# 计算机图形学 Computer Graphics 

陈仁杰
renjiec＠ustc．edu．cn
http：／／staff．ustc．edu．cn／～renjiec

四元数与三维旋转

## Rotations

- Very important in computer animation and robotics
- Joint angles, rigid body orientations, camera parameters
- 2D or 3D


## Rotations in Three Dimensions

- Orthogonal matrices:

$$
\begin{aligned}
& \begin{array}{l}
R R^{\top}=R^{\top} R=I \\
\operatorname{det}(R)=1
\end{array} \\
& R=\left[\begin{array}{lll}
R_{11} & R_{12} & R_{13} \\
R_{21} & R_{22} & R_{23} \\
R_{31} & R_{32} & R_{33}
\end{array}\right]
\end{aligned}
$$

## Representing Rotations in 3D

- Rotations in 3D have essentially three parameters
- Axis + angle (2 DOFs + 1DOFs)
- How to represent the axis?

Longitude / lattitude have singularities

- $3 \times 3$ matrix
- 9 entries (redundant)


## Representing Rotations in 3D

- Euler angles
- roll, pitch, yaw
- no redundancy (good)
- gimbal lock singularities
- Quaternions


Source: Wikipedia

- generally considered the "best" representation
- redundant (4 values), but only by one DOF (not severe)
- stable interpolations of rotations possible


## Euler Angles

1. Yaw rotate around $y$-axis
2. Pitch rotate around (rotated) $x$-axis
3. Roll
rotate around (rotated) y-axis


Source:
Wikipedia

## Gimbal Lock

When all three gimbals are lined up (in the same plane), the system can only move in two dimensions from this configuration, not three, and is in gimbal lock.


## Gimbal Lock

When all three gimbals are lined up (in the same plane), the system can only move in two dimensions from this configuration, not three, and is in gimbal lock.


## Gimbal Lock (Apollo Systems)



Red-painted area $=$ Danger of real Gimbal Lock

# Choice of rotation axis sequence for Euler Angles 

- 12 choices:

XYX, XYZ, XZX,
XZY, YXY, YXZ, YZX,
YZY, ZXY, ZXZ, ZYX,
ZYZ


- Each choice can use static axes, or rotated axes, so we have a total of 24 Euler Angle versions!


## Example: XYZ Euler Angles

- First rotate around X by angle $\theta_{1}$, then around Y by angle $\theta_{2}$, then around $Z$ by angle $\theta_{3}$.
- Used in CMU Motion Capture Database AMC files

- Rotation matrix is:

$$
R=\left[\begin{array}{ccc}
\cos \left(\theta_{3}\right) & -\sin \left(\theta_{3}\right) & 0 \\
\sin \left(\theta_{3}\right) & \cos \left(\theta_{3}\right) & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
\cos \left(\theta_{2}\right) & 0 & -\sin \left(\theta_{2}\right) \\
0 & 1 & 0 \\
\sin \left(\theta_{2}\right) & 0 & \cos \left(\theta_{2}\right)
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \left(\theta_{1}\right) & -\sin \left(\theta_{1}\right) \\
0 & \sin \left(\theta_{1}\right) & \cos \left(\theta_{1}\right)
\end{array}\right]
$$

## Outline

- Rotations
- Quaternions
- Quaternion Interpolation


## Quaternions

- Generalization of complex numbers
- Three imaginary numbers: $\boldsymbol{i}, \boldsymbol{j}, \boldsymbol{k}$

$$
\begin{aligned}
& \boldsymbol{i}^{2}=-1, \boldsymbol{j}^{2}=-1, \boldsymbol{k}^{2}=-1 \\
& \boldsymbol{i} \boldsymbol{j}=\boldsymbol{k}, \boldsymbol{j} \boldsymbol{k}=\boldsymbol{i}, \boldsymbol{k} \boldsymbol{i}=\boldsymbol{j}, \boldsymbol{j} \boldsymbol{i}=-\boldsymbol{k}, \boldsymbol{k}=-\boldsymbol{i}, \boldsymbol{i} \boldsymbol{k}=-\boldsymbol{j}
\end{aligned}
$$

- $q=s+x \boldsymbol{i}+y \boldsymbol{j}+z \boldsymbol{k}, \quad s, x, y, z$ are scalars


## 四元数（Quaternion）



## The Broom Bridge in Ireland



## The Story



Here as he walked by on the l6th of October 1843 Sir Villiam Rowan Hamilton in a flash of genius discovered the fundamental formula for quaternion multiplication

$$
i^{2}=j^{2}=k^{2}=i j k=-1
$$

$\varepsilon$ cut it on a stone of this bridge

## Quaternions

- Quaternions are not commutative!

$$
q_{1} q_{2} \neq q_{2} q_{1}
$$

- However, the following hold:

$$
\begin{aligned}
& \left(q_{1} q_{2}\right) q_{3}=q_{1}\left(q_{2} q_{3}\right) \\
& \left(q_{1}+q_{2}\right) q_{3}=q_{1} q_{3}+q_{2} q_{3} \\
& q_{1}\left(q_{2}+q_{3}\right)=q_{1} q_{2}+q_{1} q_{3} \\
& \alpha\left(q_{1}+q_{2}\right)=\alpha q_{1}+\alpha q_{2} \quad(\alpha \text { is scalar) } \\
& \left(\alpha q_{1}\right) q_{2}=\alpha\left(q_{1} q_{2}\right)=q_{1}\left(\alpha q_{2}\right) \quad(\alpha \text { is scalar) }
\end{aligned}
$$

- I.e., all usual manipulations are valid, except cannot reverse multiplication order.


## Quaternions

- Exercise: multiply two quaternions

$$
(2-\boldsymbol{i}+\boldsymbol{j}+3 \boldsymbol{k})(-1+\boldsymbol{i}+4 \boldsymbol{j}-2 \boldsymbol{k})=\ldots
$$

## Quaternion Properties

- $q=s+x \boldsymbol{i}+y \boldsymbol{j}+z \boldsymbol{k}$
- Norm: $|q|^{2}=s^{2}+x^{2}+y^{2}+z^{2}$
- Conjugate quaternion: $q=s-x \boldsymbol{i}-y \boldsymbol{j}-z \boldsymbol{k}$
- Inverse quaternion: $q^{-1}=q /|q|^{2}$
- Unit quaternion: $|q|=1$
- Inverse of unit quaternion: $\mathrm{q}^{-1}=\mathrm{q}$

Quaternions and
Rotations

- Rotations are represented by unit quaternions
- $q=s+x \boldsymbol{i}+y \boldsymbol{j}+z \boldsymbol{k}$
$s^{2}+x^{2}+y^{2}+z^{2}=1$
- Unit quaternion sphere (unit sphere in 4D)

unit sphere in 4D


## Rotations to Unit Quaternions

- Let (unit) rotation axis be $\left[u_{x}, u_{y}, u_{z}\right.$ ], and angle $\theta$
- Corresponding quaternion is

$$
q=\cos \left(\frac{\theta}{2}\right)+\sin \left(\frac{\theta}{2}\right) u_{x} \boldsymbol{i}+\sin \left(\frac{\theta}{2}\right) u_{y} \boldsymbol{j}+\sin \left(\frac{\theta}{2}\right) u_{z} \boldsymbol{k}
$$

- Composition of rotations $q_{1}$ and $q_{2}$ equals

$$
q=q_{2} q_{1}
$$

- 3D rotations do not commute!


## Unit Quaternions to Rotations <br> - Let $v$ be a (3-dim) vector and let $q$ be a unit quaternion

- Then, the corresponding rotation transforms vector $v$ to $q v q^{-1}$
( $v$ is a quaternion with scalar part equaling 0 , and vector part equaling $v$ )

For $q=a+b \boldsymbol{i}+c \boldsymbol{j}+d \boldsymbol{k}$

$$
R=\left(\begin{array}{ccc}
a^{2}+b^{2}-c^{2}-d^{2} & 2 b c-2 a d & 2 b d+2 a c \\
2 b c+2 a d & a^{2}-b^{2}+c^{2}-d^{2} & 2 c d-2 a b \\
2 b d-2 a c & 2 c d+2 a b & a^{2}-b^{2}-c^{2}+d^{2}
\end{array}\right)
$$

## Quaternions

- Quaternions $q$ and $-q$ give the same rotation!
- Other than this, the relationship between rotations and quaternions is unique


## Quaternion Interpolation

- Better results than Euler angles
- A quaternion is a point on the 4-D unit sphere
- Interpolating rotations

corresponds to curves on the 4-D sphere


## Spherical Linear intERPolation (SLERPing)

- Interpolate along the great circle on the 4-D unit sphere
- Move with constant angular velocity along the great circle between the two points

- Any rotation is given by two quaternions, so there are two SLERP choices; pick the shortest


## SLERP

$$
\begin{aligned}
& \operatorname{Slerp}\left(q_{1}, q_{2}, u\right)=\frac{\sin ((1-u) \theta)}{\sin (\theta)} q_{1}+\frac{\sin (u \theta)}{\sin (\theta)} q_{2} \\
& \cos (\theta)=q_{1} \cdot q_{2}= \\
& =s_{1} s_{2}+x_{1} x_{2}+y_{1} y_{2}+z_{1} z_{2}
\end{aligned}
$$

- $u$ varies from 0 to 1
- $q_{m}=s_{m}+x_{m} \boldsymbol{i}+y_{m} \boldsymbol{j}+z_{m} \boldsymbol{k}, \quad$ for $m=1,2$
- The above formula automatically produces a unit quaternion (not obvious, but true).


## Interpolating more than two rotations

- Simplest approach: connect consecutive quaternions using SLERP
- Continuous rotations
- Angular velocity not smooth at the joints



## Interpolation with smooth velocities

- Use splines on the unit quaternion sphere
- Reference:

Shoemake, SIGGRAPH '85


## Bezier

- Four control pêmitine
- points P1 and P4 are on the curve
- points P2 and P3 are off the curve; they give curve tangents at beginning and end



## Bezier Spline

- $p(0)=P 1, p(1)=P 4$,
- $\mathrm{p}^{\prime}(0)=3(\mathrm{P} 2-\mathrm{P} 1)$
- $\mathrm{p}^{\prime}(1)=3(\mathrm{P} 4-\mathrm{P} 3)$
- Convex Hull property: curve contained within the convex hull of control points
- Scale factor " 3 " is chosen to
 make "velocity" approximately constant


## The Bezier Spline Formula

$$
\left[\begin{array}{lll}
x & y & z
\end{array}\right]=\left[\begin{array}{llll}
u^{3} & u^{2} & u & 1
\end{array}\right]\left[\begin{array}{cccc}
-1 & 3 & -3 & 1 \\
3 & -6 & 3 & 0 \\
-3 & 3 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{ccc}
x_{1} & y_{1} & z_{1} \\
x_{2} & y_{2} & z_{2} \\
x_{3} & y_{3} & z_{3} \\
x_{4} & y_{4} & z_{4}
\end{array}\right]
$$

- $[x, y, z]$ is point on spline corresponding to $u$
- u varies from 0 to 1
- $\mathrm{P} 1=\left[\mathrm{x}_{1} \mathrm{y}_{1} \mathrm{z}_{1}\right]$
$\mathrm{P} 2=\left[\begin{array}{lll}\mathrm{x}_{2} & \mathrm{y}_{2} & \mathrm{z}_{2}\end{array}\right]$
- $\mathrm{P} 3=\left[\mathrm{x}_{3} \mathrm{y}_{3} \mathrm{z}_{3}\right]$
$\mathrm{P} 4=\left[\mathrm{x}_{4} \mathrm{y}_{4} \mathrm{z}_{4}\right]$


## DeCasteljau Construction



Efficient algorithm to evaluate Bezier splines.
Similar to Horner rule for polynomials.
Can be extended to interpolations of 3D rotations.

## DeCasteljau on Quaternion Sphere



Given t, apply DeCasteljau construction:

$$
\begin{array}{ll}
Q_{0}=\operatorname{Slerp}\left(P_{0}, P_{1}, t\right) & Q_{1}=\operatorname{Slerp}\left(P_{1}, P_{2}, t\right) \\
Q_{2}=\operatorname{Sierp}\left(P_{2}, P_{3}, t\right) & R_{0}=\operatorname{Sierp}\left(Q_{0}, Q_{1}, t\right) \\
R_{1}=\operatorname{Sierp}\left(Q_{1}, Q_{2}, t\right) & P(t)=\operatorname{Slerp}\left(R_{0}, R_{1}, t\right)
\end{array}
$$

## Bezier Control Points for Quaternions

- Given quaternions $q_{n-1}, q_{n}, q_{n+1}$, form:

$$
\begin{gathered}
\overline{a_{n}}=\operatorname{Slerp}\left(\operatorname{Slerp}\left(q_{n-1}, q_{n}, 2\right), q_{n+1}, 0.5\right) \\
a_{n}=\operatorname{Slerp}\left(q n, \overline{a_{n}}, 1 / 3\right) \\
b_{n}=\operatorname{Slerp}\left(q n, \overline{a_{n}},-1 / 3\right)
\end{gathered}
$$



## Interpolating Many Rotations on <br> Quaternion Sphere

- Given quaternions $\mathrm{q}_{1}, \ldots, \mathrm{q}_{\mathrm{N}}$, form Bezier spline control points (previous slide)
- Spline 1: $q_{1}, a_{1}, b_{2}, q_{2}$
- Spline 2: $\mathrm{a}_{2}, \mathrm{a}_{2}, \mathrm{~b}_{3}, \mathrm{a}_{3}$ etc.
- Need $a_{1}$ and $b_{N}$; can set $a_{1}=\operatorname{Slerp}\left(q_{1}, \operatorname{Slerp}\left(q_{3}, q_{2}, 2.0\right), 1.0 / 3\right)$ $b_{N}=\operatorname{Slerp}\left(q_{N}, \operatorname{SIerp}\left(q_{N-2}, q_{N-1}, 2.0\right), 1.0 / 3\right)$
- To evaluate a spline at any $t$, use DeCasteljau construction

