

计算机图形学 Computer Graphics

陈仁杰 <u>renjiec@ustc.edu.cn</u> http://staff.ustc.edu.cn/~renjiec

2D Transformations

2D Linear Transformations

• Each 2D linear map can be represented by a unique 2×2 matrix

$$\begin{pmatrix} x' \\ y' \end{pmatrix} =$$

Concatenation of mappings corresponds to multiplication of matrices

 $L_2(L_1(\mathbf{x}))$

• Linear transformations are very common in computer graphics!

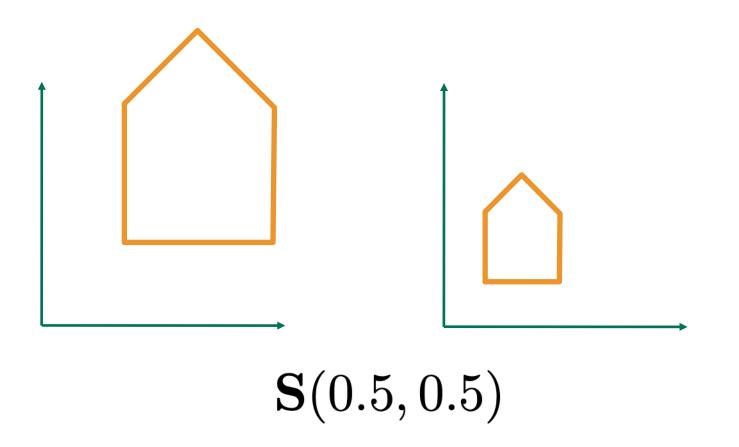
$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot \begin{pmatrix} x \\ y \end{pmatrix}$$

$$()) = \mathbf{L}_2 \mathbf{L}_1 \mathbf{x}$$

2D Scaling

Scaling

 $\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} s_x & 0 \\ 0 & s_y \end{pmatrix} \cdot \begin{pmatrix} x \\ y \end{pmatrix}$ $\mathbf{S}(s_x,\!s_y)$

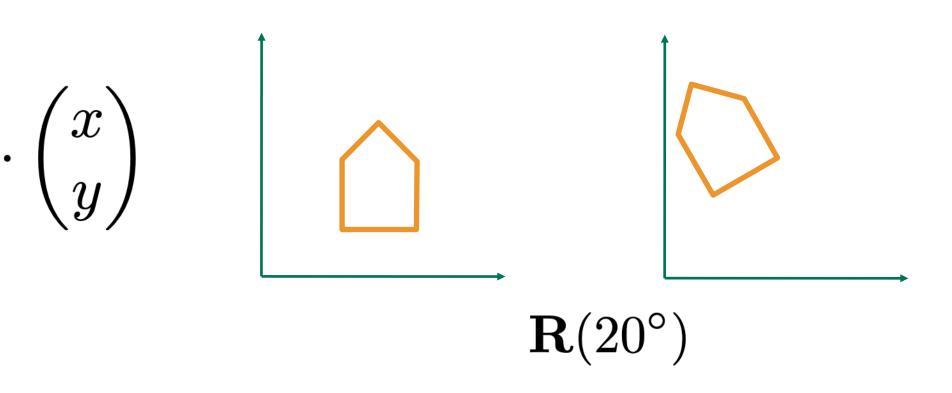


2D Rotation

• Rotation $\begin{pmatrix} x' \\ y' \end{pmatrix} = \underbrace{\begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix}}_{\mathbf{R}(\alpha)} \cdot \begin{pmatrix} x \\ y \end{pmatrix}$

Special case:

 $\mathbf{R}(90) = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$



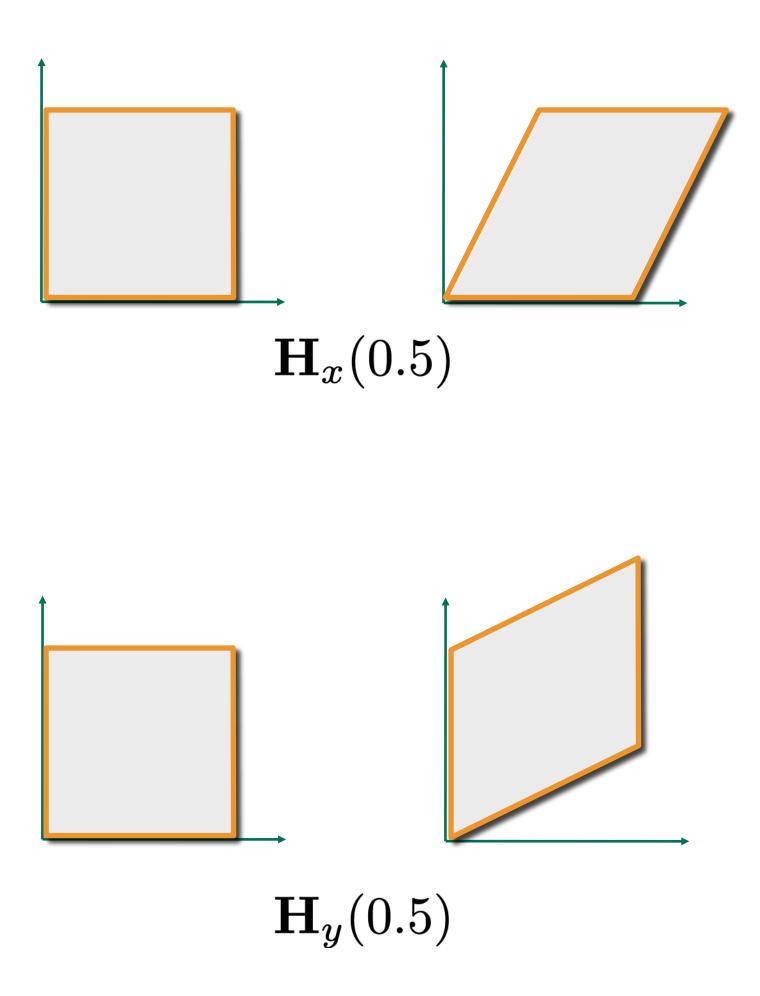
2D Shearing

• Shear along x-axis

$$\begin{pmatrix} x'\\y' \end{pmatrix} = \underbrace{\begin{pmatrix} 1 & a\\ 0 & 1 \end{pmatrix}}_{\mathbf{H}_x(a)} \cdot \begin{pmatrix} x\\y \end{pmatrix}$$

• Shear along y-axis

$$\begin{pmatrix} x'\\y' \end{pmatrix} = \underbrace{\begin{pmatrix} 1 & 0\\b & 1 \end{pmatrix}}_{\mathbf{H}_{y}(b)} \cdot \begin{pmatrix} x\\y \end{pmatrix}$$



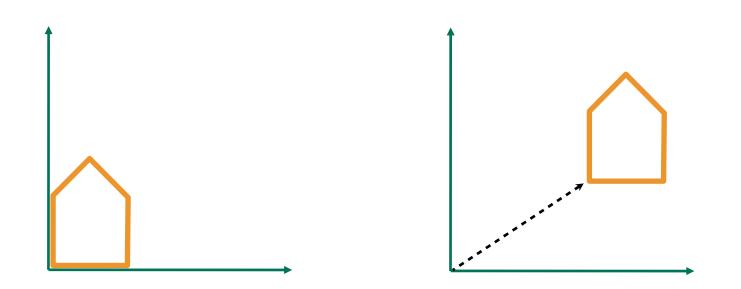
2D Translation

Translation

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} t_x \\ t_y \end{pmatrix}$$

• Matrix representation?

$$\begin{pmatrix} x' \\ y' \end{pmatrix}$$



$$= \mathbf{T}(t_x, t_y) \cdot \begin{pmatrix} x \\ y \end{pmatrix}$$

Affine Transformations

- Translation is not linear, but it is affine
 - Origin is no longer a fixed point
- Affine map = linear map + translation

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

- Is there a matrix representation for all affine transformations?
 - A unified framework -> simpler to code and optimize

$$\begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} t_x \\ t_y \end{pmatrix} = \mathbf{L}\mathbf{x} + \mathbf{t}$$

Homogenous Coordinates

- Add a third coordinate (w-coordinate)
 - 2D point $= (x, y, 1)^{T}$
 - 2D vector = $(x, y, 0)^{T}$ $\begin{pmatrix} x' \\ y' \\ w' \end{pmatrix} = \begin{pmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} x \\ y \\ 1 \end{pmatrix} =$

Matrix representation of translations

$$\begin{pmatrix} x+t_x \\ y+t_y \\ 1 \end{pmatrix}$$

Affine Transformations

• Affine map = linear map + translation

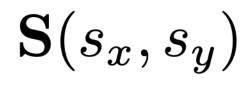
$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} a \\ c \end{pmatrix}$$

• Using homogenous coordinates:

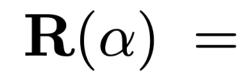
$$\begin{pmatrix} x'\\y'\\1 \end{pmatrix} = \begin{pmatrix} a & b & t_x\\c & d & t_y\\0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} x\\y\\1 \end{pmatrix}$$

$$\binom{b}{d} \cdot \binom{x}{y} + \binom{t_x}{t_y}$$

2D Transformations



Rotation



• Translation

 $\mathbf{T}(t_x, t_y)$

$$= \begin{pmatrix} s_x & 0 & 0 \\ 0 & s_y & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\begin{pmatrix} \cos \alpha & -\sin \alpha & 0 \\ \sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{pmatrix}$$

Concatenation of Transformations

- Sequence of affine maps A₁, A₂, A₃, ...
 - Concatenation by matrix multiplication

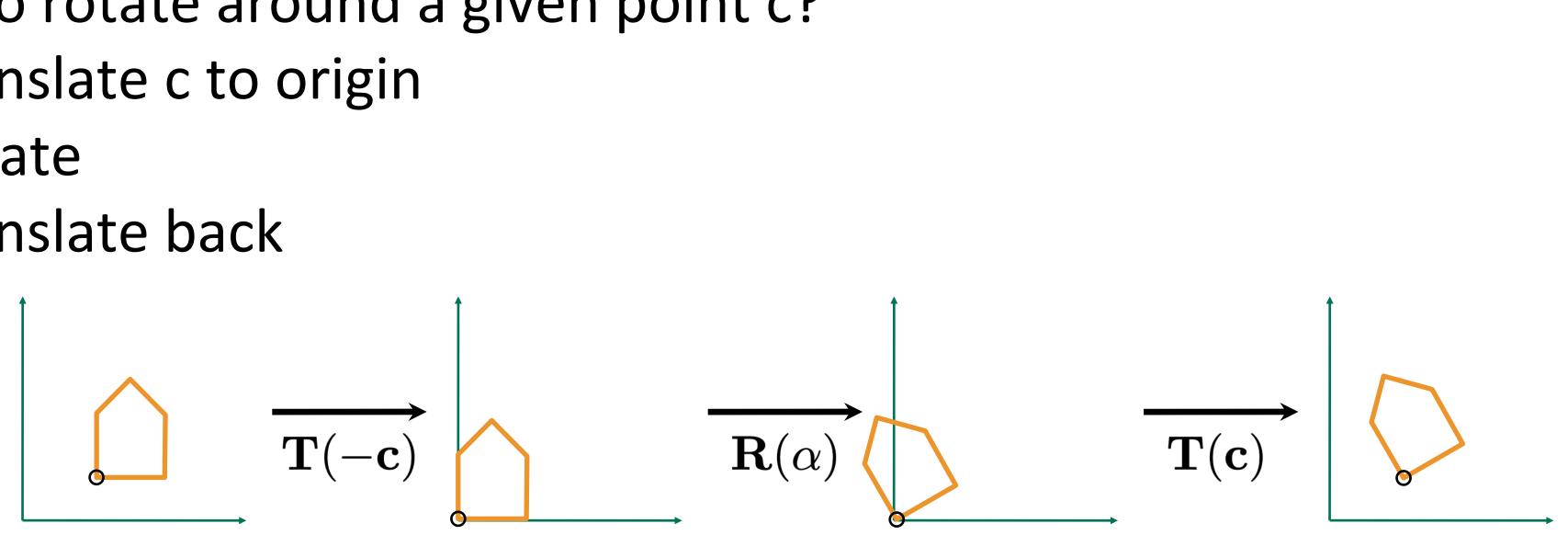
$$A_n(\ldots A_2(A_1(\mathbf{x}))) = \mathbf{A}_n \cdots$$

- Very important for performance!
- Matrix multiplication not commutative, ordering is important!

$$\mathbf{A}_2 \cdot \mathbf{A}_1 \cdot \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$$

2D Rotation

- How to rotate around a given point c?
 - 1. Translate c to origin
 - 2. Rotate
 - 3. Translate back

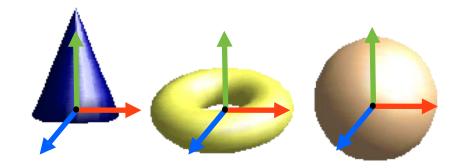


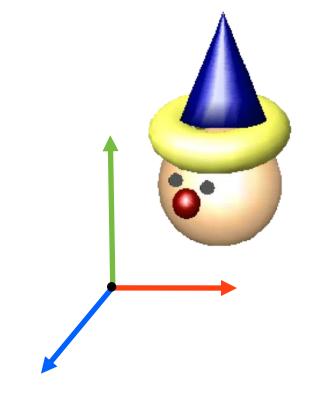
- Matrix representation?

$\mathbf{T}(\mathbf{c}) \cdot \mathbf{R}(\alpha) \cdot \mathbf{T}(-\mathbf{c})$

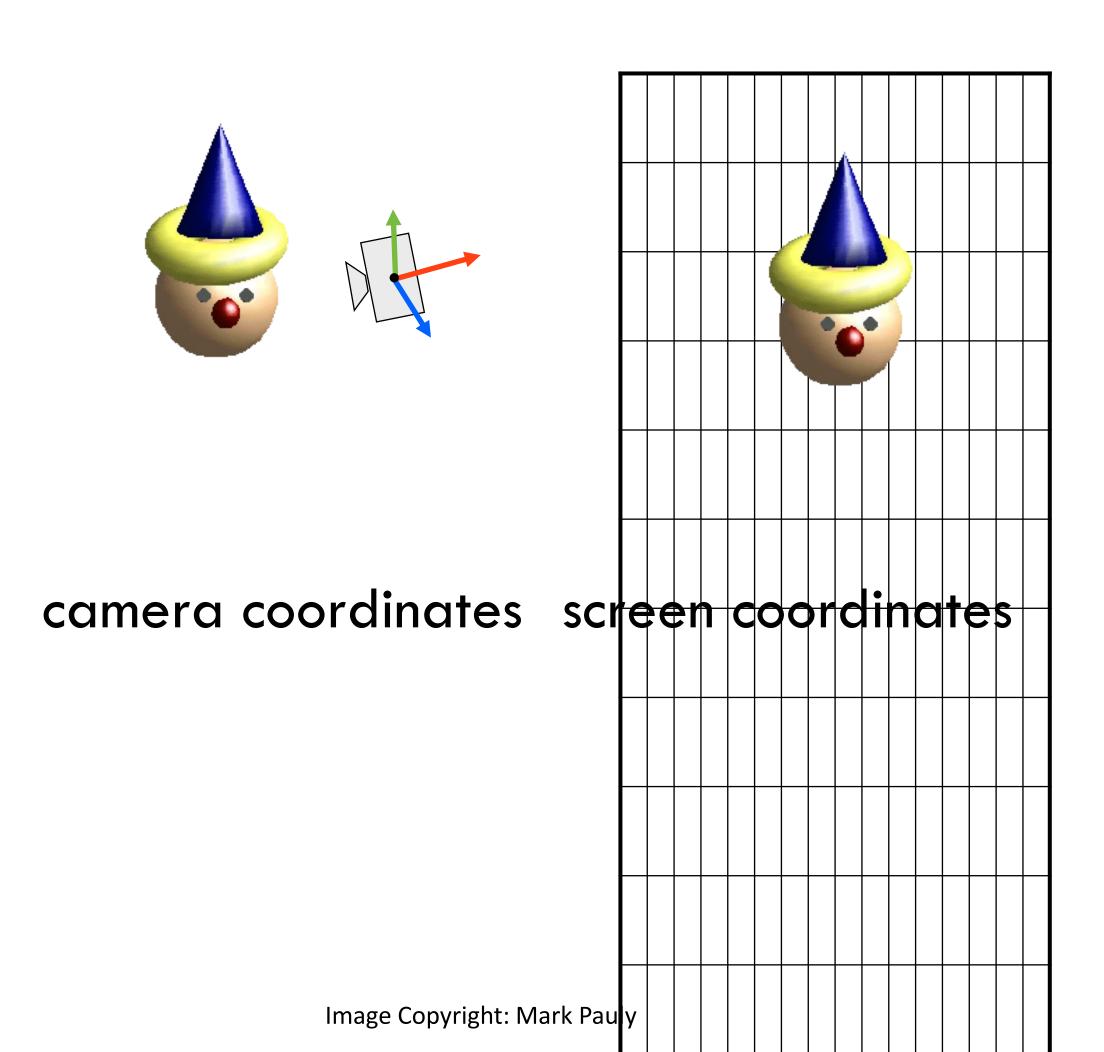
View Transformations

Coordinate Systems



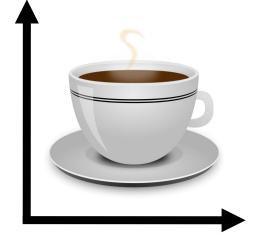


object coordinates world coordinates

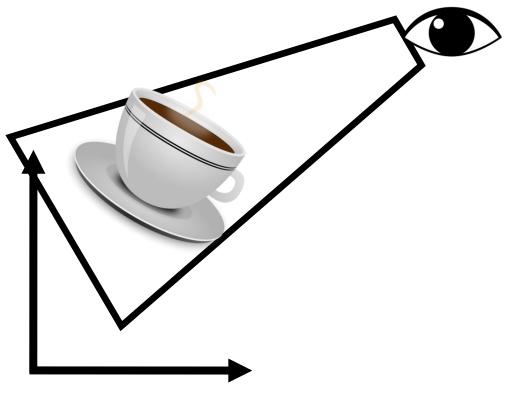


View Transformation

object space



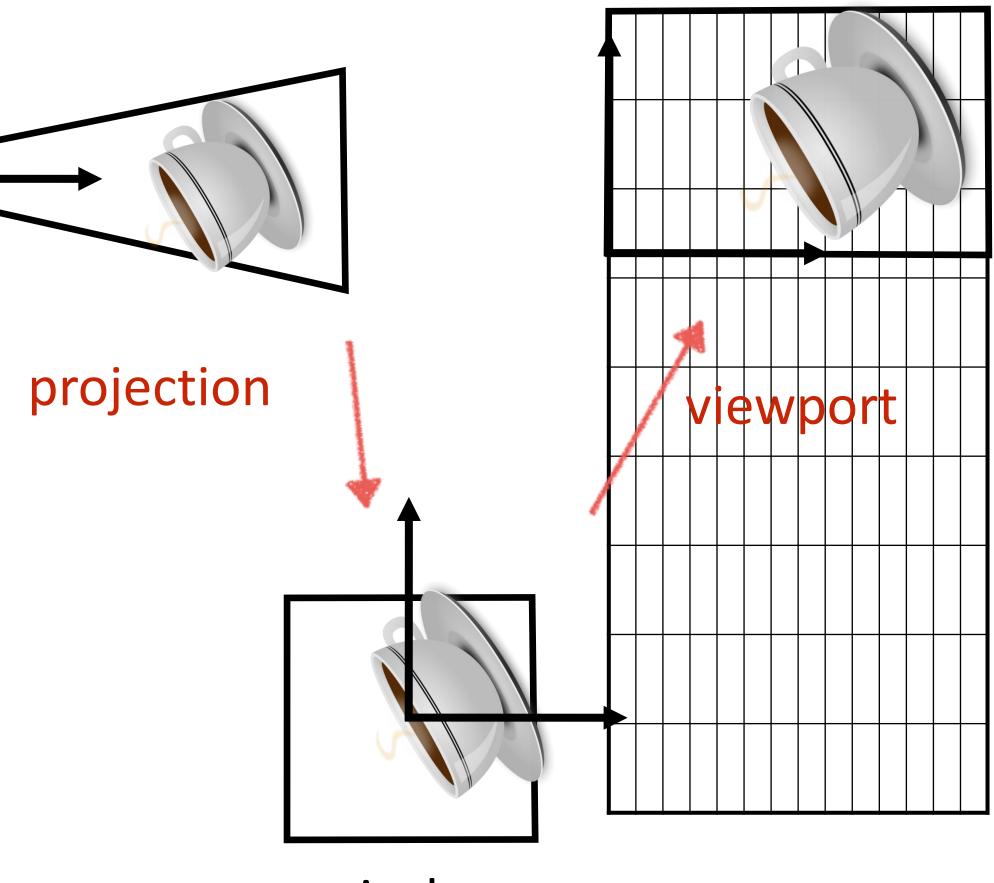




world space

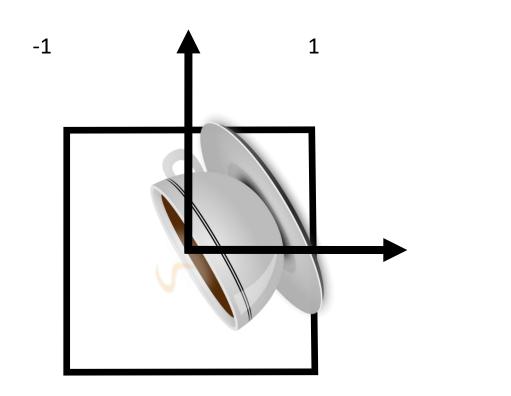
camera space

screen space



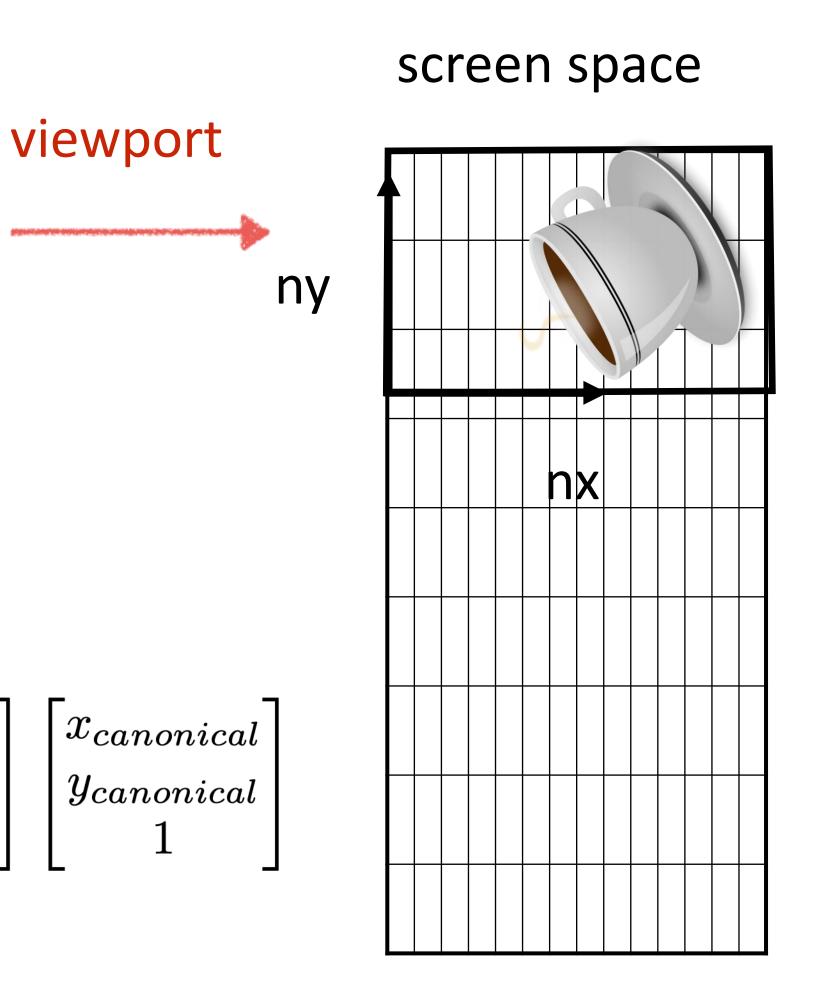
canonical view volume

Viewport transformation



canonical view volume

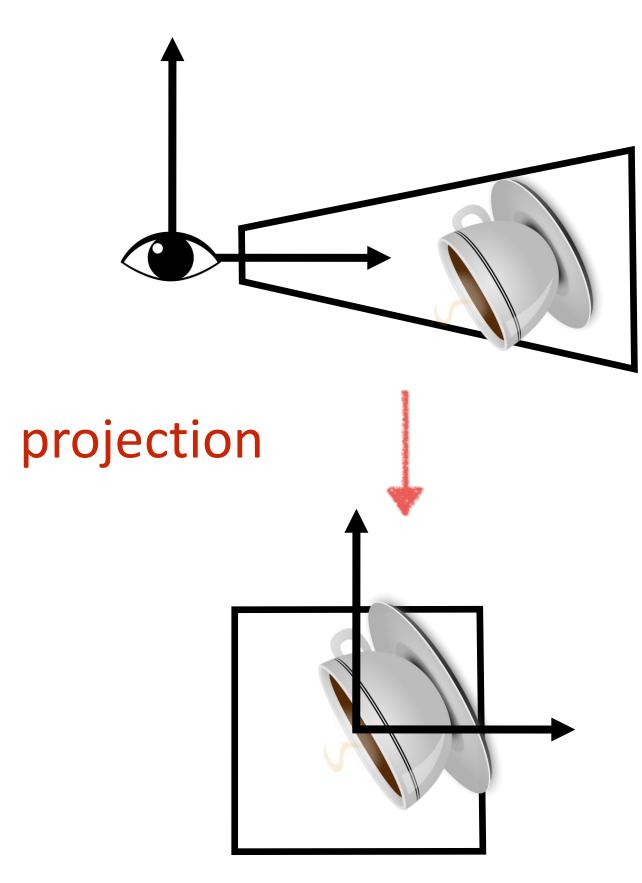
$$\begin{bmatrix} x_{screen} \\ y_{screen} \\ 1 \end{bmatrix} = \begin{bmatrix} nx/2 & 0 & \frac{n_x - 1}{2} \\ 0 & ny/2 & \frac{n_y - 1}{2} \\ 0 & 0 & 1 \end{bmatrix}$$



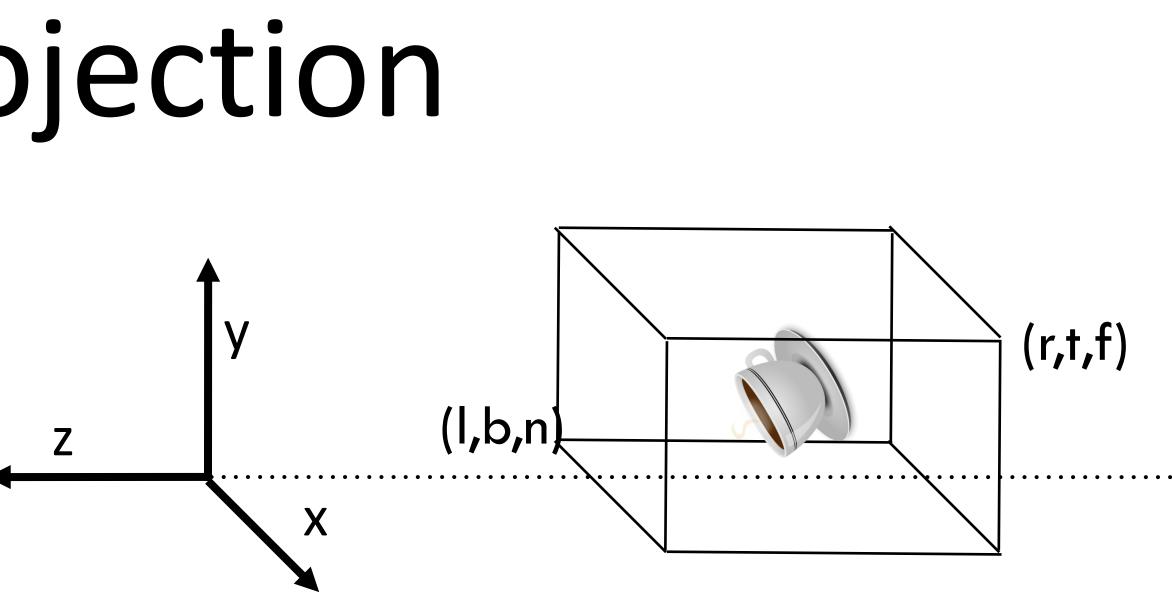
How does it look in 3D?

Orthographic Projection

camera space

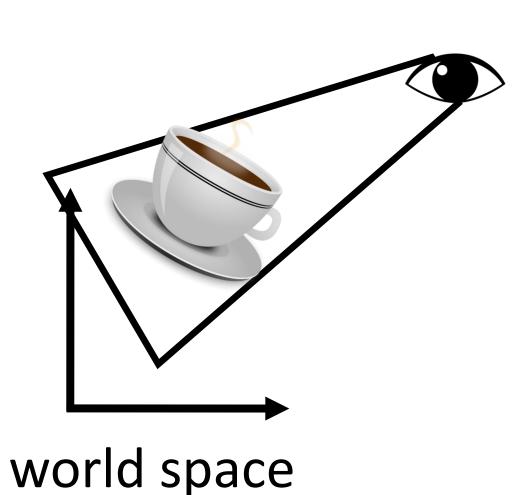


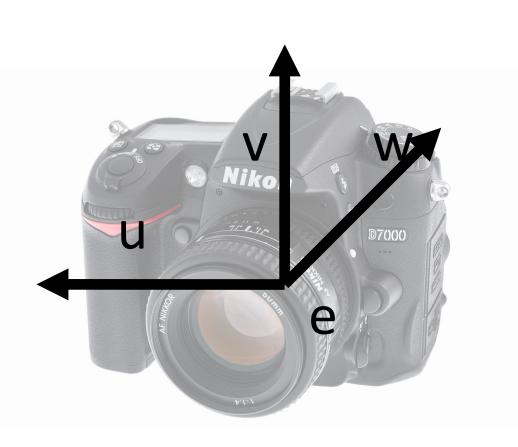
canonical view volume

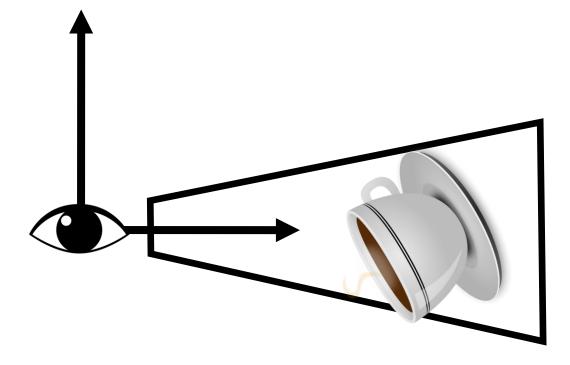


 $\begin{bmatrix} \frac{2}{r-l} & 0\\ 0 & \frac{2}{t-b} \end{bmatrix}$ $\mathbf{M}_{orth} =$ $\mathbf{2}$ n+0 0 $\overline{n-f}$ n-0

Camera Transformation







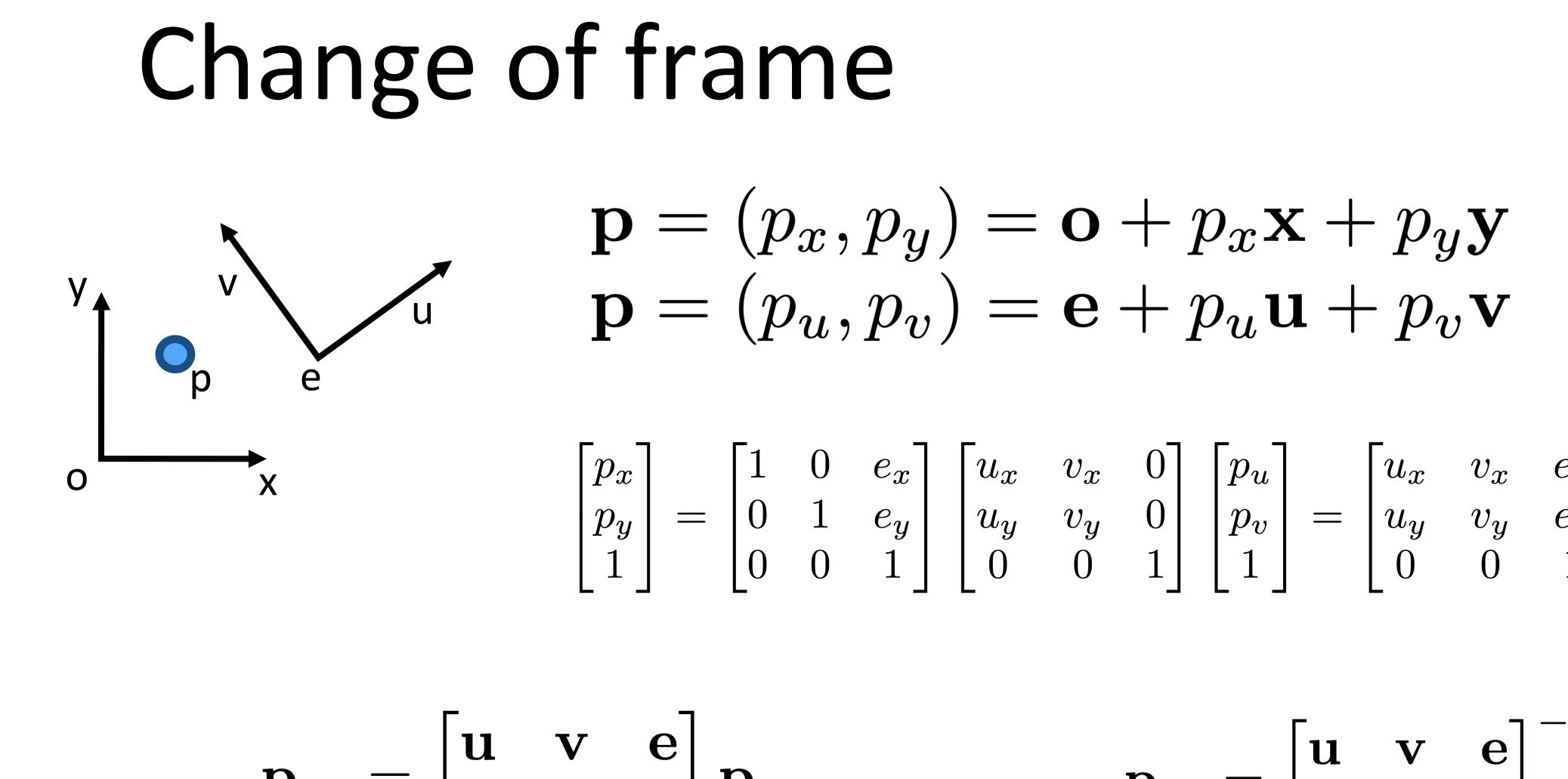
camera

camera space

1. Construct the camera reference system given: 1. The eye position e 2. The gaze direction g 3. The view-up vector t

$$\mathbf{w} = -rac{\mathbf{g}}{||\mathbf{g}||}$$
 $\mathbf{u} = rac{\mathbf{t} imes \mathbf{w}}{||\mathbf{t} imes \mathbf{w}||}$

$$\mathbf{v} = \mathbf{w} \times \mathbf{u}$$



$$\mathbf{p}_{xy} = \begin{bmatrix} \mathbf{u} & \mathbf{v} & \mathbf{c} \\ 0 & 0 & 1 \end{bmatrix} \mathbf{p}_{uv}$$

$$\begin{bmatrix} u_{x} & v_{x} & 0 \\ u_{y} & v_{y} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} p_{u} \\ p_{v} \\ 1 \end{bmatrix} = \begin{bmatrix} u_{x} & v_{x} & e_{x} \\ u_{y} & v_{y} & e_{y} \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} p_{u} \\ p_{v} \\ 1 \end{bmatrix}$$

$$\mathbf{p}_{uv} = \begin{bmatrix} \mathbf{u} & \mathbf{v} & \mathbf{e} \\ 0 & 0 & 1 \end{bmatrix}^{-1} \mathbf{p}_{xy}$$

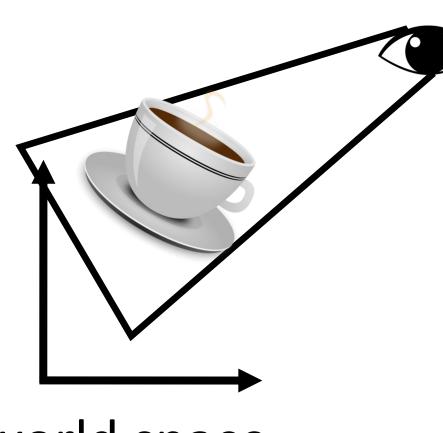
Can you write it directly without the inverse?

Camera Transformation

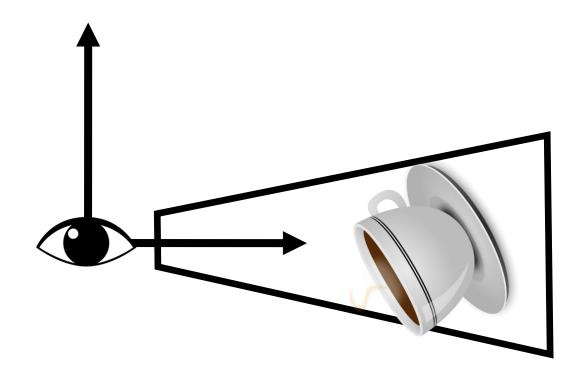
- - 1. The eye position e

e

- 2. The gaze direction g



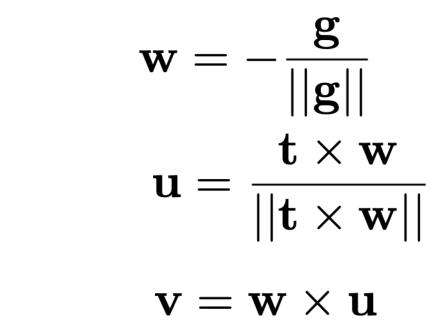
world space



camera space

1. Construct the camera reference system given:

3. The view-up vector t

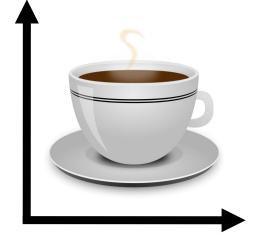


2. Construct the unique transformations that converts world coordinates into camera coordinates

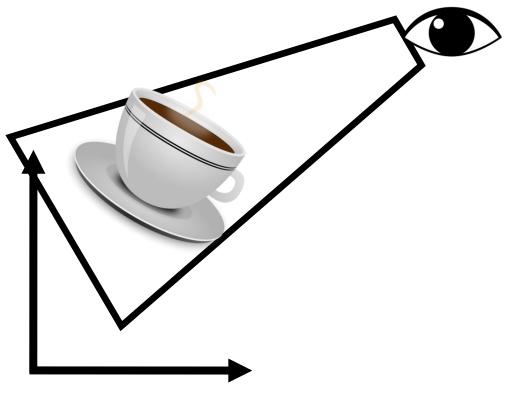
$$_{m} = \begin{bmatrix} \mathbf{u} & \mathbf{v} & \mathbf{w} & \mathbf{e} \\ 0 & 0 & 0 & 1 \end{bmatrix}^{-1}$$

View Transformation

object space



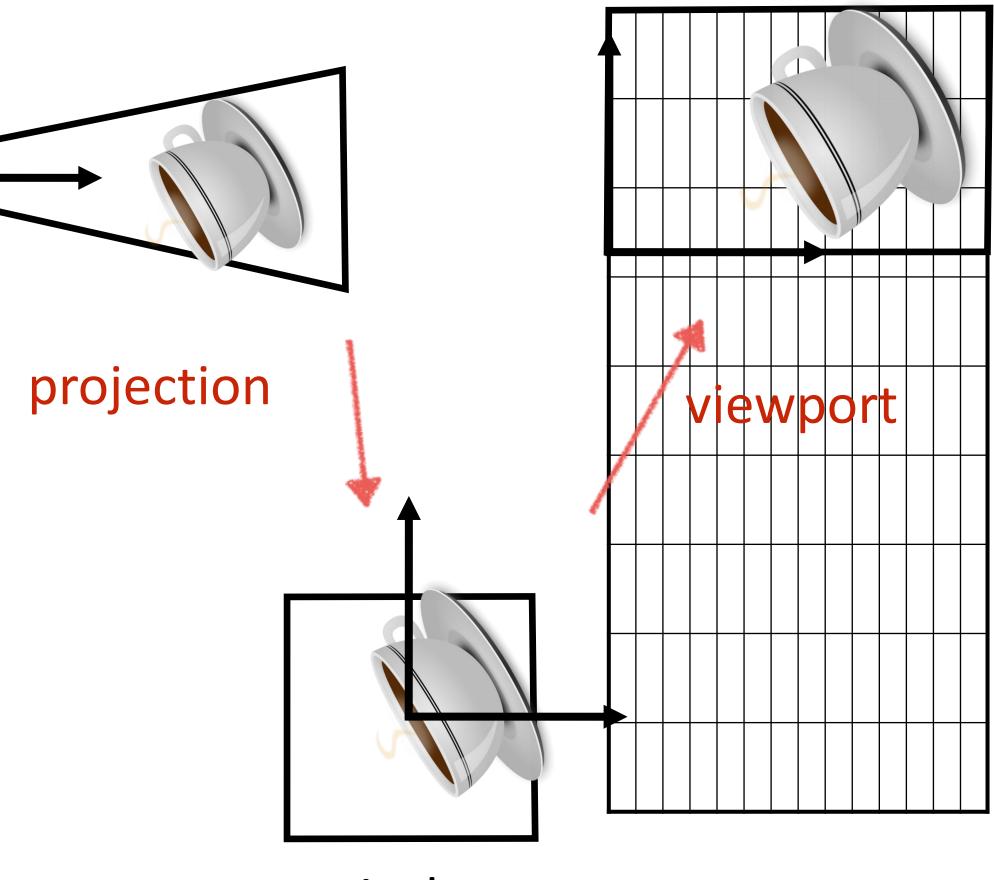




world space

camera space

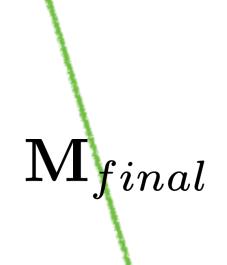
screen space

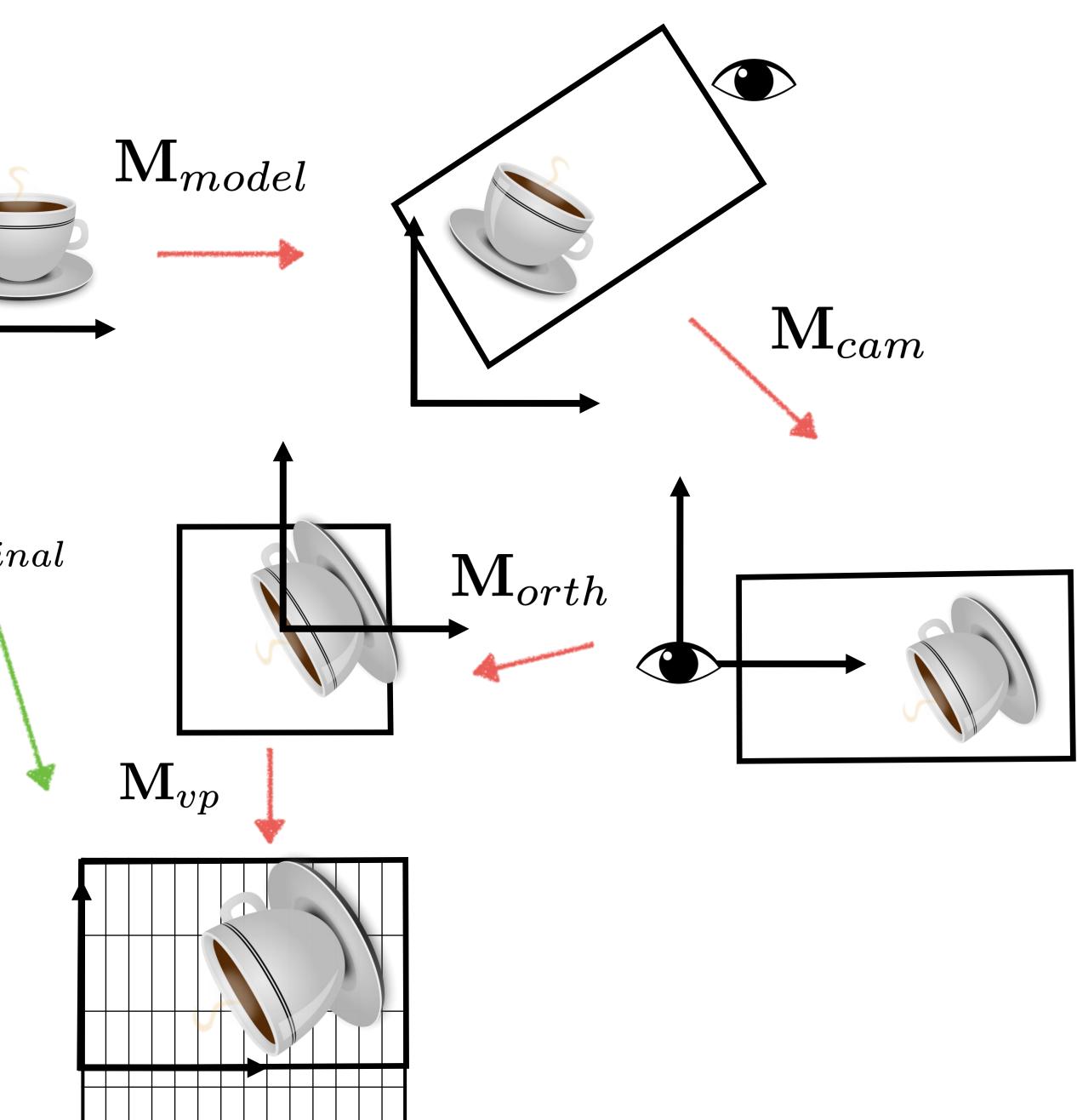


canonical view volume

Algorithm

- Construct Viewport Matrix \mathbf{M}_{vp}
- Construct Projection Matrix \mathbf{M}_{orth}
- Construct Camera Matrix \mathbf{M}_{cam}
- $\mathbf{M} = \mathbf{M}_{vp} \mathbf{M}_{orth} \mathbf{M}_{cam}$
- For each model \mathbf{M}_{model}
 - Construct Model Matrix
 - $\mathbf{M}_{final} = \mathbf{M}\mathbf{M}_{model}$
 - For every point p in each primitive of the model
 - $\mathbf{p}_{final} = \mathbf{M}_{final} \mathbf{p}$
 - Rasterize the model

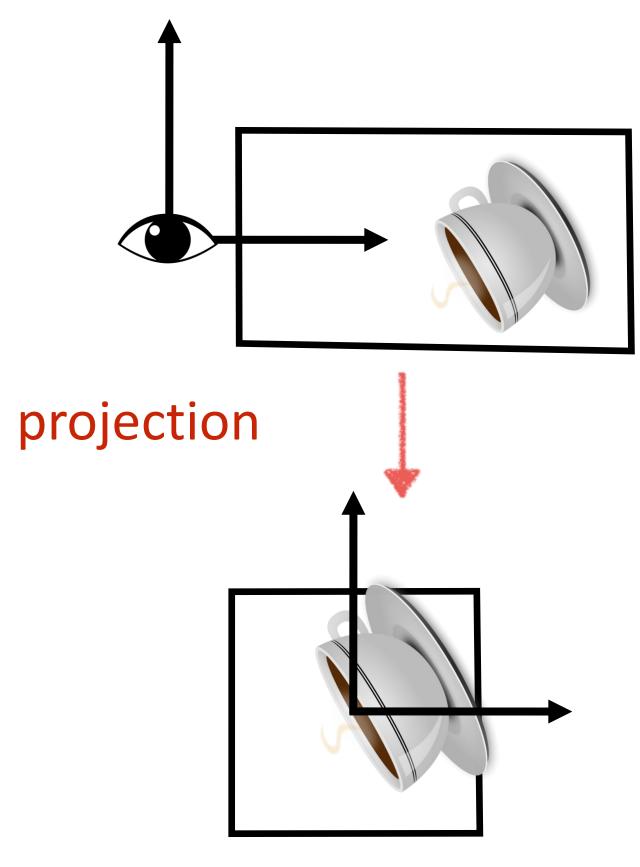




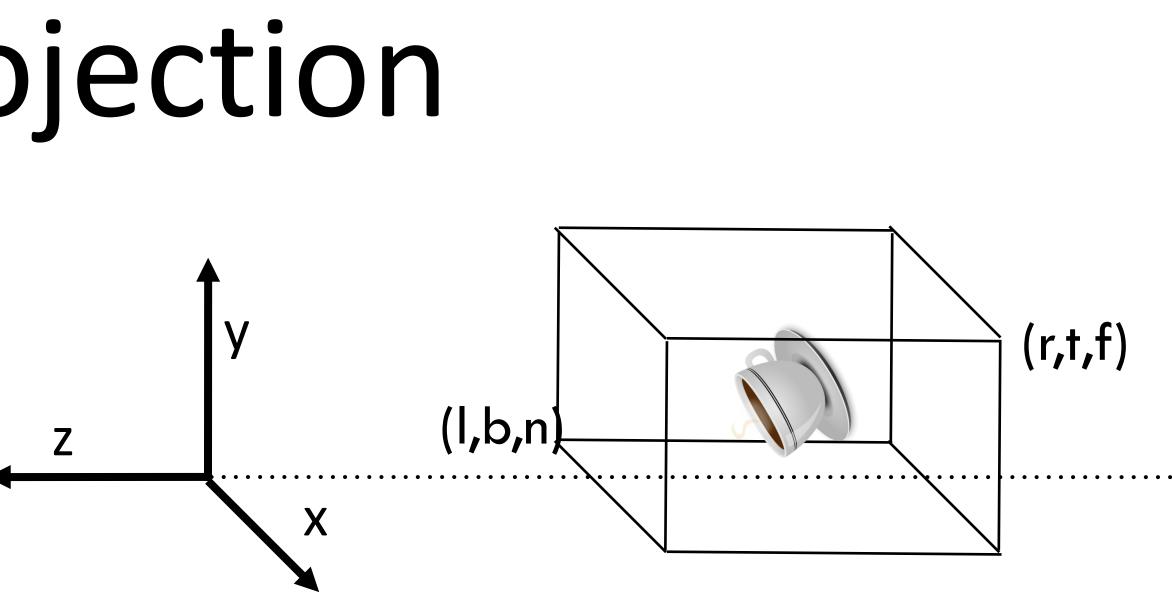
Perspective Projection

Orthographic Projection

camera space



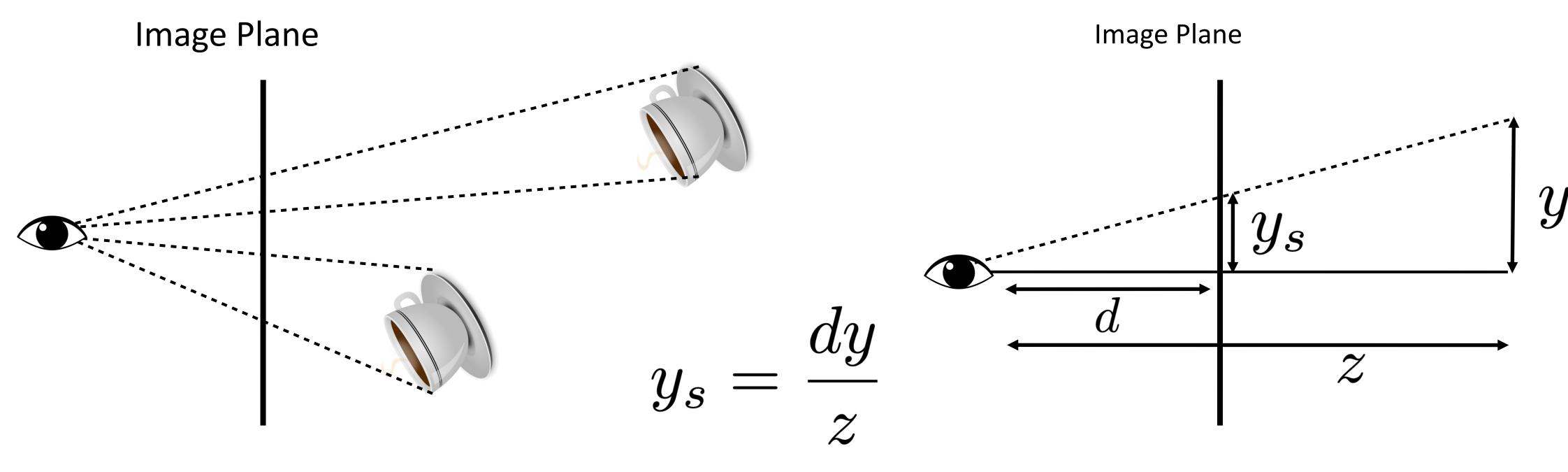
canonical view volume



 $\begin{bmatrix} \frac{2}{r-l} & 0\\ 0 & \frac{2}{t-b} \end{bmatrix}$ $\mathbf{M}_{orth} =$ $\frac{2}{n-f}$ n+0 0 n-0

Perspective Projection

- In Orthographic projection, the size of the objects does not change with distance
- In Perspective projection, the objects that are far away look smaller

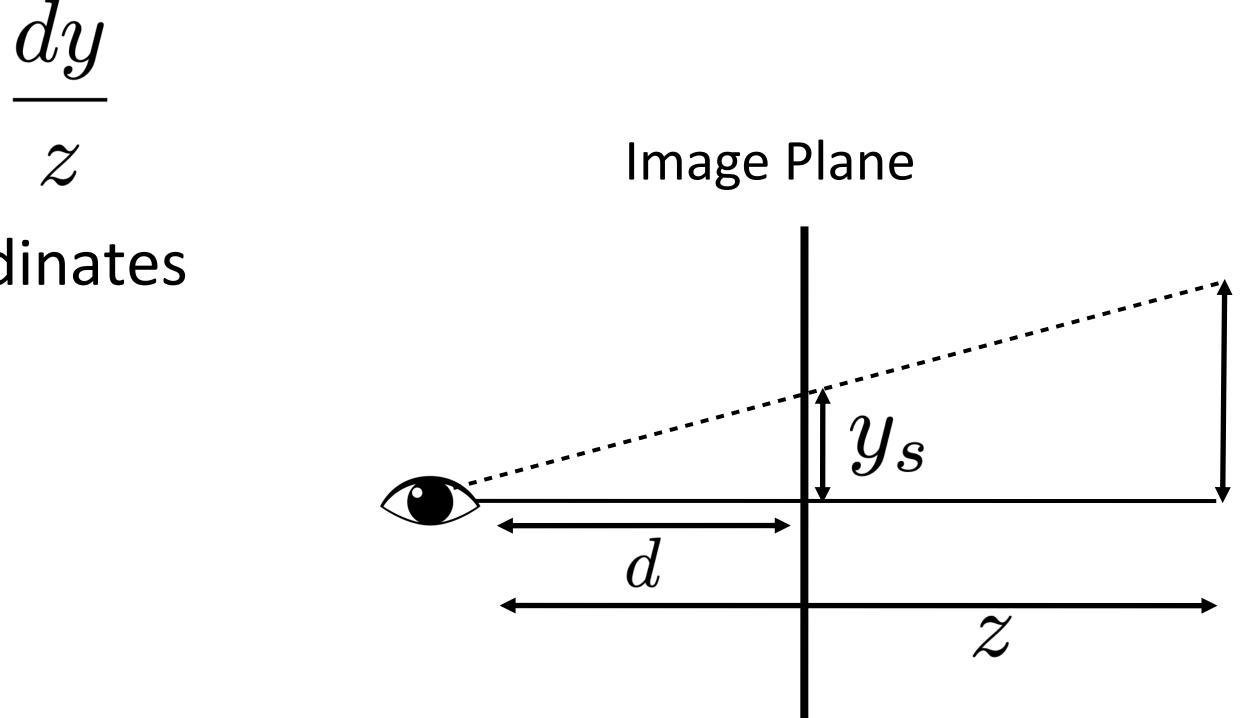


Divisions in Matrix Form

 y_s

• How do we encode divisions?

• We extend homogeneous coordinates



Until now...

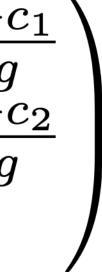
• What do we have left?

$$\begin{pmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} x \\ y \\ 1 \end{pmatrix} = \begin{pmatrix} a_1 x + b_1 y + c_1 \\ a_2 x + b_2 y + c_2 \\ 1 \end{pmatrix}$$

• Use the last row of the transformation:

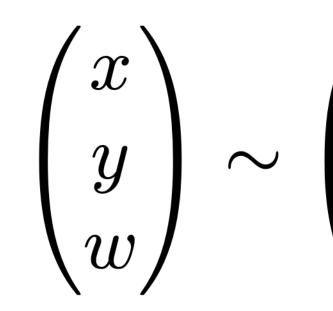
$$\begin{pmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ e & f & g \end{pmatrix} \cdot \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$$

$$= \begin{pmatrix} a_1x + b_1y + c_1 \\ a_2x + b_2y + c_2 \\ ex + fy + g \end{pmatrix} \sim \begin{pmatrix} \frac{a_1x + b_1y + c_1}{ex + fy + g} \\ \frac{a_2x + b_2y + c_2}{ex + fy + g} \\ 1 \end{pmatrix}$$



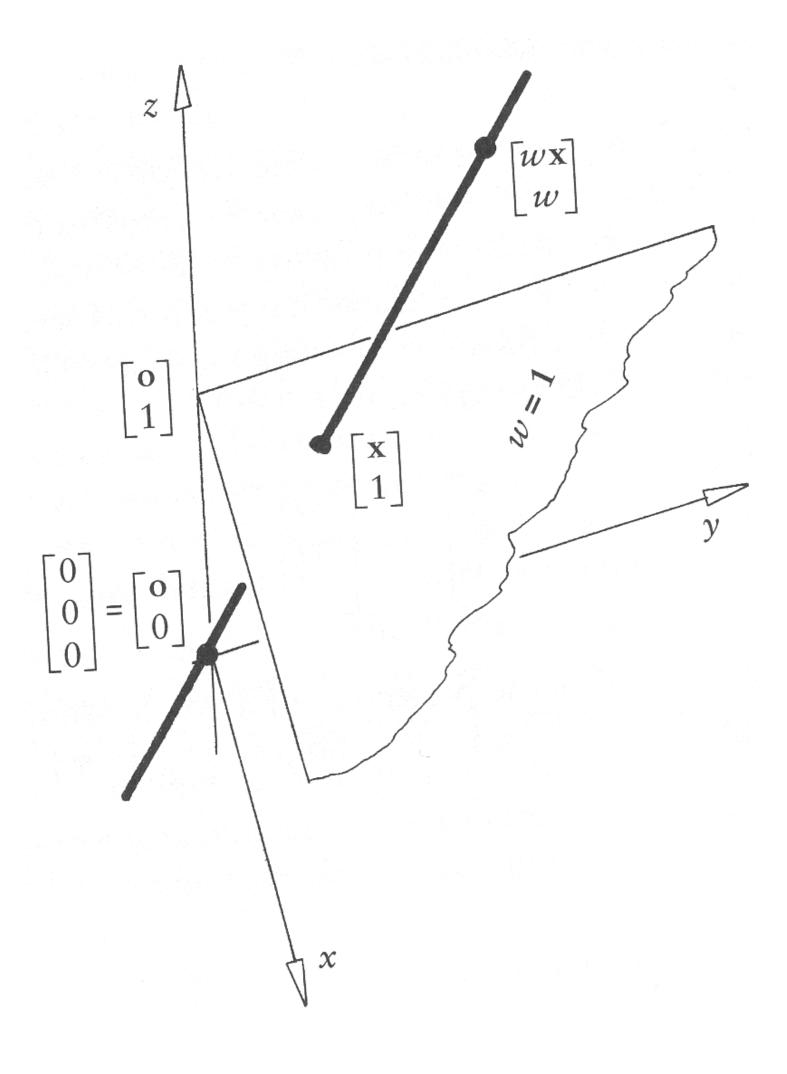
Intuition

• Purely algebraic:



• As a projection, each line is identified by a point on the plane z=1

 $\frac{y}{w}$ 1



Projective Transformation

- A transformation of this form is called a projective transformation (or a homography)
- The points are represented in homogeneous coordinates

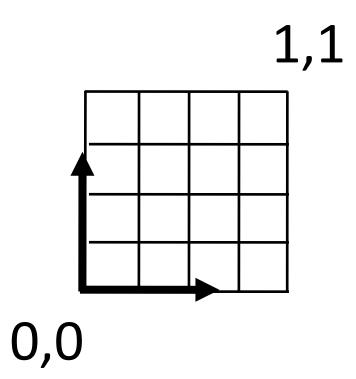
$$\begin{pmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ e & f & g \end{pmatrix} \cdot \begin{pmatrix} x \\ y \\ 1 \end{pmatrix} =$$

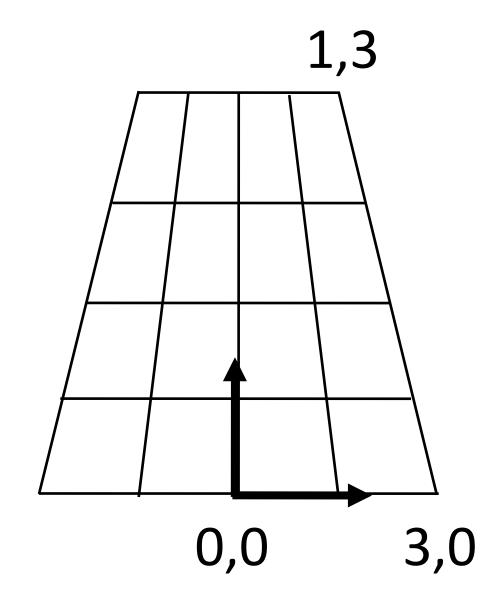
$$\begin{pmatrix} a_1x + b_1y + c_1 \\ a_2x + b_2y + c_2 \\ ex + fy + g \end{pmatrix} \sim \begin{pmatrix} \frac{a_1x + b_1y + c_1}{ex + fy + g} \\ \frac{a_2x + b_2y + c_2}{ex + fy + g} \\ 1 \end{pmatrix}$$

Example

$$\mathbf{M} = \begin{pmatrix} 2 & 0 & -1 \\ 0 & 3 & 0 \\ 0 & 2/3 & 1/3 \end{pmatrix}$$

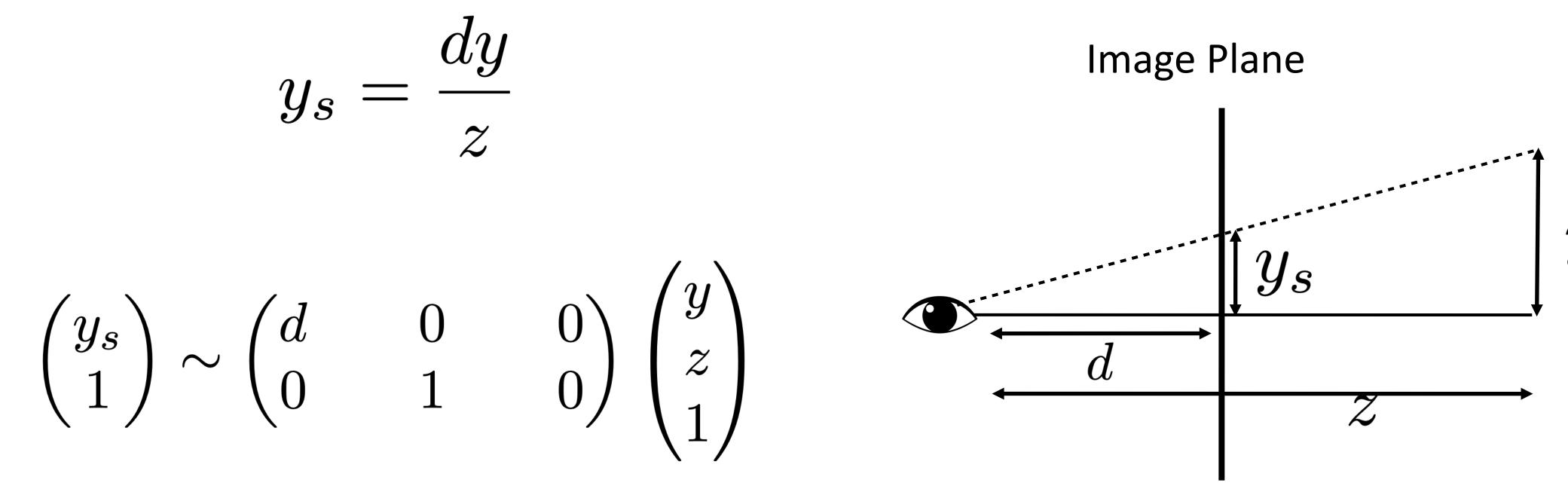
- It transforms a square into a quadrilateral note that straight lines are preserved, but parallel lines are not!
- You can use homogeneous coordinates for as many transformations as you want, only when you need the cartesian representation you have to normalize





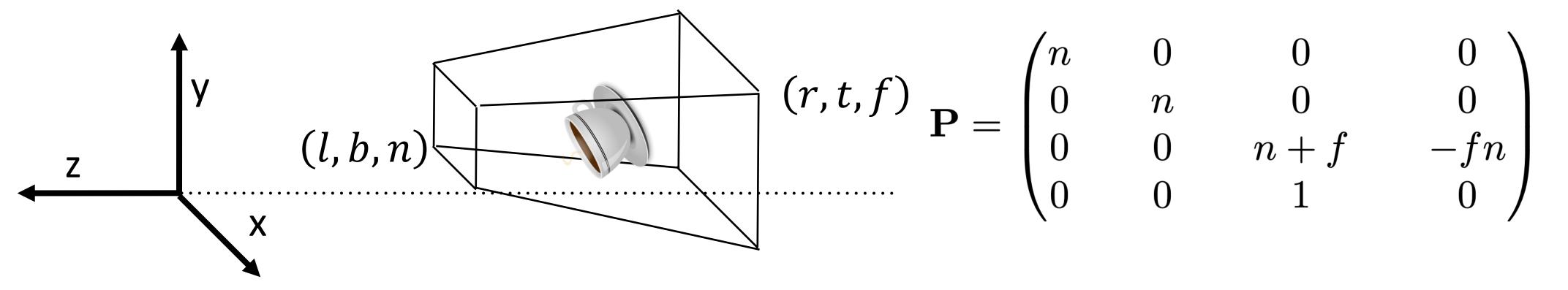
Perspective Projection

• Perspective projection is easily implementable using this machinery

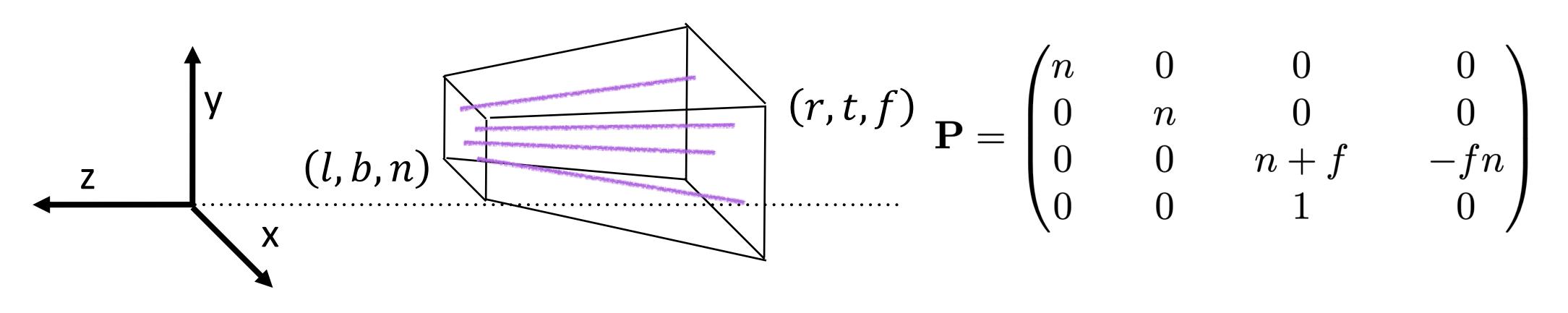


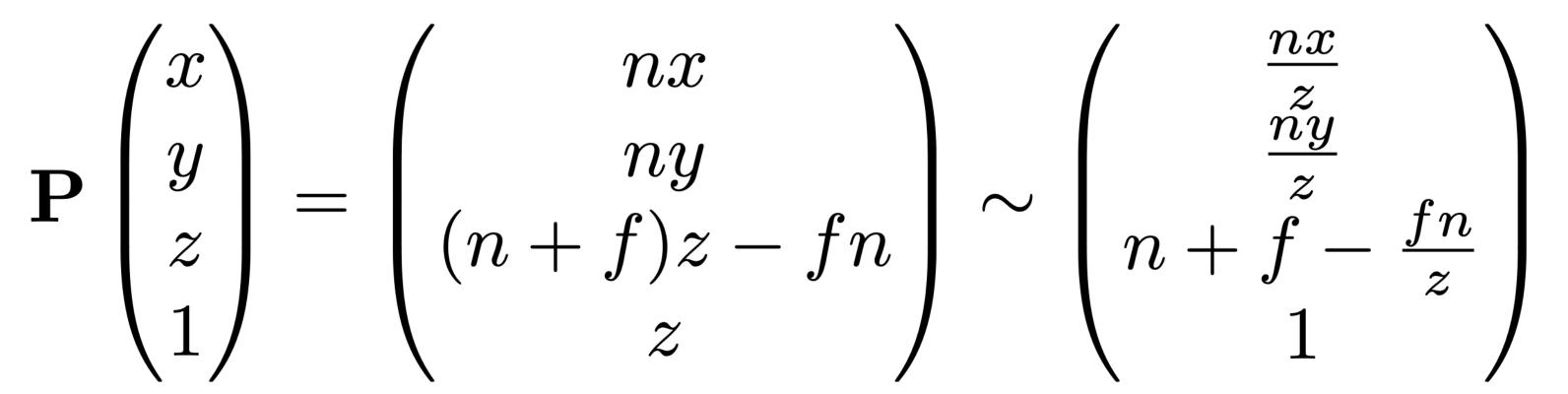
Perspective Projection

- We will use the same conventions that we used for orthographic:
 - Camera at the origin, pointing negative z
 - We scale x, y and "bring along" the z

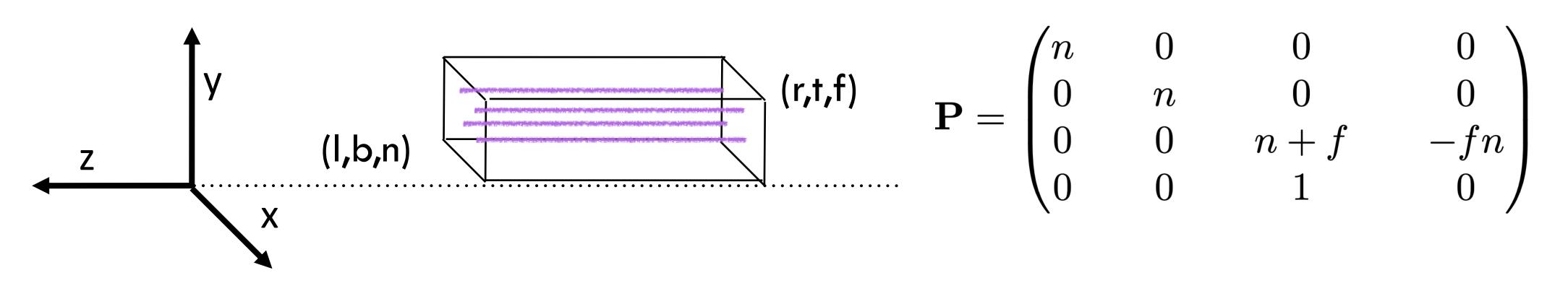


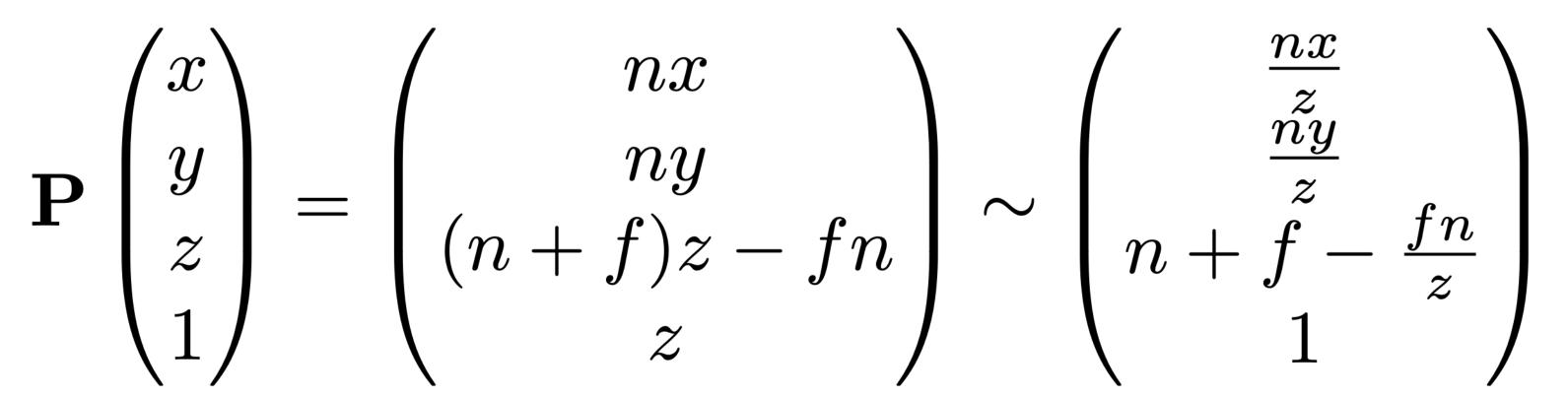
Effect on the points





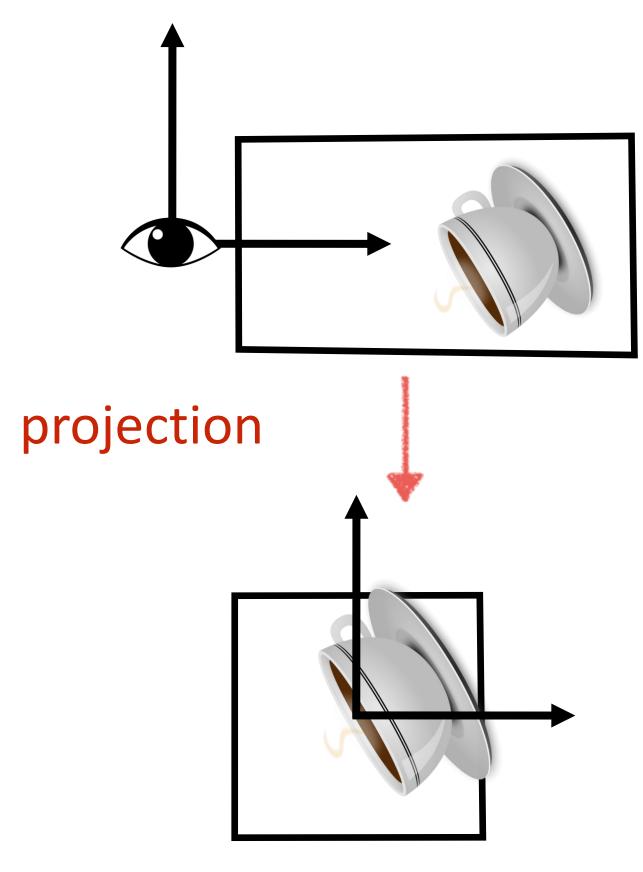
Effect on the points



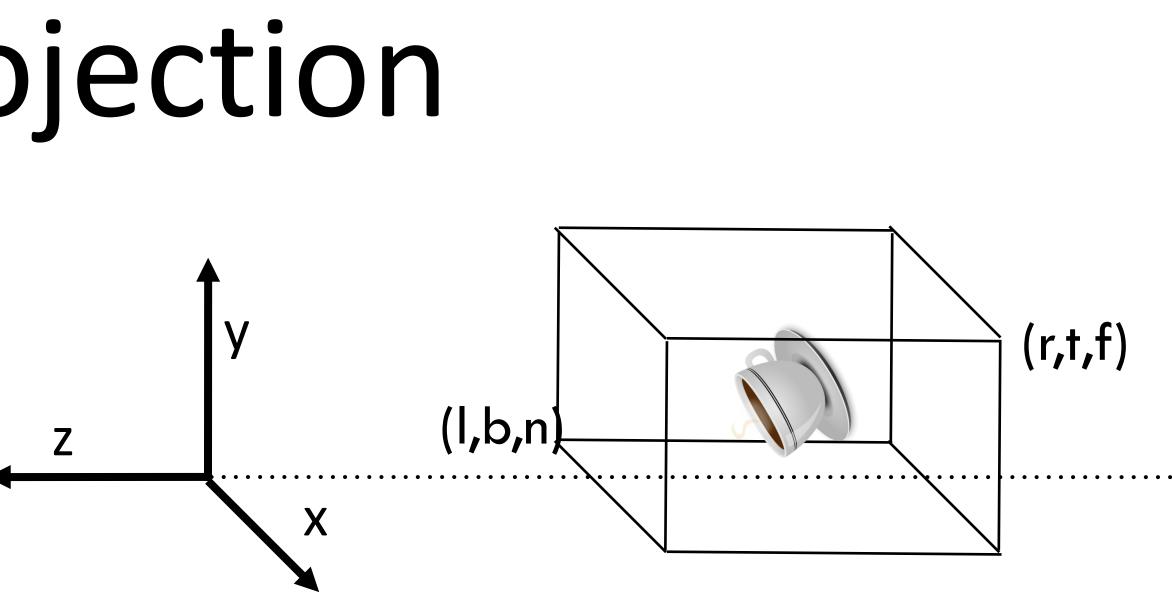


Orthographic Projection

camera space

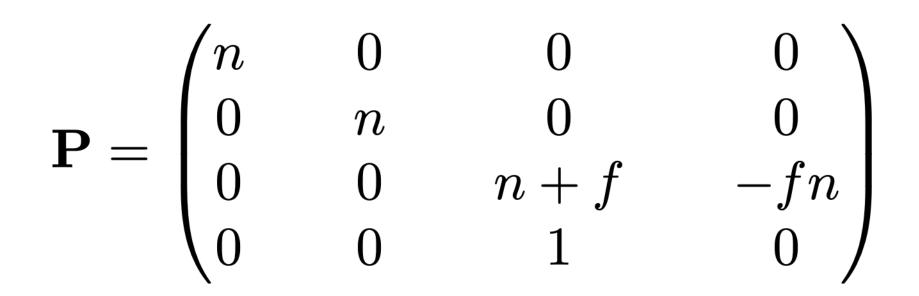


canonical view volume

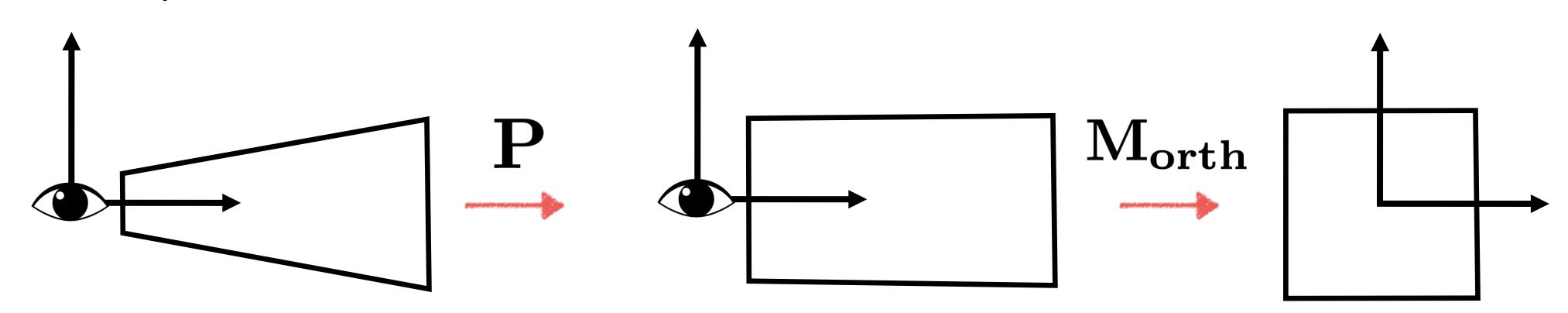


 $\begin{bmatrix} \frac{2}{r-l} & 0\\ 0 & \frac{2}{t-b} \end{bmatrix}$ $\mathbf{M}_{orth} =$ $\frac{2}{n-f}$ n+0 0 n-0

Complete Perspective Transformation



camera space



canonical view volume

Thank you! **Questions?**