
计算机图形学
Computer Graphics

陈仁杰
renjiec@ustc.edu.cn

http://staff.ustc.edu.cn/~renjiec

mailto:renjiec@ustc.edu.cn
http://staff.ustc.edu.cn/~renjiec

Polygonal Meshes

• Boundary representations of objects

Meshes as Approximations of Smooth Surfaces

• Piecewise linear approximation

• Error is O(h2)

25% 6.5% 1.7% 0.4%

3 6 12 24

Meshes as Approximations of Smooth Surfaces

• Piecewise linear approximation

• Error is O(h2)

25% 6.5% 1.7% 0.4%

3 6 12 24

0.

7.5

15.

22.5

30.

0 8 15 23 30

#faces vs. approximation
error

Polygonal Meshes

• Polygonal meshes are a good representation

• approximation O(h2)

• arbitrary topology

• piecewise smooth surfaces

• adaptive refinement

• efficient rendering

Polygon

• Vertices:

• Edges:

• Closed:

• Planar: all vertices on a plane

• Simple: not self-intersecting

Polygonal Mesh

A finite set M of closed, simple polygons Qi is a
polygonal mesh

• The intersection of two polygons in M is
either empty, a vertex, or an edge

vertices edges faces

Polygonal Mesh

A finite set M of closed, simple polygons Qi is a
polygonal mesh

• The intersection of two polygons in M is
either empty, a vertex, or an edge

• Every edge belongs to at least one polygon

Polygonal Mesh

A finite set M of closed, simple polygons Qi is a
polygonal mesh

• The intersection of two polygons in M is
either empty, a vertex, or an edge

• Every edge belongs to at least one polygon

• Each Qi defines a face of the polygonal mesh

Polygonal Mesh

A finite set M of closed, simple polygons Qi is a
polygonal mesh

• The intersection of two polygons in M is either
empty, a vertex, or an edge

• Every edge belongs to at least one polygon

• Each Qi defines a face of the polygonal mesh

Polygonal Mesh

A finite set M of closed, simple polygons Qi is a
polygonal mesh

• The intersection of two polygons in M is either
empty, a vertex, or an edge

• Every edge belongs to at least one polygon

• Each Qi defines a face of the polygonal mesh

Polygonal Mesh

A finite set M of closed, simple polygons Qi is a
polygonal mesh

• The intersection of two polygons in M is either
empty, a vertex, or an edge

• Every edge belongs to at least one polygon

• Each Qi defines a face of the polygonal mesh

Polygonal Mesh

4

Vertex degree or valence: #incident edges

Polygonal Mesh

2

Vertex degree or valence: #incident edges

Polygonal Mesh

Boundary: the set of all edges that belong
to only one polygon

• Either empty or forms closed loops

• If empty, then the polygonal mesh is closed

Triangle Meshes

• Connectivity: vertices, edges, triangles

• Geometry: vertex positions

Manifolds

A surface is a closed 2-manifold if it is everywhere locally
homeomorphic to a disk

Manifolds

For every point x in M, there is an open ball 𝐵𝑥 𝑟 of radius 𝑟 > 0
centered at x such that 𝑀 ∩ 𝐵𝑥 is homeomorphic to an open disk

Manifolds

Manifold with boundary: a vicinity of each boundary point is
homeomorphic to a half-disk

Examples

For each case, decide if it is a 2-manifold (possibly with boundary) or
not.

If not, explain why not.

Case 1 Case 2 Case 3 Case 4 Case 5

Examples

• Bonus cases

Case 6 Case 8Case 7

Manifolds

• In a manifold mesh, there are at most 2 faces sharing an edge
• Boundary edges: have one incident face

• Interior edges have two incident faces

• A manifold vertex has 1 connected ring of faces around it, or 1
connected half-ring (boundary)

manifold non-manifold

vertex

non-manifold

edge

non-manifold

vertex

Manifolds

• If closed and not intersecting, a manifold divides the space into inside
and outside

• A closed manifold polygonal mesh is called polyhedron

Orientation

Every face of a polygonal mesh is orientable
• Clockwise vs. counterclockwise order of face vertices

• Defines sign/direction of the surface normal

-

0 1

2

6

54

7

3
+

0 1

2

6

5
4

7

3

Orientation

• Consistent orientation of neighboring faces:

Orientability

A polygonal mesh is orientable, if the incident faces
to every edge can be consistently oriented
• If the faces are consistently oriented for every edge, the

mesh is oriented

Notes
• Every non-orientable closed mesh embedded in ℝ3

intersects itself

• The surface of a polyhedron is always orientable

Klein bottle

Möbius strip

Global Topology of Meshes

Genus: ½× the maximal number of closed paths that do not disconnect
the graph.

• Informally, the number of handles (“donut holes”).

Global Topology of Meshes

This is not a handle,

it’s a boundary loop

handle

Genus: ½× the maximal number of closed paths that do not disconnect
the graph.

• Informally, the number of handles (“donut holes”).

Global Topology of Meshes

Genus: ½× the maximal number of closed paths that do not disconnect
the graph.

• Informally, the number of handles (“donut holes”).

Genus 0 Genus 3Genus 2Genus 1

Euler-Poincaré Formula

Theorem (Euler): The value

is constant for a given surface topology, no matter which (manifold) mesh we choose.

• 𝑣: # vertices

• 𝑒: # edges

• 𝑓: # faces

Euler-Poincaré Formula

• For orientable meshes:

• 𝑐: # connected components

• 𝑔: genus

• 𝑏: # boundary loops

Regularity
• Triangle mesh: average valence = 6

• Quad mesh: average valence = 4

• Regular mesh: all faces have the same number of edges and all vertex
degrees are equal

• Quasi-regular mesh:

• a lot of vertices have degree 6 (4). Sometimes also refers to mostly equilateral faces.

Regularity

• Quasi-regular

Regularity

• Quasi-regular

Regularity

• Semi-regular mesh:
connectivity is a result
of N>0 subdivision steps

Regularity

• Semi-regular mesh:
connectivity is a result
of N>0 subdivision steps

Triangulation

Polygonal mesh where every face is a triangle

• Simplifies data structures

• Simplifies rendering

• Simplifies algorithms

• Each face planar and convex

• Any polygon can be triangulated

Triangulation

• Polygonal mesh where every face is a
triangle

• Simplifies data structures

• Simplifies rendering

• Simplifies algorithms

• Each face planar and convex

• Any polygon can be triangulated

Polygonal vs. Triangle Meshes

• Triangles are flat and convex
• Easy rasterization, normals

• Uniformity (same # of vertices)

• 3-way symmetry is less natural

• General polygons are flexible
• Quads have natural symmetry

• Can be non-planar, non-convex
• Difficult for graphics hardware

• Varying number of vertices

Polygonal vs. Triangle Meshes

• Edge loops are ideal for editing

Polygonal vs. Triangle Meshes

• Quality of triangle meshes
• Uniform Area
• Angles close to 60

• Quality of quadrilateral meshes
• Number of irregular vertices
• Angles close to 90
• Good edge flow

Polygonal vs. Triangle Meshes

E. Van Egeraat

Data Structures

• What should be stored?

• Geometry: 3D coordinates

• Connectivity
• Adjacency relationships

• Attributes
• Normal, color, texture coordinates

• Per vertex, face, edge

Data Structures

A
B

C D

E F

G

H
I

J K

What should be supported?
• Rendering

• Geometry queries
• What are the vertices of face #2?

• Is vertex A adjacent to vertex H?

• Which faces are adjacent to face #1?

• Modifications
• Remove/add a vertex/face

• Vertex split, edge collapse

1

2

3

4

Data Structures

How good is a data structure?
• Time to construct

• Time to answer a query

• Time to perform an operation

• Space complexity

• Redundancy

Criteria for design
• Expected number of vertices

• Available memory

• Required operations

• Distribution of operations

A
B

C D

E F

G

H
I

J K

1

2

3

4

Triangle List

• STL format (used in CAD)

• Storage
• Face: 3 positions

• 4 bytes per coordinate (single precision)

• 36 bytes per face
• Euler: 𝑓 = 2𝑣

• 72 × 𝑣 bytes for a mesh with 𝑣 vertices

• No connectivity information

Triangles

0 x0 y0 z0

1 x1 x1 z1

2 x2 y2 z2

3 x3 y3 z3

4 x4 y4 z4

5 x5 y5 z5

6 x6 y6 z6

...

Indexed Face Set

• Used in formats

OBJ, OFF, WRL

• Storage
• Vertex: position

• Face: vertex indices

• 12 bytes per vertex

• 12 bytes per face

• 36 × 𝑣 bytes for the mesh

• No explicit neighborhood info

Vertices

v0 x0 y0 z0

v1 x1 x1 z1

v2 x2 y2 z2

v3 x3 y3 z3

v4 x4 y4 z4

v5 x5 y5 z5

v6 x6 y6 z6

...

Triangles

t0 v0 v1 v2

t1 v0 v1 v3

t2 v2 v4 v3

t3 v5 v2 v6

...

Indexed Face Set: Problems

• Information about neighbors is not explicit
• Finding neighboring vertices/edges/faces costs 𝑂 #𝑉 time!

• Local mesh modifications cost 𝑂 𝑉

• Breadth-first search costs 𝑂 𝑘 × #𝑉 where 𝑘 = #found vertices

Neighborhood Relations

All possible neighborhood relationships:
1. Vertex – Vertex VV

2. Vertex – Edge VE

3. Vertex – Face VF

4. Edge – Vertex EV

5. Edge – Edge EE

6. Edge – Face EF

7. Face – Vertex FV

8. Face – Edge FE

9. Face – Face FF

VV VFVE

EV EFEE

FV FFFE

V F

E

We’d like 𝑂 1 time for queries and local

updates of these relationships

Halfedge data structure

Introduce orientation into data structure
• Oriented edges

Halfedge data structure

Introduce orientation into data structure
• Oriented edges

Halfedge data structure

Introduce orientation into data structure
• Oriented edges

• Vertex
• Position
• 1 outgoing halfedge index

• Halfedge
• 1 origin vertex index
• 1 incident face index
• 3 next, prev, twin halfedge indices

• Face
• 1 adjacent halfedge index

• Easy traversal, full connectivity

Halfedge data structure

• One-ring traversal

• Start at vertex

Halfedge data structure

• One-ring traversal

• Start at vertex

• Outgoing halfedge

Halfedge data structure

• One-ring traversal

• Start at vertex

• Outgoing halfedge

• Twin halfedge

Halfedge data structure

• One-ring traversal

• Start at vertex

• Outgoing halfedge

• Twin halfedge

• Next halfedge

Halfedge data structure

• One-ring traversal

• Start at vertex

• Outgoing halfedge

• Twin halfedge

• Next halfedge

• Twin ...

Halfedge data structure

• Pros: (assuming bounded vertex valence)

• 𝑂 1 time for neighborhood relationship queries

• 𝑂 1 time and space for local modifications (edge collapse, vertex insertion…)

• Cons:
• Heavy – requires storing and managing extra pointers

• Not as trivial as Indexed Face Set for rendering with OpenGL/DirectX

Halfedge Libraries

• CGAL
• www.cgal.org
• Computational geometry

• OpenMesh
• www.openmesh.org
• Mesh processing

• PMP-library
• http://www.pmp-library.org/

• VCG/Meshlab
• https://www.meshlab.net/

http://www.cgal.org/
http://www.openmesh.org/
http://www.pmp-library.org/
https://www.meshlab.net/

References

• Polygon Mesh Processing Book, Chapter 2

Thank you!

Questions?

