计算机图形学 Computer Graphics

陈仁杰

renjiec＠ustc．edu．cn
http：／／staff．ustc．edu．cn／${ }^{\sim}$ renjiec

Bézier curves

- Bézier curves/splines developed by
- Paul de Casteljau at Citroen (1959)
- Pierre Bézier at Renault (1963)
for free-form parts in automotive design

Bézier curves

- Today: Standard tool for 2D curve editing
- Cubic 2D Bézier curves are everywhere:
- Inkscape, Corel Draw, Adobe Illustrator, Powerpoint, …
- PDF, Truetype (quadratic curves), Windows GDI, ...
- Widely used in 3D curve \& surface modeling as well

Curve representation

- The implicit curve form $f(x, y)=0$ suffers from several limitations:

Curve representation

- The implicit curve form $f(x, y)=0$ suffers from several limitations:
- Multiple values for the same x-coordinates
- Undefined derivative $\frac{d y}{d x}$ (see blue cross)
- Not invariant w.r.t axes transformations

Parametric representation

- Remedy: parametric representation $c(t)=(x(t), y(t))$
- Easy evaluations
- The parameter t can be interpreted as time
- The curve can be interpreted as the path traced by a moving particle

Modeling with the power basis, \cdots

- Example of a parabola: $\boldsymbol{f}(t)=\boldsymbol{a} t^{2}+\boldsymbol{b} t+\boldsymbol{c}$

$$
\boldsymbol{f}(t)=\binom{1}{1} t^{2}+\binom{-2}{0} t+\binom{1}{0}
$$

Modeling with the power basis, ... no thanks!

- Examples of a parabola: $\boldsymbol{f}(t)=\boldsymbol{a} t^{2}+\boldsymbol{b} t+\boldsymbol{c}$: the coefficients of the power basis lack intuitive geometric meaning

Back to the drawing board

- A point on a parametric line

Back to the drawing board

- Another point on a second parametric line

Back to the drawing board

- A third point on the line defined by the first two points

$$
\boldsymbol{b}_{0}^{1}=(1-t) \boldsymbol{b}_{0}+t \boldsymbol{b}_{1} \boldsymbol{b}_{0}^{1}
$$

Back to the drawing board

- And then simplify...

$$
\boldsymbol{b}_{\mathbf{0}}^{\mathbf{1}}=(1-t) \boldsymbol{b}_{\mathbf{0}}+t \boldsymbol{b}_{\mathbf{1}}
$$

b_{2}°

$$
\boldsymbol{b}_{\mathbf{0}}^{2}=(1-t) \boldsymbol{b}_{0}^{1}+t \boldsymbol{b}_{1}^{1}
$$

$$
\boldsymbol{b}_{\mathbf{1}}^{1}=(1-t) \boldsymbol{b}_{1}+t \boldsymbol{b}_{2}
$$

$$
\begin{aligned}
& \boldsymbol{b}_{0}^{2}=(1-t)\left[(1-t) \boldsymbol{b}_{0}+t \boldsymbol{b}_{1}\right]+t\left[(1-t) \boldsymbol{b}_{\mathbf{1}}+t \boldsymbol{b}_{2}\right] \\
& \boldsymbol{b}_{0}^{2}=(1-t)^{2} \boldsymbol{b}_{0}+2 t(1-t) \boldsymbol{b}_{1}+t^{2} \boldsymbol{b}_{2}
\end{aligned}
$$

Back to the drawing board

- We obtained another description of parabolic curves
- The coefficients b_{0}, b_{1}, b_{2} have a
 geometric meaning

$$
\boldsymbol{b}_{0}^{2}=(1-t)^{2} \boldsymbol{b}_{\mathbf{0}}+2 t(1-t) \boldsymbol{b}_{1}+t^{2} \boldsymbol{b}_{2}
$$

Example re-visited

- Let's rewrite our initial parabolic curve example in the new basis

$$
\begin{gathered}
\boldsymbol{f}(t)=\binom{1}{1} t^{2}+\binom{-2}{0} t+\binom{1}{0} \\
\boldsymbol{f}(t)=\binom{1}{0}(1-t)^{2}+\binom{0}{0} 2 t(1-t)+\binom{0}{1} t^{2}
\end{gathered}
$$

Example re-visited

- The coefficient have a geometric meaning
- More intuitive for curve manipulation

Another example

Going further

- Cubic approximation
- Given 4 points: $\quad \boldsymbol{p}_{0}^{0}(t)=\boldsymbol{p}_{0}, \boldsymbol{p}_{1}^{0}(t)=\boldsymbol{p}_{1}, \quad \boldsymbol{p}_{2}^{0}(t)=\boldsymbol{p}_{2}, \quad \boldsymbol{p}_{3}^{0}(t)=\boldsymbol{p}_{3}$
- First iteration

$$
\begin{aligned}
& \boldsymbol{p}_{0}^{1}=(1-t) \boldsymbol{p}_{0}+t \boldsymbol{p}_{1} \\
& \boldsymbol{p}_{1}^{1}=(1-t) \boldsymbol{p}_{1}+t \boldsymbol{p}_{2} \\
& \boldsymbol{p}_{2}^{1}=(1-t) \boldsymbol{p}_{2}+t \boldsymbol{p}_{3}
\end{aligned}
$$

- $2^{\text {nd }}$ iteration

$$
\begin{aligned}
& \boldsymbol{p}_{0}^{2}=(1-t)^{2} \boldsymbol{p}_{0}+2 t(1-t) \boldsymbol{p}_{1}+t^{2} \boldsymbol{p}_{2} \\
& \boldsymbol{p}_{1}^{2}=(1-t)^{2} \boldsymbol{p}_{1}+2 t(1-t) \boldsymbol{p}_{2}+t^{2} \boldsymbol{p}_{3}
\end{aligned}
$$

- Curve

$$
\boldsymbol{c}(t)=(1-t)^{3} \boldsymbol{p}_{0}+3 t(1-t)^{2} \boldsymbol{p}_{1}+3 t^{2}(1-t) \boldsymbol{p}_{2}+t^{3} \boldsymbol{p}_{3}
$$

Throughout these examples, we just re-invented a primitive version of the de Casteljau algorithm

Now let's examine it more closely ...

De Casteljau algorithm

- De Casteljau Algorithm: Computes $x(t)$ for given t
- Bisect control polygon in ratio t : $(1-t)$
- Connect the new dots with lines (adjacent segments)
- Interpolate again with the same ratio
- Iterate, until only one points is left

De Casteljau algorithm

- De Casteljau Algorithm: Computes $x(t)$ for given t
- Bisect control polygon in ratio t : $(1-t)$
- Connect the new dots with lines (adjacent segments)
- Interpolate again with the same ratio
- Iterate, until only one points is left

De Casteljau algorithm

- De Casteljau Algorithm: Computes $x(t)$ for given t
- Bisect control polygon in ratio t : $(1-t)$
- Connect the new dots with lines (adjacent segments)
- Interpolate again with the same ratio
- Iterate, until only one points is left

De Casteljau algorithm

- De Casteljau Algorithm: Computes $x(t)$ for given t
- Bisect control polygon in ratio t : $(1-t)$
- Connect the new dots with lines (adjacent segments)
- Interpolate again with the same ratio
- Iterate, until only one points is left

De Casteljau algorithm

- Algorithm description
- Input: points

$$
\begin{gathered}
\boldsymbol{b}_{0}, \boldsymbol{b}_{1}, \ldots \boldsymbol{b}_{n} \in \mathbb{R}^{3} \\
\boldsymbol{x}(t), t \in[0,1]
\end{gathered}
$$

- Geometric construction of the points $\boldsymbol{x}(t)$ for given t :

$$
\begin{array}{cc}
\boldsymbol{b}_{i}^{0}(t)=\boldsymbol{b}_{i}, & i=0, \ldots, n \\
\boldsymbol{b}_{i}^{r}(t)=(1-t) \boldsymbol{b}_{i}^{r-1}(t)+t \boldsymbol{b}_{i+1}^{r-1}(t) \\
r=1, \ldots, n & i=0, \ldots, n-r
\end{array}
$$

- Then $\boldsymbol{b}_{0}^{n}(t)$ is the searched curve point $\boldsymbol{x}(t)$ at the parameter value t

De Casteljau algorithm

- Repeated convex combination of control points

$$
\boldsymbol{b}_{i}^{(r)}=(1-t) \boldsymbol{b}_{i}^{(r-1)}+t \boldsymbol{b}_{i+1}^{(r-1)}
$$

$\boldsymbol{b}_{0}^{(0)}$
$\boldsymbol{b}_{1}^{(0)}$
$\boldsymbol{b}_{2}^{(0)}$

$\boldsymbol{b}_{3}^{(0)}$

De Casteljau algorithm

- Repeated convex combination of control points

$$
\boldsymbol{b}_{i}^{(r)}=(1-t) \boldsymbol{b}_{i}^{(r-1)}+t \boldsymbol{b}_{i+1}^{(r-1)}
$$

De Casteljau algorithm

- Repeated convex combination of control points

$$
\boldsymbol{b}_{i}^{(r)}=(1-t) \boldsymbol{b}_{i}^{(r-1)}+t \boldsymbol{b}_{i+1}^{(r-1)}
$$

De Casteljau algorithm

- Repeated convex combination of control points

$$
\boldsymbol{b}_{i}^{(r)}=(1-t) \boldsymbol{b}_{i}^{(r-1)}+t \boldsymbol{b}_{i+1}^{(r-1)}
$$

De Casteljau algorithm

- The intermediate coefficients $\boldsymbol{b}_{i}^{r}(t)$ can be written in a triangular matrix: the de Casteljau scheme:

$$
\begin{array}{lllll}
\boldsymbol{b}_{0}=\boldsymbol{b}_{0}^{0} & & & \\
\boldsymbol{b}_{1}=\boldsymbol{b}_{1}^{0} & \boldsymbol{b}_{0}^{1} & & \\
\boldsymbol{b}_{2}=\boldsymbol{b}_{2}^{0} & \boldsymbol{b}_{1}^{1} & \boldsymbol{b}_{0}^{2} & \\
\boldsymbol{b}_{3}=\boldsymbol{b}_{3}^{0} & \boldsymbol{b}_{2}^{1} & \boldsymbol{b}_{1}^{2} & \boldsymbol{b}_{0}^{3}
\end{array}
$$

$$
\boldsymbol{b}_{n-1}=\boldsymbol{b}_{n-1}^{0} \quad \boldsymbol{b}_{n-2}^{1} \quad \ldots \boldsymbol{b}_{0}^{n-1}
$$

$$
\boldsymbol{b}_{n}=\boldsymbol{b}_{n}^{0} \quad \boldsymbol{b}_{n-1}^{1} \quad \ldots . \boldsymbol{b}_{1}^{n-1} \quad \boldsymbol{b}_{0}^{n}=x(t)
$$

De Casteljau algorithm

Algorithm:

for $r=1$.. n

De Casteljau algorithm: Properties

- The polygon consisting of the points $\boldsymbol{b}_{\mathbf{0}}, \ldots, \boldsymbol{b}_{\boldsymbol{n}}$ is called Bézier polygon (control polygon)
- The points $\boldsymbol{b}_{\boldsymbol{i}}$ are called Bézier points (control points)
- The curve defined by the Bézier points $\boldsymbol{b}_{\mathbf{0}}, \ldots, \boldsymbol{b}_{\boldsymbol{n}}$ and the de Casteljau algorithm is called Bézier curve
- The de Casteljau algorithm is numerically stable, since only convex combinations are applied.
- Complexity of the de Casteljau algorithm
- $O\left(n^{2}\right)$ time
- $O(n)$ memory
- with n being the number of Bézier points

De Casteljau algorithm: Properties

- Properties of Bézier curves:
- Given: Bézier points $\boldsymbol{b}_{0}, \ldots, \boldsymbol{b}_{n}$

Bézier curve $\boldsymbol{x}(t)$

- Bézier curve is polynomial curve of degree n
- End points interpolation: $\boldsymbol{x}(0)=\boldsymbol{b}_{0}, \boldsymbol{x}(1)=\boldsymbol{b}_{n}$. The remaining Bézier points are only approximated in general
- Convex hull property:

Bézier curve is completely inside the convex hull of its Bézier polygon

De Casteljau algorithm: Properties

- Variation diminishing
- No line intersects the Bézier curve more often than its Bézier polygon
- Influence of Bézier points: global but pseudo-local
- Global: moving a Bézier points changes the whole curve progression
- Pseudo-local: \boldsymbol{b}_{i} has its maximal influence on $x(t)$ at $t=\frac{i}{n}$
- Affine invariance:
- Bézier curve and Bézier polygon are invariant under affine transformations
- Invariance under affine parameter transformations

De Casteljau algorithm: Properties

- Symmetry
- The following two Bézier curves coincide, they are only traversed in opposite directions:

$$
\boldsymbol{x}(t)=\left[\boldsymbol{b}_{0}, \ldots, \boldsymbol{b}_{n}\right] \quad \boldsymbol{x}^{\prime}(t)=\left[\boldsymbol{b}_{n}, \ldots \boldsymbol{b}_{0}\right]
$$

- Linear Precision:
- Bézier curve is line segment, if $\boldsymbol{b}_{0}, \ldots, \boldsymbol{b}_{n}$ are colinear
- Invariance under barycentric combinations

Bézier Curves
Towards a polynomial description

Bézier Curves Towards a polynomial description

Polynomial description of Bézier curves

- The same problem as before:
- Given: $(n+1)$ control points $\boldsymbol{b}_{0}, \ldots, \boldsymbol{b}_{n}$
- Wanted: Bézier curve $\boldsymbol{x}(t)$ with $t \in[0,1]$
- Now with an algebraic approach using basis functions

Desirable Properties

- Useful requirements for a basis:
- Well behaved curve
- Smooth basis functions

Desirable Properties

- Useful requirements for a basis:
- Well behaved curve
- Smooth basis functions
- Local control (or at least semi-local)
- Basis functions with compact support

Desirable Properties

- Useful requirements for a basis:

- Well behaved curve
- Smooth basis functions
- Local control (or at least semi-local)
- Basis functions with compact support
- Affine invariance:
- Appling an affine map $x \rightarrow A x+b$ on
- Control points
- Curve

Should have the same effect

- In particular: rotation, translation
- Otherwise: interactive curve editing very difficult

Desirable Properties

- Useful requirements for a basis:
- Convex hull property:
- The curve lays within the convex hull of its control points
- Avoids at least too weird oscillations
- Advantages
- Computational advantages (recursive intersection tests)
- More predictable behavior

Summary

- Useful properties
- Smoothness
- Local control / support
- Affine invariance
- Convex hull property

Notations

Curve basis function control points

Affine Invariance

- Affine map: $\boldsymbol{x} \rightarrow A \boldsymbol{x}+\boldsymbol{b}$
- Part I: Linear invariance - we get this automatically
- Linear approach: $\boldsymbol{f}(t)=\sum_{i=1}^{n} b_{i}(t) \boldsymbol{p}_{i}=\sum_{i=1}^{n} b_{i}(t)\left(\begin{array}{c}p_{i}^{(x)} \\ p_{i}^{(y)} \\ p_{i}^{(z)}\end{array}\right)$
- Therefore: $\quad A(\boldsymbol{f}(t))=A\left(\sum_{i=1}^{n} b_{i}(t) \boldsymbol{p}_{i}\right)=\sum_{i=1}^{n} b_{i}(t)\left(A \boldsymbol{p}_{i}\right)$

Affine Invariance

- Affine Invariance:
- Affine map: $x \rightarrow A x+\boldsymbol{b}$
- Part II: Translational invariance
$\sum_{i=1}^{n} b_{i}(t)\left(\boldsymbol{p}_{i}+\boldsymbol{b}\right)=\sum_{i=1}^{n} b_{i}(t) \boldsymbol{p}_{i}+\sum_{i=1}^{n} b_{i}(t) \boldsymbol{b}=\boldsymbol{f}(t)+\left(\sum_{i=1}^{n} b_{i}(t)\right) \boldsymbol{b}$
- For translational invariance, the sum of the basis functions must be one everywhere (for all parameter values t that are used).
- This is called "partition of unity property"
- The b_{i} 's form an "affine combination" of the control points \boldsymbol{p}_{i}
- This is very important for modeling

Convex Hull Property

- Convex combinations:
- A convex combination of a set of points $\left\{\boldsymbol{p}_{1}, \ldots, \boldsymbol{p}_{n}\right\}$ is any point of the form:

$$
\sum_{i=1}^{n} \lambda_{i} \boldsymbol{p}_{i} \text { with } \sum_{i=1}^{n} \lambda_{i}=1 \text { and } \forall i=1 \ldots n: 0 \leq \lambda_{i} \leq 1
$$

- (Remark: $\lambda_{i} \leq 1$ is redundant)
- The set of all admissible convex combinations forms the convex hull of the point set
- Easy to see (exercise): The convex hull is the smallest set that contains all points $\left\{\boldsymbol{p}_{1}, \ldots, \boldsymbol{p}_{n}\right\}$ and every complete straight line between two elements of the set

Convex Hull Property

- Accordingly:

- If we have this property
$\forall t \in \Omega: \sum_{i=1}^{n} b_{i}(t)=1$ and $\forall t \in \Omega, \forall i: b_{i}(t) \geq 0$ the constructed curves / surfaces will be:
- Affine invariant (translations, linear maps)
- Be restricted to the convex hull of the control points
- Corollary: Curves will have linear precision
- All control points lie on a straight line
\Rightarrow Curve is a straight line segment
- Surfaces with planar control points will be flat, too

Convex Hull Property

- Very useful property in practice
- Avoids at least the worst oscillations
- no escape from convex hull, unlike polynomial interpolation
- Linear precision property is intuitive (people expect this)
- Can be used for fast range checks
- Test for intersection with convex hull first, then the object
- Recursive intersection algorithms in conjunctions with subdivision rules (more on this later)

Polynomial description of Bézier curves

- The same problem as before:
- Given: $(n+1)$ control points $\boldsymbol{b}_{0}, \ldots, \boldsymbol{b}_{n}$
- Wanted: Bézier curve $x(t)$ with $t \in[0,1]$
- Now with an algebraic approach using basis functions
- Need to define $n+1$ basis functions
- Such that this describes a Bézier curve:

$$
\begin{aligned}
& B_{0}^{n}(t), \ldots, B_{n}^{n}(t) \text { over }[0,1] \\
& \boldsymbol{x}(t)=\sum_{i=0}^{n} B_{i}^{n}(t) \cdot \boldsymbol{b}_{i}
\end{aligned}
$$

Bernstein Basis

- Let's examine the Bernstein basis: $B=\left\{B_{0}^{(n)}, B_{1}^{(n)}, \ldots, B_{n}^{(n)}\right\}$
- Bernstein basis of degree n :

$$
B_{i}^{(n)}(t)=\binom{n}{i} t^{i}(1-t)^{n-i}=B_{i-\text { th basis function }}^{\text {(degree) }}
$$

where the binomial coefficients are given by:

$$
\binom{n}{i}=\left\{\begin{array}{cc}
\frac{n!}{(n-i)!i!} & \text { for } 0 \leq i \leq n \\
0 & \text { otherwise }
\end{array}\right.
$$

Binomial Coefficients and Theorem

Examples: The first few

$$
B_{i}^{(n)}(t)=\binom{n}{i} t^{i}(1-t)^{n-i}
$$

- The first three Bernstein bases:

$$
\begin{array}{lll}
B_{0}^{(0)}:=1 & \\
B_{0}^{(1)}:=1-t & B_{1}^{(1)}:=t & \\
B_{0}^{(2)}:=(1-t)^{2} & B_{1}^{(2)}:=2 t(1-t) & B_{2}^{(2)}:=t^{2} \\
B_{0}^{(3)}:=(1-t)^{3} & B_{1}^{(3)}:=3 t(1-t)^{2} & B_{2}^{(3)}:=3 t^{2}(1-t)
\end{array} \quad B_{3}^{(3)}:=t^{3} . l l
$$

Examples: The first few

$$
B_{i}^{(n)}(t)=\binom{n}{i} t^{i}(1-t)^{n-i}
$$

$$
B_{0}^{(0)}:=1
$$

Bernstein Basis

- Bézier curves use the Bernstein basis: $B=\left\{B_{0}^{(n)}, B_{1}^{(n)}, \ldots, B_{n}^{(n)}\right\}$
- Bernstein basis of degree n :

$$
B_{i}^{(n)}(t)=\binom{n}{i} t^{i}(1-t)^{n-i}=B_{i-\text { th basis function }}^{(\text {degree })}
$$

Bernstein Basis

-What about the desired properties?

- Smoothness
- Local control / support
- Affine invariance
- Convex hull property

Bernstein Basis: Properties

- $B=\left\{B_{0}^{(n)}, B_{1}^{(n)}, \ldots, B_{n}^{(n)}\right\}, B_{i}^{(n)}(t)=\binom{n}{i} t^{i}(1-t)^{n-i}$
- Basis for polynomials of degree n Smoothness
- Each basis function $B_{i}^{(n)}$ has its maximum at $t=\frac{i}{n}$

Local control (semi-local)

Bernstein Basis: Properties

- $B=\left\{B_{0}^{(n)}, B_{1}^{(n)}, \ldots, B_{n}^{(n)}\right\}, B_{i}^{(n)}(t)=\binom{n}{i} t^{i}(1-t)^{n-i}$

Affine invariance

Convex hull property

- Partition of unity (binomial theorem)

$$
1=(1-t+t)
$$

$$
\sum_{i=0}^{n} B_{i}^{(n)}(t)=(t+(1-t))^{n}=1
$$

What about the desired properties?

- Smoothness
- Local control / support
- Affine invariance
- Convex hull property

Yes
To some extent
Yes
Yes

$$
\binom{n-1}{i}+\binom{n-1}{i-1}=\binom{n}{i}
$$

Bernstein Basis: Properties

- $B=\left\{B_{0}^{(n)}, B_{1}^{(n)}, \ldots, B_{n}^{(n)}\right\}, B_{i}^{(n)}(t)=\binom{n}{i} t^{i}(1-t)^{n-i}$
- Recursive computation

$$
B_{i}^{n}(t):=(1-t) B_{i}^{(n-1)}(t)+t B_{i-1}^{(n-1)}(1-t)
$$

$$
\text { with } B_{0}^{0}(t)=1, B_{i}^{n}(t)=0 \text { for } i \notin\{0 \ldots n\}
$$

- Symmetry

$$
B_{i}^{n}(t)=B_{n-i}^{n}(1-t)
$$

- Non-negativity: $B_{i}^{(n)}(t) \geq 0$ for $t \in[0 . .1]$

Bernstein Basis: Properties

$B=\left\{B_{0}^{(n)}, B_{1}^{(n)}, \ldots, B_{n}^{(n)}\right\}, B_{i}^{(n)}(t)=\binom{n}{i} t^{i}(1-t)^{n-i}$

- Non-negativity II

$$
\begin{gathered}
B_{i}^{n}(t)>0 \text { for } 0<t<1 \\
B_{0}^{n}(0)=1, \quad B_{1}^{n}(0)=\cdots=B_{n}^{n}(0)=0 \\
B_{0}^{n}(1)=\cdots=B_{n-1}^{n}(1)=0, \quad B_{n}^{n}(1)=1
\end{gathered}
$$

Derivatives

$$
B_{i}^{(n)}(t)=\binom{n}{i} t^{i}(1-t)^{n-i}
$$

- Bernstein basis properties
- Derivatives:

$$
\frac{d}{d t} B_{i}^{(n)}(t)=
$$

Derivatives

$$
B_{i}^{(n)}(t)=\binom{n}{i} t^{i}(1-t)^{n-i}
$$

- Bernstein basis properties
- Derivatives:

$$
\begin{aligned}
& \frac{d}{d t} B_{i}^{(n)}(t)=\binom{n}{i}\left(i t^{\{i-1\}}(1-t)^{n-i}-(n-i) t^{i}(1-t)^{\{n-i-1\}}\right) \\
& \quad=\frac{n!}{(n-i)!i!} i t^{\{i-1\}}(1-t)^{n-i}-\frac{n!}{(n-i)!i!}(n-i) t^{i}(1-t)^{\{n-i-1\}} \\
& \quad=n\left[\binom{n-1}{i-1} t^{\{i-1\}}(1-t)^{n-i}-\binom{n-1}{i} t^{i}(1-t)^{\{n-i-1\}}\right] \\
& \quad=n\left[B_{i-1}^{(n-1)}(t)-B_{i}^{(n-1)}(t)\right]
\end{aligned}
$$

(Notation: $\{\boldsymbol{k}\}=\boldsymbol{k}$ if $\boldsymbol{k}>\boldsymbol{0}$, zero otherwise)

Derivatives

$$
B_{i}^{(n)}(t)=\binom{n}{i} t^{i}(1-t)^{n-i}
$$

- Bernstein basis properties
- Derivatives:

$$
\begin{aligned}
& \frac{d^{2}}{d t^{2}} B_{i}^{(n)}(t)=\frac{d}{d t} n\left[B_{i-1}^{(n-1)}(t)-B_{i}^{(n-1)}(t)\right] \\
& =n\left[(n-1)\left(B_{i-2}^{(n-2)}(t)-B_{i-1}^{(n-2)}(t)\right)-(n-1)\left(B_{i-1}^{(n-2)}(t)-B_{i}^{(n-2)}(t)\right)\right] \\
& =n(n-1)\left[B_{i-2}^{(n-2)}(t)-2 B_{i-1}^{(n-2)}(t)+B_{i}^{(n-2)}(t)\right]
\end{aligned}
$$

(Notation: $\{\boldsymbol{k}\}=\boldsymbol{k}$ if $\boldsymbol{k}>\boldsymbol{0}$, zero otherwise)

Bézier Curves in Bernstein form

- Bézier Curves:

$$
\boldsymbol{f}(t)=\sum_{i=1}^{n} B_{i}^{n} \boldsymbol{p}_{i}, t \in[0,1]
$$

Bézier Curves in Bernstein form

- Bézier Curves:

$$
\boldsymbol{f}(t)=\sum_{i=1}^{n} B_{i}^{n} \boldsymbol{p}_{i}, t \in[0,1]
$$

Bézier Curves in Bernstein form

- Bézier Curves:

$$
\boldsymbol{f}(t)=\sum_{i=1}^{n} B_{i}^{n} \boldsymbol{p}_{i}, t \in[0,1]
$$

Bézier Curves in Bernstein form

- Bézier Curves:

$$
\boldsymbol{f}(t)=\sum_{i=1}^{n} B_{i}^{n} \boldsymbol{p}_{i}, t \in[0,1]
$$

Bézier Curves in Bernstein form

- Bézier Curves, also in 3D

$$
\boldsymbol{f}(t)=\sum_{i=1}^{n} B_{i}^{n} \boldsymbol{p}_{i}, t \in[0,1]
$$

Bézier Curves in Bernstein form

- Bézier curves:
- Curves: $\boldsymbol{f}(t)=\sum_{i=1}^{n} B_{i}^{n} \boldsymbol{p}_{i}$
- Considering the interval $t \in[0 . .1]$
- Properties as discussed before:
- Affine invariant
- Curves contained in the convex hull
- Influence of control points

Moving along the curve with index i
Largest influence at $t=\frac{i}{n}$
Single curve segments: no full local control

Bézier Curve Properties: another look at derivatives

- Given: $\boldsymbol{p}_{0}, \ldots, \boldsymbol{p}_{n}, \boldsymbol{f}(t)=\sum_{i=0}^{n} B_{i}^{n}(t) \boldsymbol{p}_{i}$
- Then: $\boldsymbol{f}^{\prime}(t)=n \sum_{i=0}^{n-1} B_{i}^{n-1}(t)\left(\boldsymbol{p}_{i+1}-\boldsymbol{p}_{i}\right)$
- Proof: $\boldsymbol{f}^{\prime}(t)=\sum_{i=0}^{n} \frac{d}{d t} B_{i}^{n}(t) \boldsymbol{p}_{i}=n \sum_{i=0}^{n}\left(B_{i-1}^{n-1}(t)-B_{i}^{n-1}(t)\right) \boldsymbol{p}_{i}$

$$
=n \sum_{\substack{i=0 \\ n-1}}^{n} B_{i-1}^{n-1}(t) \boldsymbol{p}_{i}-n \sum_{i=0}^{n} B_{i}^{n-1}(t) \boldsymbol{p}_{i}
$$

$\begin{aligned} \begin{array}{c}\text { Index } \\ \text { change }\end{array} & =n \sum_{i=-1}^{n-1} B_{i}^{n-1}(t) \boldsymbol{p}_{i+1}-n \sum_{i=0}^{n} B_{i}^{n-1}(t) \boldsymbol{p}_{i}=n \sum_{i=0}^{n-1} B_{i}^{n-1}(t) \boldsymbol{p}_{i+1}-n \sum_{i=0}^{n-1} B_{i}^{n-1}(t) \boldsymbol{p}_{i} \\ & =n \sum_{i=0}^{n-1} B_{i}^{n-1}(t)\left(\boldsymbol{p}_{i+1}-\boldsymbol{p}_{i}\right)\end{aligned}$

Bézier Curve Properties

- Higher order derivatives:

$$
f^{[r]}(t)=\frac{n!}{(n-r)!} \cdot \sum_{i=0}^{n-r} B_{i}^{n-r}(t) \cdot \Delta^{r} \boldsymbol{p}_{i}
$$

Bézier Curve Properties

- Imporant for continuous concatenation:
- Function value at $\{0,1\}$:

$$
\begin{gathered}
\boldsymbol{f}(t)=\sum_{i=0}^{n-1}\binom{n}{i} t^{i}(1-t)^{n-i} \boldsymbol{p}_{i} \\
\Rightarrow \boldsymbol{f}(0)=\boldsymbol{p}_{0} \\
\boldsymbol{f}(1)=\boldsymbol{p}_{1}
\end{gathered}
$$

- First derivative vector at $\{0,1\}$
- Second derivative vector at $\{0,1\}$

Bézier Curve Properties

First derivative vector at $\{0,1\}$

$$
\frac{d}{d t} \boldsymbol{f}(t)=
$$

Bézier Curve Properties

First derivative vector at $\{0,1\}$

$$
\frac{d}{d t} \boldsymbol{f}(t)=n \sum_{i=0}^{n-1}\left[B_{i-1}^{(n-1)}(t)-B_{i}^{(n-1)}(t)\right] \boldsymbol{p}_{i}
$$

Bézier Curve Properties

First derivative vector at $\{0,1\}$

$$
\begin{aligned}
& \frac{d}{d t} \boldsymbol{f}(t)=n \sum_{i=0}^{n-1}\left[B_{i-1}^{(n-1)}(t)-B_{i}^{(n-1)}(t)\right] \boldsymbol{p}_{i} \\
= & n\left(\left[-B_{0}^{(n-1)}(t)\right] \boldsymbol{p}_{0}+\left[B_{0}^{(n-1)}(t)-B_{1}^{(n-1)}(t)\right] \boldsymbol{p}_{1}+\cdots\right. \\
+ & {\left.\left[B_{n-2}^{(n-1)}(t)-B_{n-1}^{(n-1)}(t)\right] \boldsymbol{p}_{n-1}+\left[B_{n-1}^{(n-1)}(t)\right] \boldsymbol{p}_{n}\right) }
\end{aligned}
$$

$$
\frac{d}{d t} \boldsymbol{f}(0)=n\left(\boldsymbol{p}_{1}-\boldsymbol{p}_{0}\right) \quad \frac{d}{d t} \boldsymbol{f}(1)=n\left(\boldsymbol{p}_{n}-\boldsymbol{p}_{n-1}\right)
$$

Bézier Curve Properties

- Imporant for continuous concatenation:
- Function value at $\{0,1\}$:

$$
\begin{aligned}
& \boldsymbol{f}(0)=\boldsymbol{p}_{0} \\
& \boldsymbol{f}(1)=\boldsymbol{p}_{1}
\end{aligned}
$$

- First derivative vector at $\{0,1\}$

$$
\begin{gathered}
\boldsymbol{f}^{\prime}(0)=n\left[\boldsymbol{p}_{1}-\boldsymbol{p}_{0}\right] \\
\boldsymbol{f}^{\prime}(1)=n\left[\boldsymbol{p}_{n}-\boldsymbol{p}_{n-1}\right]
\end{gathered}
$$

- Second derivative vector at $\{0,1\}$

$$
\begin{gathered}
\boldsymbol{f}^{\prime \prime}(0)=n(n-1)\left[\boldsymbol{p}_{2}-\mathbf{2} \boldsymbol{p}_{1}+\boldsymbol{p}_{0}\right] \\
\boldsymbol{f}^{\prime \prime}(1)=n(n-1)\left[\boldsymbol{p}_{n}-2 \boldsymbol{p}_{n-1}+\boldsymbol{p}_{n-2}\right]
\end{gathered}
$$

