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四元数与三维旋转



Rotations
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• Very important in computer animation 

and robotics

• Joint angles, rigid body orientations, 

camera parameters

• 2D or 3D



Rotations in Three Dimensions

• Orthogonal matrices:

RRT = RTR = I
det(R) = 1

4



Representing Rotations in 3D
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• Rotations in 3D have essentially three 

parameters

• Axis + angle (2 DOFs + 1DOFs)

– How to represent the axis?

Longitude / lattitude have singularities

• 3x3 matrix

– 9 entries (redundant)



Representing Rotations in 3D

• Euler angles

– roll, pitch, yaw

– no redundancy (good)

– gimbal lock singularities

• Quaternions

– generally considered the “best” representation

– redundant (4 values), but only by one DOF (not severe)

– stable interpolations of rotations possible

Source: Wikipedia
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Euler Angles

1. Yaw

rotate around y-axis

2. Pitch

rotate around (rotated) x-axis

3. Roll

rotate around (rotated) y-axis

Source:

Wikipedia
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Gimbal Lock

When all three gimbals are lined up (in the same

plane), the system can only move in two dimensions

from this configuration, not three, and is in gimbal

lock.



Gimbal Lock

When all three gimbals are lined up (in the same

plane), the system can only move in two dimensions

from this configuration, not three, and is in gimbal

lock.



Gimbal Lock (Apollo Systems)



Choice of rotation axis sequence 

for Euler Angles

• 12 choices:

XYX, XYZ, XZX,

XZY, YXY, YXZ, YZX,

YZY, ZXY, ZXZ, ZYX,

ZYZ

• Each choice can use static axes, or 

rotated axes, so we have

a total of 24 Euler Angle versions!
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Example: XYZ Euler Angles

• First rotate around X by angle 1, 

then around Y by angle 2,
then around Z by angle 3 .

• Used in CMU Motion Capture 

Database AMC files

• Rotation matrix is:
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Outline
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• Rotations

• Quaternions

• Quaternion Interpolation



Quaternions

14

• Generalization of complex numbers

• Three imaginary numbers: i, j, k 

i2 = -1, j2 = -1, k2 = -1,

ij = k, jk = i, ki = j, ji = -k, kj = -i, ik = -j

• q = s + x i + y j + z k, s,x,y,z are scalars



四元数(Quaternion)



The Broom Bridge in Ireland



The Story



Quaternions
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• Quaternions are not commutative!

q1 q2  q2 q1

• However, the following hold: 

(q1 q2) q3 = q1 (q2 q3)

(q1 + q2) q3 = q1 q3 + q2 q3

q1 (q2 + q3) = q1 q2 + q1 q3

 (q1 + q2) =  q1 +  q2 ( is scalar) 
(q1) q2 =  (q1q2) = q1 (q2) ( is scalar)

• I.e., all usual manipulations are valid, except cannot 
reverse multiplication order.



Quaternions
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• Exercise: multiply two quaternions

(2 - i + j + 3k) (-1 + i + 4j - 2k) = ...



Quaternion Properties

• q = s + x i + y j + z k

• Norm: |q|2 = s2 + x2 + y2 + z2

• Conjugate quaternion: q = s - x i - y j - z k

• Inverse quaternion: q-1 = q / |q|2

• Unit quaternion: |q| =1

• Inverse of unit quaternion: q-1 = q
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Quaternions and

Rotations
• Rotations are represented by unit quaternions

• q = s + x i + y j + z k

s2 + x2 + y2 + z2 = 1

• Unit quaternion sphere 

(unit sphere in 4D)
unit sphere in 4D
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Rotations to Unit Quaternions
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• Let (unit) rotation axis be 𝑢𝑥, 𝑢𝑦, 𝑢𝑧 , and angle 𝜃

• Corresponding quaternion is

• Composition of rotations 𝑞1 and 𝑞2 equals

𝑞 = 𝑞2𝑞1

• 3D rotations do not commute!

𝑞 = cos
𝜃

2
+ sin

𝜃

2
𝑢𝑥𝒊 + sin

𝜃

2
𝑢𝑦𝒋 + sin

𝜃

2
𝑢𝑧𝒌



Unit Quaternions to

Rotations
• Let 𝑣 be a (3-dim) vector and let 𝑞 be a unit quaternion

• Then, the corresponding rotation transforms 
vector 𝑣 to 𝑞𝒗𝑞−1

(𝒗 is a quaternion with scalar part equaling 0, and
vector part equaling 𝑣)

For 𝑞 = 𝑎 + 𝑏𝒊 + 𝑐𝒋 + 𝑑𝒌

𝑅 =
𝑎2 + 𝑏2 − 𝑐2 − 𝑑2 2𝑏𝑐 − 2𝑎𝑑 2𝑏𝑑 + 2𝑎𝑐

2𝑏𝑐 + 2𝑎𝑑 𝑎2 − 𝑏2 + 𝑐2 − 𝑑2 2𝑐𝑑 − 2𝑎𝑏
2𝑏𝑑 − 2𝑎𝑐 2𝑐𝑑 + 2𝑎𝑏 𝑎2 − 𝑏2 − 𝑐2 +𝑑2
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Quaternions
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• Quaternions 𝑞 and −𝑞 give the same rotation!

• Other than this, the relationship between 

rotations and quaternions is unique



Quaternion Interpolation

• Better results than Euler
angles

• A quaternion is a point on
the 4-D unit sphere

• Interpolating rotations
corresponds to curves
on the 4-D sphere

25



Spherical Linear intERPolation 

(SLERPing)

• Interpolate along the great 

circle on the 4-D unit sphere

• Move with constant angular 

velocity along the great circle 

between the two points

• Any rotation is given by

two quaternions, so there are two 

SLERP choices; pick the shortest

San Francisco 

to London
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SLERP

• 𝑢 varies from 0 to 1

• 𝑞𝑚 = 𝑠𝑚 + 𝑥𝑚𝒊 + 𝑦𝑚𝒋 + 𝑧𝑚𝒌 , for 𝑚 = 1,2

• The above formula automatically produces a 

unit quaternion (not obvious, but true).
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Interpolating more than two rotations

• Simplest approach: 

connect consecutive 

quaternions using SLERP

• Continuous rotations

• Angular velocity

not smooth at the joints
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Interpolation with smooth velocities

• Use splines on the 

unit quaternion sphere

• Reference:

Shoemake, SIGGRAPH '85
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Bezier

Spline• Four control points

– points P1 and P4 are on the curve

– points P2 and P3 are off the curve;
they give curve tangents at beginning and end
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Bezier Spline

• p(0) = P1, p(1) = P4,

• p'(0) = 3(P2-P1)

• p'(1) = 3(P4 - P3)

• Convex Hull property: 
curve contained within the
convex hull of control points

• Scale factor “3” is chosen to 
make “velocity” approximately 
constant
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The Bezier Spline Formula

Bezier basis Bezier 
control matrix

• [x,y,z] is point on spline corresponding to u

• u varies from 0 to 1
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• P1 = [x1 y1 z1]

• P3 = [x3 y3 z3]

P2 = [x2 y2 z2] 

P4 = [x4 y4 z4]



DeCasteljau Construction

Efficient algorithm to evaluate Bezier splines. 

Similar to Horner rule for polynomials.

Can be extended to interpolations of 3D rotations.
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DeCasteljau on Quaternion Sphere

Given t, apply DeCasteljau construction:

Q0 = Slerp(P0,P1,t)

Q2 = Slerp(P2,P3,t)

R1 = Slerp(Q1,Q2,t)

Q1 = Slerp(P1,P2,t) 

R0 = Slerp(Q0,Q1,t)

P(t)= Slerp(R0,R1,t)
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Bezier Control Points for Quaternions

• Given quaternions 𝑞𝑛−1, 𝑞𝑛, 𝑞𝑛+1, form: 

𝑎𝑛 = 𝑆𝑙𝑒𝑟𝑝(𝑆𝑙𝑒𝑟𝑝(𝑞𝑛−1, 𝑞𝑛, 2), 𝑞𝑛+1, 0.5)

𝑎𝑛 = 𝑆𝑙𝑒𝑟𝑝(𝑞𝑛 , 𝑎𝑛, 1/3)

𝑏𝑛 = 𝑆𝑙𝑒𝑟𝑝(𝑞𝑛 , 𝑎𝑛, −1/3)
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Interpolating Many Rotations on 

Quaternion Sphere
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• Given quaternions q1, ..., qN ,
form Bezier spline control points (previous slide)

• Spline 1: q1, a1, b2, q2

• Spline 2: q2, a2, b3, q3 etc.

• Need a1 and bN; can set
a1 = Slerp(q1, Slerp(q3, q2, 2.0), 1.0 / 3)
bN = Slerp(qN, Slerp(qN-2, qN-1, 2.0), 1.0 / 3)

• To evaluate a spline at any t, use DeCasteljau 
construction


