
计算机图形学
Computer Graphics

陈仁杰
renjiec@ustc.edu.cn

http://staff.ustc.edu.cn/~renjiec

mailto:renjiec@ustc.edu.cn
http://staff.ustc.edu.cn/~renjiec

2D Transformations

2D Linear Transformations
• Each 2D linear map can be represented by a unique 2×2 matrix

• Concatenation of mappings corresponds to multiplication of matrices

• Linear transformations are very common in computer graphics!

L2 * L1 * x;

2D Scaling

• Scaling

Image Copyright: Mark Pauy

2D Rotation

• Rotation

Image Copyright: Mark Pauly

Special case:

2D Shearing

• Shear along x-axis

• Shear along y-axis

Image Copyright: Mark Pauly

2D Translation

• Translation

• Matrix representation?

Image Copyright: Mark Pauly

Affine Transformations

• Translation is not linear, but it is affine

• Origin is no longer a fixed point

• Affine map = linear map + translation

• Is there a matrix representation for all affine transformations?

• A unified framework -> simpler to code and optimize

Homogenous Coordinates

• Add a third coordinate (w-coordinate)

• 2D point = (x, y, 1)T

• 2D vector = (x, y, 0)T

• Matrix representation of translations

Affine Transformations

• Affine map = linear map + translation

• Using homogenous coordinates:

2D Transformations

• Scale

• Rotation

• Translation

Concatenation of Transformations

• Sequence of affine maps A1, A2, A3, ...

• Concatenation by matrix multiplication

• Very important for performance!

• Matrix multiplication not commutative, ordering is important!

2D Rotation

• How to rotate around a given point c?
1. Translate c to origin
2. Rotate
3. Translate back

• Matrix representation?

Image Copyright: Mark Pauly

View Transformations

Coordinate Systems

object

coordinates

world

coordinates
camera coordinates screen coordinates

Image Copyright: Mark Pauly

View Transformation
object space

model camera projection viewport

canonical
view volume

world space

camera space screen space

Viewport transformation

viewport

canonical
view volume

screen space
1-1

nx

ny

How does it look in 3D?

Orthographic Projection

projection

canonical
view volume

camera space

x

z

y

(l,b,n)

(r,t,f)

Camera Transformation

camera

world space

camera space

1. Construct the camera reference system given:
1. The eye position e
2. The gaze direction g
3. The view-up vector t

u

v w

e

Change of frame

o x

y

e

u
v

p

Can you write it directly without the inverse?

Camera Transformation

camera

world space

camera space

1. Construct the camera reference system given:
1. The eye position e
2. The gaze direction g
3. The view-up vector t

u

v w

e

2. Construct the unique transformations that converts world
coordinates into camera coordinates

View Transformation
object space

model camera projection viewport

canonical
view volume

world space

camera space screen space

Algorithm

• Construct Viewport Matrix 𝐌𝑣𝑝

• Construct Projection Matrix 𝐌𝑜𝑟𝑡ℎ

• Construct Camera Matrix 𝐌𝑐𝑎𝑚

•

• For each model 𝐌𝑚𝑜𝑑𝑒𝑙

• Construct Model Matrix

•

• For every point p in each primitive of the model

•

• Rasterize the model

Perspective Projection

Orthographic Projection

projection

canonical
view volume

camera space

x

z

y

(l,b,n)

(r,t,f)

Perspective Projection

• In Orthographic projection, the size of the objects does not change with distance

• In Perspective projection, the objects that are far away look smaller

Image Plane Image Plane

Divisions in Matrix Form

• How do we encode divisions?

• We extend homogeneous coordinates

Image Plane

• What do we have left?

• Use the last row of the transformation:

Until now…

Intuition

• Purely algebraic:

• As a projection, each line is identified by a point
on the plane z=1

Projective Transformation

• A transformation of this form is called a projective transformation (or a homography)

• The points are represented in homogeneous coordinates

Example

• It transforms a square into a quadrilateral — note
that straight lines are preserved, but parallel lines
are not!

• You can use homogeneous coordinates for as many
transformations as you want, only when you need
the cartesian representation you have to normalize

0,0

1,1

0,0 3,0

1,3

Perspective Projection

• Perspective projection is easily implementable using this machinery

Image Plane

• We will use the same conventions that we used for orthographic:

• Camera at the origin, pointing negative z

• We scale x, y and “bring along” the z

x

z

y

𝑙, 𝑏, 𝑛

𝑟, 𝑡, 𝑓

Perspective Projection

Effect on the points

x

z

y

𝑙, 𝑏, 𝑛

𝑟, 𝑡, 𝑓

Effect on the points

x

z

y

(l,b,n)

(r,t,f)

Orthographic Projection

projection

canonical
view volume

camera space

x

z

y

(l,b,n)

(r,t,f)

Complete Perspective Transformation

canonical
view volumecamera space

Thank you!

Questions?

