计算机图形学 Computer Graphics

陈仁杰
 renjiec＠ustc．edu．cn
 http：／／staff．ustc．edu．cn／${ }^{\text {renjiec }}$

2D Transformations

2D Linear Transformations

- Each 2D linear map can be represented by a unique 2×2 matrix

$$
\binom{x^{\prime}}{y^{\prime}}=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \cdot\binom{x}{y}
$$

- Concatenation of mappings corresponds to multiplication of matrices

$$
L_{2}\left(L_{1}(\mathbf{x})\right)=\mathbf{L}_{2} \mathbf{L}_{1} \mathbf{x}
$$

$$
\mathrm{L2} * \mathrm{~L} 1 * x_{i}
$$

- Linear transformations are very common in computer graphics!

2D Scaling

- Scaling $\binom{x^{\prime}}{y^{\prime}}=\underbrace{\left(\begin{array}{cc}s_{x} & 0 \\ 0 & s_{y}\end{array}\right)}_{\mathbf{S}\left(s_{x}, s_{y}\right)} \cdot\binom{x}{y}$

2D Rotation

- Rotation $\binom{x^{\prime}}{y^{\prime}}=\underbrace{\left(\begin{array}{cc}\cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha\end{array}\right)}_{\mathbf{R}(\alpha)} \cdot\binom{x}{y}$

Special case: $\quad \mathbf{R}(90)=\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]$

2D Shearing

- Shear along x-axis

$$
\binom{x^{\prime}}{y^{\prime}}=\underbrace{\left(\begin{array}{ll}
1 & a \\
0 & 1
\end{array}\right)}_{\mathbf{H}_{x}(a)} \cdot\binom{x}{y}
$$

$\mathbf{H}_{x}(0.5)$
$\mathbf{H}_{y}(0.5)$

- Shear along y-axis

$$
\binom{x^{\prime}}{y^{\prime}}=\underbrace{\left(\begin{array}{ll}
1 & 0 \\
b & 1
\end{array}\right)}_{\mathbf{H}_{y}(b)} \cdot\binom{x}{y}
$$

2D Translation

- Translation $\binom{x^{\prime}}{y^{\prime}}=\binom{x}{y}+\binom{t_{x}}{t_{y}}$

- Matrix representation?

$$
\binom{x^{\prime}}{y^{\prime}}=\mathbf{T}\left(t_{x}, t_{y}\right) \cdot\binom{x}{y}
$$

Affine Transformations

- Translation is not linear, but it is affine
- Origin is no longer a fixed point
- Affine map = linear map + translation

$$
\binom{x^{\prime}}{y^{\prime}}=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \cdot\binom{x}{y}+\binom{t_{x}}{t_{y}}=\mathbf{L x}+\mathbf{t}
$$

- Is there a matrix representation for all affine transformations?
- A unified framework -> simpler to code and optimize

Homogenous Coordinates

- Add a third coordinate (w-coordinate)
- 2D point $=(x, y, 1)^{\top}$
- 2 D vector $=(\mathrm{x}, \mathrm{y}, 0)^{\top}$

$$
\left(\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
w^{\prime}
\end{array}\right)=\left(\begin{array}{ccc}
1 & 0 & t_{x} \\
0 & 1 & t_{y} \\
0 & 0 & 1
\end{array}\right) \cdot\left(\begin{array}{l}
x \\
y \\
1
\end{array}\right)=\left(\begin{array}{c}
x+t_{x} \\
y+t_{y} \\
1
\end{array}\right)
$$

- Matrix representation of translations

Affine Transformations

- Affine map = linear map + translation

$$
\binom{x^{\prime}}{y^{\prime}}=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \cdot\binom{x}{y}+\binom{t_{x}}{t_{y}}
$$

- Using homogenous coordinates:

$$
\left(\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right)=\left(\begin{array}{llc}
a & b & t_{x} \\
c & d & t_{y} \\
0 & 0 & 1
\end{array}\right) \cdot\left(\begin{array}{l}
x \\
y \\
1
\end{array}\right)
$$

2D Transformations

- Scale

$$
\begin{aligned}
& \mathbf{S}\left(s_{x}, s_{y}\right)=\left(\begin{array}{ccc}
s_{x} & 0 & 0 \\
0 & s_{y} & 0 \\
0 & 0 & 1
\end{array}\right) \\
& \mathbf{R}(\alpha)=\left(\begin{array}{ccc}
\cos \alpha & -\sin \alpha & 0 \\
\sin \alpha & \cos \alpha & 0 \\
0 & 0 & 1
\end{array}\right)
\end{aligned}
$$

- Translation

$$
\mathbf{T}\left(t_{x}, t_{y}\right)=\left(\begin{array}{ccc}
1 & 0 & t_{x} \\
0 & 1 & t_{y} \\
0 & 0 & 1
\end{array}\right)
$$

Concatenation of Transformations

- Sequence of affine maps $A_{1}, A_{2}, A_{3}, \ldots$
- Concatenation by matrix multiplication

$$
A_{n}\left(\ldots A_{2}\left(A_{1}(\mathbf{x})\right)\right)=\mathbf{A}_{n} \cdots \mathbf{A}_{2} \cdot \mathbf{A}_{1} \cdot\left(\begin{array}{l}
x \\
y \\
1
\end{array}\right)
$$

- Very important for performance!
- Matrix multiplication not commutative, ordering is important!

2D Rotation

- How to rotate around a given point c?

1. Translate c to origin
2. Rotate
3. Translate back

- Matrix representation?

$$
\mathbf{T}(\mathbf{c}) \cdot \mathbf{R}(\alpha) \cdot \mathbf{T}(-\mathbf{c})
$$

View Transformations

Coordinate Systems

object
coordinates

world coordinates

View Transformation

Viewport transformation

$$
\left[\begin{array}{c}
x_{\text {screen }} \\
y_{\text {screen }} \\
1
\end{array}\right]=\left[\begin{array}{ccc}
n x / 2 & 0 & \frac{n_{x}-1}{2} \\
0 & n y / 2 & \frac{n_{y}-1}{2} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
x_{\text {canonical }} \\
y_{\text {canonical }} \\
1
\end{array}\right]
$$

screen space

How does it look in 3D?

Orthographic Projection

camera space

projection

canonical
view volume

$$
\mathbf{M}_{\text {orth }}=\left[\begin{array}{cccc}
\frac{2}{r-l} & 0 & 0 & -\frac{r+l}{r-l} \\
0 & \frac{2}{t-b} & 0 & -\frac{t+b}{t-b} \\
0 & 0 & \frac{2}{n-f} & -\frac{n+f}{n-f} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Camera Transformation

world space

```
camera
```


camera space

1. Construct the camera reference system given:
2. The eye position e
3. The gaze direction g
4. The view-up vector t

$$
\begin{aligned}
\mathbf{w} & =-\frac{\mathbf{g}}{\|\mathbf{g}\|} \\
\mathbf{u} & =\frac{\mathbf{t} \times \mathbf{w}}{\|\mathbf{t} \times \mathbf{w}\|} \\
\mathbf{v} & =\mathbf{w} \times \mathbf{u}
\end{aligned}
$$

Change of frame

$$
\begin{aligned}
& \mathbf{p}=\left(p_{x}, p_{y}\right)=\mathbf{o}+p_{x} \mathbf{x}+p_{y} \mathbf{y} \\
& \mathbf{p}=\left(p_{u}, p_{v}\right)=\mathbf{e}+p_{u} \mathbf{u}+p_{v} \mathbf{v}
\end{aligned}
$$

$$
\left[\begin{array}{c}
p_{x} \\
p_{y} \\
1
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & e_{x} \\
0 & 1 & e_{y} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
u_{x} & v_{x} & 0 \\
u_{y} & v_{y} & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
p_{u} \\
p_{v} \\
1
\end{array}\right]=\left[\begin{array}{ccc}
u_{x} & v_{x} & e_{x} \\
u_{y} & v_{y} & e_{y} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
p_{u} \\
p_{v} \\
1
\end{array}\right]
$$

$$
\mathbf{p}_{x y}=\left[\begin{array}{lll}
\mathbf{u} & \mathbf{v} & \mathbf{e} \\
0 & 0 & 1
\end{array}\right] \mathbf{p}_{u v}
$$

$$
\mathbf{p}_{u v}=\left[\begin{array}{lll}
\mathbf{u} & \mathbf{v} & \mathbf{e} \\
0 & 0 & 1
\end{array}\right]^{-1} \mathbf{p}_{x y}
$$

Camera Transformation

1. Construct the camera reference system given:

world space
| camera

2. The eye position e
3. The gaze direction g
4. The view-up vector t

$$
\begin{aligned}
\mathbf{w} & =-\frac{\mathbf{g}}{\|\mathbf{g}\|} \\
\mathbf{u} & =\frac{\mathbf{t} \times \mathbf{w}}{\|\mathbf{t} \times \mathbf{w}\|} \\
\mathbf{v} & =\mathbf{w} \times \mathbf{u}
\end{aligned}
$$

2. Construct the unique transformations that converts world coordinates into camera coordinates

$$
\mathbf{M}_{c a m}=\left[\begin{array}{cccc}
\mathbf{u} & \mathbf{v} & \mathbf{w} & \mathbf{e} \\
0 & 0 & 0 & 1
\end{array}\right]^{-1}
$$

View Transformation

Algorithm

- Construct Viewport Matrix $\mathbf{M}_{v p}$
- Construct Projection Matrix $\mathbf{M}_{\text {orth }}$

- $\mathbf{M}=\mathbf{M}_{v p} \mathbf{M}_{\text {orth }} \mathbf{M}_{\text {cam }}$
- For each model $\mathbf{M}_{\text {model }}$
- Construct Model Matrix
- $\mathbf{M}_{\text {final }}=\mathbf{M M}_{\text {model }}$
- For every point p in each primitive of the model
- $\mathbf{p}_{\text {final }}=\mathbf{M}_{\text {final }} \mathbf{p}$
- Rasterize the model

Perspective Projection

Orthographic Projection

camera space

projection

$\mathbf{M}_{\text {orth }}=\left[\begin{array}{cccc}\frac{2}{r-l} & 0 & 0 & -\frac{r+l}{r-l} \\ 0 & \frac{2}{t-b} & 0 & -\frac{t+b}{t-b} \\ 0 & 0 & \frac{2}{n-f} & -\frac{n+f}{n-f} \\ 0 & 0 & 0 & 1\end{array}\right]$
view volume

Perspective Projection

- In Orthographic projection, the size of the objects does not change with distance
- In Perspective projection, the objects that are far away look smaller

Divisions in Matrix Form

- How do we encode divisions?

$$
y_{s}=\frac{d y}{z}
$$

- We extend homogeneous coordinates

Until now...

- What do we have left?

$$
\left(\begin{array}{ccc}
a_{1} & b_{1} & c_{1} \\
a_{2} & b_{2} & c_{2} \\
0 & 0 & 1
\end{array}\right) \cdot\left(\begin{array}{l}
x \\
y \\
1
\end{array}\right)=\left(\begin{array}{c}
a_{1} x+b_{1} y+c_{1} \\
a_{2} x+b_{2} y+c_{2} \\
1
\end{array}\right)
$$

- Use the last row of the transformation:

$$
\left(\begin{array}{ccc}
a_{1} & b_{1} & c_{1} \\
a_{2} & b_{2} & c_{2} \\
e & f & g
\end{array}\right) \cdot\left(\begin{array}{l}
x \\
y \\
1
\end{array}\right)=\left(\begin{array}{c}
a_{1} x+b_{1} y+c_{1} \\
a_{2} x+b_{2} y+c_{2} \\
e x+f y+g
\end{array}\right) \sim\binom{\left.\frac{a_{1} x+b_{1} y+c_{1}}{a_{2}} \begin{array}{c}
x+y+g_{2} \\
\frac{a_{2} x+2 c_{2}+c_{2}}{e x+f y+g} \\
1
\end{array}\right)}{1}
$$

Intuition

- Purely algebraic:

$$
\left(\begin{array}{c}
x \\
y \\
w
\end{array}\right) \sim\left(\begin{array}{c}
x / w \\
y / w \\
1
\end{array}\right)
$$

- As a projection, each line is identified by a point on the plane $\mathrm{z}=1$

Projective Transformation

- A transformation of this form is called a projective transformation (or a homography)
- The points are represented in homogeneous coordinates

$$
\left(\begin{array}{ccc}
a_{1} & b_{1} & c_{1} \\
a_{2} & b_{2} & c_{2} \\
e & f & g
\end{array}\right) \cdot\left(\begin{array}{l}
x \\
y \\
1
\end{array}\right)=\left(\begin{array}{c}
a_{1} x+b_{1} y+c_{1} \\
a_{2} x+b_{2} y+c_{2} \\
e x+f y+g
\end{array}\right) \sim\left(\begin{array}{c}
\frac{a_{1} x+b_{1} y+c_{1}}{e x+f+g} \\
\frac{a_{2} x+b_{2} y+c_{2}}{e x+f y+g} \\
1
\end{array}\right)
$$

Example

$$
\mathbf{M}=\left(\begin{array}{ccc}
2 & 0 & -1 \\
0 & 3 & 0 \\
0 & 2 / 3 & 1 / 3
\end{array}\right)
$$

- It transforms a square into a quadrilateral - note that straight lines are preserved, but parallel lines are not!
- You can use homogeneous coordinates for as many transformations as you want, only when you need the cartesian representation you have to normalize

Perspective Projection

- Perspective projection is easily implementable using this machinery

Perspective Projection

- We will use the same conventions that we used for orthographic:
- Camera at the origin, pointing negative z
- We scale x, y and "bring along" the z

Effect on the points

$$
\mathbf{P}\left(\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right)=\left(\begin{array}{c}
n x \\
n y \\
(n+f) z-f n \\
z
\end{array}\right) \sim\left(\begin{array}{c}
\frac{n x}{z} \\
\frac{n y}{z} \\
n+f-\frac{f n}{z} \\
1
\end{array}\right)
$$

Effect on the points

$$
\mathbf{P}\left(\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right)=\left(\begin{array}{c}
n x \\
n y \\
(n+f) z-f n \\
z
\end{array}\right) \sim\left(\begin{array}{c}
\frac{n x}{z} \\
\frac{n y}{z} \\
n+f-\frac{f n}{z} \\
1
\end{array}\right)
$$

Orthographic Projection

camera space

projection

$\mathbf{M}_{\text {orth }}=\left[\begin{array}{cccc}\frac{2}{r-l} & 0 & 0 & -\frac{r+l}{r-l} \\ 0 & \frac{2}{t-b} & 0 & -\frac{t+b}{t-b} \\ 0 & 0 & \frac{2}{n-f} & -\frac{n+f}{n-f} \\ 0 & 0 & 0 & 1\end{array}\right]$
view volume

Complete Perspective Transformation

$$
\mathbf{P}=\left(\begin{array}{cccc}
n & 0 & 0 & 0 \\
0 & n & 0 & 0 \\
0 & 0 & n+f & -f n \\
0 & 0 & 1 & 0
\end{array}\right) \quad \mathbf{M}_{\text {orth }}=\left[\begin{array}{cccc}
\frac{2}{r-l} & 0 & 0 & -\frac{r+l}{r-l} \\
0 & \frac{2}{t-b} & 0 & -\frac{t+b}{t-b} \\
0 & 0 & \frac{2}{n-f} & -\frac{n+f}{n-f} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Thank you!
Questions?

