

Möbius strip

Global Topology of Meshes

the graph.

• Informally, the number of handles ("donut holes").

Genus: $\frac{1}{2} \times$ the maximal number of closed paths that do not disconnect

Global Topology of Meshes

the graph.

Informally, the number of handles ("donut holes").

Genus: $\frac{1}{2} \times \text{the maximal number of closed paths that do not disconnect$

Global Topology of Meshes

the graph.

Informally, the number of handles ("donut holes").

Genus: $\frac{1}{2} \times$ the maximal number of closed paths that do not disconnect

Euler-Poincaré Formula

Theorem (Euler): The value

 $\chi(M) = v - e + f$

is constant for a given surface topology, no matter which (manifold) mesh we choose.

- v: # vertices
- *e*: # edges
- *f* : # faces

Euler-Poincaré Formula

• For orientable meshes:

$$v - e + f = 2($$

- *c*: # connected components
- g: genus
- b: # boundary loops

$$\chi(\bigcirc) = 2 \quad \chi($$

$(c-g)-b=\chi(M)$

- Triangle mesh: average valence = 6
- Quad mesh: average valence = 4

- Regular mesh: all faces have the same number of edges and all vertex degrees are equal
- Quasi-regular mesh:
 - a lot of vertices have degree 6 (4). Sometimes also refers to mostly equilateral faces.

Quasi-regular

Quasi-regular

• Semi-regular mesh: connectivity is a result of N>0 subdivision steps

• Semi-regular mesh: connectivity is a result of N>0 subdivision steps

Triangulation

Polygonal mesh where every face is a triangle

• Simplifies data structures Simplifies rendering • Simplifies algorithms Each face planar and convex • Any polygon can be triangulated

Triangulation

Polygonal mesh where every face is a triangle

- Simplifies data structures
- Simplifies rendering
- Simplifies algorithms
- Each face planar and convex
- Any polygon can be triangulated

- Triangles are flat and convex
 - Easy rasterization, normals
 - Uniformity (same # of vertices)
- 3-way symmetry is less natural
- General polygons are flexible
 - Quads have natural symmetry
- Can be non-planar, non-convex
 - Difficult for graphics hardware
- Varying number of vertices

Edge loops are ideal for editing

- Quality of triangle meshes
 - Uniform Area
 - Angles close to 60
- Quality of quadrilateral meshes
 - Number of irregular vertices
 - Angles close to 90
 - Good edge flow

E. Van Egeraat

Data Structures

- What should be stored?
 - Geometry: 3D coordinates
 - Connectivity
 - Adjacency relationships
 - Attributes
 - Normal, color, texture coordinates
 - Per vertex, face, edge

Data Structures

What should be supported?

- Rendering
- Geometry queries
 - What are the vertices of face #2?
 - Is vertex A adjacent to vertex H?
 - Which faces are adjacent to face #1?
- Modifications
 - Remove/add a vertex/face
 - Vertex split, edge collapse

Data Structures

How good is a data structure?

- Time to construct
- Time to answer a query
- Time to perform an operation
- Space complexity
- Redundancy

Criteria for design

- Expected number of vertices
- Available memory
- Required operations
- Distribution of operations

Triangle List

- STL format (used in CAD)
- Storage
 - Face: 3 positions
 - 4 bytes per coordinate (single pre-
 - 36 bytes per face
 - Euler: f = 2v
 - $72 \times v$ bytes for a mesh with v vertices
- No connectivity information

Ci	S	io	n)
				-

Triangles				
0	x0	y0	z0	
1	x1	x 1	z1	
2	x2	y2	z2	
3	x3	уЗ	z3	
4	x4	y4	z4	
5	x5	y5	z5	
6	x6	у6	z6	
•••	•••	•••	•••	

Indexed Face Set

- Used in formats
 OBJ, OFF, WRL
- Storage
 - Vertex: position
 - Face: vertex indices
 - 12 bytes per vertex
 - 12 bytes per face
 - $36 \times v$ bytes for the mesh
- No explicit neighborhood info

Vertices				
v0	x0	у0	z0	
v1	x 1	x 1	z1	
v2	x2	y2	z2	
v3	x3	уЗ	z3	
v4	x4	y4	z4	
v5	x5	у5	z5	
v6	x6	у6	z6	
•••	•••	•••	•••	

Triangles					
tO	vO	v1	v2		
t 1	v0	v1	v3		
t2	v2	v4	v3		
t3	v5	v2	v6		
•••	•••	•••	•••		

Indexed Face Set: Problems

- Information about neighbors is not explicit
 - Finding neighboring vertices/edges/faces costs O(#V) time!
 - Local mesh modifications cost O(V)

• Breadth-first search costs $O(k \times \#V)$ where k = #found vertices

Neighborhood Relations

All possible neighborhood relationships:

- 1. Vertex Vertex VV
- 2. Vertex Edge VE
- 3. Vertex Face VF
- 4. Edge Vertex EV
- 5. Edge Edge EE
- 6. Edge Face EF
- 7. Face Vertex
- 8. Face Edge FE
- 9. Face Face FF

We'd like O(1) time for queries and local updates of these relationships

FV

Introduce orientation into data structure

• Oriented edges

Introduce orientation into data structure

• Oriented edges

Introduce orientation into data structure

- Oriented edges
- Vertex
 - Position
 - 1 outgoing halfedge index
- Halfedge
 - 1 origin vertex index
 - 1 incident face index
 - 3 next, prev, twin halfedge indices
- Face
 - 1 adjacent halfedge index
- Easy traversal, full connectivity

- One-ring traversal
 - Start at vertex

- One-ring traversal
 - Start at vertex
 - Outgoing halfedge

- One-ring traversal
 - Start at vertex
 - Outgoing halfedge
 - Twin halfedge

- One-ring traversal
 - Start at vertex
 - Outgoing halfedge
 - Twin halfedge
 - Next halfedge

- One-ring traversal
 - Start at vertex
 - Outgoing halfedge
 - Twin halfedge
 - Next halfedge
 - Twin ...

- **Pros:** (assuming bounded vertex valence)
 - O(1) time for neighborhood relationship queries
- Cons: \bullet
 - Heavy requires storing and managing extra pointers
 - Not as trivial as Indexed Face Set for rendering with OpenGL/DirectX

• O(1) time and space for local modifications (edge collapse, vertex insertion...)

Halfedge Libraries

- CGAL
 - www.cgal.org
 - Computational geometry
- OpenMesh
 - <u>www.openmesh.org</u>
 - Mesh processing
- PMP-library
 - <u>http://www.pmp-library.org/</u>
- VCG/Meshlab
 - <u>https://www.meshlab.net/</u>

References

Polygon Mesh Processing Book, Chapter 2

Polygon Mesh Processing

Mario Botsch Leif Kobbelt Mark Pauly Pierre Alliez Bruno Lévy

Thank you! Questions?