
计算机图形学
Computer Graphics

陈仁杰
renjiec@ustc.edu.cn

http://staff.ustc.edu.cn/~renjiec

mailto:renjiec@ustc.edu.cn
http://staff.ustc.edu.cn/~renjiec

2

四元数与三维旋转

Rotations

3

• Very important in computer animation

and robotics

• Joint angles, rigid body orientations,

camera parameters

• 2D or 3D

Rotations in Three Dimensions

• Orthogonal matrices:

RRT = RTR = I
det(R) = 1

4

Representing Rotations in 3D

5

• Rotations in 3D have essentially three

parameters

• Axis + angle (2 DOFs + 1DOFs)

– How to represent the axis?

Longitude / lattitude have singularities

• 3x3 matrix

– 9 entries (redundant)

Representing Rotations in 3D

• Euler angles

– roll, pitch, yaw

– no redundancy (good)

– gimbal lock singularities

• Quaternions

– generally considered the “best” representation

– redundant (4 values), but only by one DOF (not severe)

– stable interpolations of rotations possible

Source: Wikipedia

6

Euler Angles

1. Yaw

rotate around y-axis

2. Pitch

rotate around (rotated) x-axis

3. Roll

rotate around (rotated) y-axis

Source:

Wikipedia

7

Gimbal Lock

When all three gimbals are lined up (in the same

plane), the system can only move in two dimensions

from this configuration, not three, and is in gimbal

lock.

Gimbal Lock

When all three gimbals are lined up (in the same

plane), the system can only move in two dimensions

from this configuration, not three, and is in gimbal

lock.

Gimbal Lock (Apollo Systems)

Choice of rotation axis sequence

for Euler Angles

• 12 choices:

XYX, XYZ, XZX,

XZY, YXY, YXZ, YZX,

YZY, ZXY, ZXZ, ZYX,

ZYZ

• Each choice can use static axes, or

rotated axes, so we have

a total of 24 Euler Angle versions!

11

Example: XYZ Euler Angles

• First rotate around X by angle 1,

then around Y by angle 2,
then around Z by angle 3 .

• Used in CMU Motion Capture

Database AMC files

• Rotation matrix is:

12

Outline

13

• Rotations

• Quaternions

• Quaternion Interpolation

Quaternions

14

• Generalization of complex numbers

• Three imaginary numbers: i, j, k

i2 = -1, j2 = -1, k2 = -1,

ij = k, jk = i, ki = j, ji = -k, kj = -i, ik = -j

• q = s + x i + y j + z k, s,x,y,z are scalars

四元数(Quaternion)

The Broom Bridge in Ireland

The Story

Quaternions

18

• Quaternions are not commutative!

q1 q2  q2 q1

• However, the following hold:

(q1 q2) q3 = q1 (q2 q3)

(q1 + q2) q3 = q1 q3 + q2 q3

q1 (q2 + q3) = q1 q2 + q1 q3

 (q1 + q2) =  q1 +  q2 ( is scalar)
(q1) q2 =  (q1q2) = q1 (q2) ( is scalar)

• I.e., all usual manipulations are valid, except cannot
reverse multiplication order.

Quaternions

19

• Exercise: multiply two quaternions

(2 - i + j + 3k) (-1 + i + 4j - 2k) = ...

Quaternion Properties

• q = s + x i + y j + z k

• Norm: |q|2 = s2 + x2 + y2 + z2

• Conjugate quaternion: q = s - x i - y j - z k

• Inverse quaternion: q-1 = q / |q|2

• Unit quaternion: |q| =1

• Inverse of unit quaternion: q-1 = q

20

Quaternions and

Rotations
• Rotations are represented by unit quaternions

• q = s + x i + y j + z k

s2 + x2 + y2 + z2 = 1

• Unit quaternion sphere

(unit sphere in 4D)
unit sphere in 4D

21

Rotations to Unit Quaternions

22

• Let (unit) rotation axis be 𝑢𝑥, 𝑢𝑦, 𝑢𝑧 , and angle 𝜃

• Corresponding quaternion is

• Composition of rotations 𝑞1 and 𝑞2 equals

𝑞 = 𝑞2𝑞1

• 3D rotations do not commute!

𝑞 = cos
𝜃

2
+ sin

𝜃

2
𝑢𝑥𝒊 + sin

𝜃

2
𝑢𝑦𝒋 + sin

𝜃

2
𝑢𝑧𝒌

Unit Quaternions to

Rotations
• Let 𝑣 be a (3-dim) vector and let 𝑞 be a unit quaternion

• Then, the corresponding rotation transforms
vector 𝑣 to 𝑞𝒗𝑞−1

(𝒗 is a quaternion with scalar part equaling 0, and
vector part equaling 𝑣)

For 𝑞 = 𝑎 + 𝑏𝒊 + 𝑐𝒋 + 𝑑𝒌

𝑅 =
𝑎2 + 𝑏2 − 𝑐2 − 𝑑2 2𝑏𝑐 − 2𝑎𝑑 2𝑏𝑑 + 2𝑎𝑐

2𝑏𝑐 + 2𝑎𝑑 𝑎2 − 𝑏2 + 𝑐2 − 𝑑2 2𝑐𝑑 − 2𝑎𝑏
2𝑏𝑑 − 2𝑎𝑐 2𝑐𝑑 + 2𝑎𝑏 𝑎2 − 𝑏2 − 𝑐2 +𝑑2

23

Quaternions

24

• Quaternions 𝑞 and −𝑞 give the same rotation!

• Other than this, the relationship between

rotations and quaternions is unique

Quaternion Interpolation

• Better results than Euler
angles

• A quaternion is a point on
the 4-D unit sphere

• Interpolating rotations
corresponds to curves
on the 4-D sphere

25

Spherical Linear intERPolation

(SLERPing)

• Interpolate along the great

circle on the 4-D unit sphere

• Move with constant angular

velocity along the great circle

between the two points

• Any rotation is given by

two quaternions, so there are two

SLERP choices; pick the shortest

San Francisco

to London

26

SLERP

• 𝑢 varies from 0 to 1

• 𝑞𝑚 = 𝑠𝑚 + 𝑥𝑚𝒊 + 𝑦𝑚𝒋 + 𝑧𝑚𝒌 , for 𝑚 = 1,2

• The above formula automatically produces a

unit quaternion (not obvious, but true).

27

Interpolating more than two rotations

• Simplest approach:

connect consecutive

quaternions using SLERP

• Continuous rotations

• Angular velocity

not smooth at the joints

28

Interpolation with smooth velocities

• Use splines on the

unit quaternion sphere

• Reference:

Shoemake, SIGGRAPH '85

29

Bezier

Spline• Four control points

– points P1 and P4 are on the curve

– points P2 and P3 are off the curve;
they give curve tangents at beginning and end

30

Bezier Spline

• p(0) = P1, p(1) = P4,

• p'(0) = 3(P2-P1)

• p'(1) = 3(P4 - P3)

• Convex Hull property:
curve contained within the
convex hull of control points

• Scale factor “3” is chosen to
make “velocity” approximately
constant

31

The Bezier Spline Formula

Bezier basis Bezier
control matrix

• [x,y,z] is point on spline corresponding to u

• u varies from 0 to 1

32

• P1 = [x1 y1 z1]

• P3 = [x3 y3 z3]

P2 = [x2 y2 z2]

P4 = [x4 y4 z4]

DeCasteljau Construction

Efficient algorithm to evaluate Bezier splines.

Similar to Horner rule for polynomials.

Can be extended to interpolations of 3D rotations.

33

DeCasteljau on Quaternion Sphere

Given t, apply DeCasteljau construction:

Q0 = Slerp(P0,P1,t)

Q2 = Slerp(P2,P3,t)

R1 = Slerp(Q1,Q2,t)

Q1 = Slerp(P1,P2,t)

R0 = Slerp(Q0,Q1,t)

P(t)= Slerp(R0,R1,t)
34

Bezier Control Points for Quaternions

• Given quaternions 𝑞𝑛−1, 𝑞𝑛, 𝑞𝑛+1, form:

𝑎𝑛 = 𝑆𝑙𝑒𝑟𝑝(𝑆𝑙𝑒𝑟𝑝(𝑞𝑛−1, 𝑞𝑛, 2), 𝑞𝑛+1, 0.5)

𝑎𝑛 = 𝑆𝑙𝑒𝑟𝑝(𝑞𝑛 , 𝑎𝑛, 1/3)

𝑏𝑛 = 𝑆𝑙𝑒𝑟𝑝(𝑞𝑛 , 𝑎𝑛, −1/3)

35

Interpolating Many Rotations on

Quaternion Sphere

36

• Given quaternions q1, ..., qN ,
form Bezier spline control points (previous slide)

• Spline 1: q1, a1, b2, q2

• Spline 2: q2, a2, b3, q3 etc.

• Need a1 and bN; can set
a1 = Slerp(q1, Slerp(q3, q2, 2.0), 1.0 / 3)
bN = Slerp(qN, Slerp(qN-2, qN-1, 2.0), 1.0 / 3)

• To evaluate a spline at any t, use DeCasteljau
construction

