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Computing flip-free mappings 
with flipped initializations



Problem definition

ARAP, Flipped Flip-free

?



Projection



Key idea
• Project the flipped elements into the flip-free mapping space.
• An alternating algorithm
•Local step: project each element onto the constraint set (flip-free space)
•Global step: minimize the distance to the projected elements

• Common projection types:
•Closest point projection
•Tangential projection

Tangential constraint



Preliminaries
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• Signed singular value decomposition: 𝐽𝑖 𝐮 = 𝑈𝑖𝑆𝑖𝑉𝑖
𝑇

• Ui and Vi are two rotation matrices
• 𝑆𝑖 = diag 𝜎𝑖,1, 𝜎𝑖,2, 𝜎𝑖,3 , 𝜎𝑖,1 ≥ 𝜎𝑖,2 ≥ 𝜎𝑖,3

• Foldover-free constraints
• det 𝐽𝑖 𝐮 > 0, 𝑖 = 1,⋯ , 𝑁 ⟺ 𝜎𝑖,3 > 0

• Conformal distortion
• 𝜏 𝐽𝑖 𝐮 = 𝜎𝑖,1/𝜎𝑖,3

• Bounded conformal distortion constraints

• 1 ≤ 𝜏 𝐽𝑖 𝐮 ≤ 𝐾



Constraints
Flip-free 

constraints

det 𝐽𝑖 𝐮 > 0

Bounded conformal 
distortion constraints

1 ≤ 𝜏 𝐽𝑖 𝐮

𝜏 𝐽𝑖 𝐮 ≤ 𝐾

𝜎𝑖,3 > 0, 𝜏 𝐽𝑖 = Τ𝜎𝑖,1 𝜎𝑖,3

𝜎𝑖,1 ≥ 𝜎𝑖,2 ≥ 𝜎𝑖,3

𝐾 = max
𝑖=1,⋯,𝑁

𝜏 𝐽𝑖

𝜏 𝐽𝑖 ≥ 1, 𝜎𝑖,3 > 0, 𝜎𝑖,3 > 0



Formulation
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min
𝐮

𝐸𝑑 = ෍

𝑖=1,⋯,𝑁

𝐽𝑖 𝐮 − 𝐻𝑖 𝐹
2 ,

𝑠. 𝑡. 𝐻𝑖 ∈ ℋ𝑖 , 𝑖 = 1,⋯ ,𝑁,

𝐴𝐮 = 𝑏.

ℋ𝑖 = 𝐻𝑖|1 ≤ 𝜏(𝐻𝑖) ≤ 𝐾 : bounded conformal distortion space.

Su, Jian-Ping, Xiao-Ming Fu, and Ligang Liu. "Practical foldover‐free volumetric mapping construction." Computer Graphics Forum. Vol. 38. No. 7. 2019.



Solver
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• Local-global solver

Local step

Fix 𝐮 and 𝐽𝑖 , solve 𝐻𝑖

min
𝐮

𝐸𝑑 = ෍

𝑖=1,⋯,𝑁

𝐽𝑖 𝐮 − 𝐻𝑖 𝐹
2 ,

𝑠. 𝑡. 𝐻𝑖 ∈ ℋ𝑖 , 𝑖 = 1,⋯ ,𝑁,

Global step

Fix 𝐻𝑖, solve 𝐮

min
𝐮

𝐸𝑑 = ෍

𝑖=1,⋯,𝑁

𝐽𝑖 𝐮 − 𝐻𝑖 𝐹
2 ,

𝑠. 𝑡. 𝐴𝐮 = 𝑏

Very slow convergence…



Anderson acceleration
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• Fixed-point iteration

• Accelerated iteration

Peng, Yue, et al. "Anderson acceleration for geometry optimization and physics simulation." ACM Transactions on Graphics (TOG) 37.4 (2018): 1-14.

𝐺 = ϕ ∘ 𝑃

𝐱𝑘+1 = 𝐺(𝐱𝑘)

min
(𝜃1,⋯,𝜃𝑚)

𝐹𝑘 −෍
𝑗=1

𝑚

𝜃𝑗 (𝐹
𝑘−𝑗+1 − 𝐹𝑘−𝑗)

2

, 𝐹𝑘 = 𝐺 𝐱𝑘 − 𝐱𝑘

𝐱𝐴𝐴
𝑘+1 = 𝐺 𝐱𝑘 −෍

𝑗=1

𝑚

𝜃𝑗
∗(𝐺 𝐱𝑘−𝑗+1 − 𝐺 𝐱𝑘−𝑗 )

where (𝜃1
∗, ⋯ , 𝜃𝑚

∗ ) is the solution to a linear least-squares problem:



Anderson acceleration 

11



Update bound 𝐾
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• Projection cannot eliminate all foldovers

• 𝐾𝑛𝑒𝑤 = 𝛽𝐾
•𝛽 = 2
• initialize 𝐾 = 4



Recap of the algorithm
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Tangential projection
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• Global step: fix 𝐻𝑖, solve 𝐮

min
𝐮

𝐸𝑑 = ෍

𝑖=1,⋯,𝑁

𝐽𝑖 𝐮 − 𝐻𝑖 𝐹
2 ,

𝑠. 𝑡. 𝐴𝐮 = 𝑏

(𝐽𝑖
𝑘 𝐮 − 𝐻𝑖

𝑘) ⊥ (𝐽𝑖
𝑘+1 𝐮 − 𝐻𝑖

𝑘)

Kovalsky, Shahar Z., et al. "Large-scale bounded distortion mappings." ACM Trans. Graph. 34.6 (2015): 191-1.

𝐽𝑖
𝑘 𝐮

𝐻𝑖
𝑘

ℋ𝑖

𝐽𝑖
𝑘+1 𝐮



Results
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Comparison 
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Penalty



Overview
• Key idea: penalize the flipped elements via penalty functions

• Main properties:
• it is very large to penalize flipped Jacobian matrices;
• it is very small to accept flip-free Jacobian matrices.

• Solvers are then the challenges
•Non-linear and non-convex



Common penalty functions
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෍

𝑖

𝐽𝑖 𝐹
𝑑

det 𝐽𝑖 + det 𝐽𝑖
2 + 𝜀

Key: the small positive 𝜀

෍

𝑖

det 𝐽𝑖 − 1 2 + log
𝑥 − 𝜀

1 − 𝜀

2

Key: parameter 𝜀



Parameter 𝜀

20Garanzha, Vladimir, et al. "Foldover-free maps in 50 lines of code." ACM Transactions on Graphics (TOG) 40.4 (2021): 1-16.



Solvers
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• Block coordinate descent method
• Monotone preconditioned conjugate gradient method
• L-BFGS
• SGD
• Secord-order methods



Bounded distortion spaces



Bounded distortion space
• Goal: explicitly bound the conformal distortion

• Constraints: 𝛿𝑡
𝑐𝑜𝑛 =

𝜎𝑚𝑎𝑥

𝜎𝑚𝑖𝑛
< 𝐾, det 𝐽𝑡 > 0

• Non-linear and non-convex

Lipman, Yaron. "Bounded distortion mapping spaces for triangular meshes." ACM Transactions on Graphics (TOG) 31.4 (2012): 1-13.

𝐽𝑡 =
𝑎𝑡 + 𝑐𝑡 𝑑𝑡 − 𝑏𝑡
𝑑𝑡 + 𝑏𝑡 𝑎𝑡 − 𝑐𝑡

𝜎𝑚𝑎𝑥 = 𝑎𝑡
2 + 𝑏𝑡

2 + 𝑐𝑡
2 + 𝑑𝑡

2

𝜎𝑚𝑖𝑛 = 𝑎𝑡
2 + 𝑏𝑡

2 − 𝑐𝑡
2 + 𝑑𝑡

2



Reformulation
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𝐽𝑡 =
𝑎𝑡 + 𝑐𝑡 𝑑𝑡 − 𝑏𝑡
𝑑𝑡 + 𝑏𝑡 𝑎𝑡 − 𝑐𝑡

𝜎𝑚𝑎𝑥 = 𝑎𝑡
2 + 𝑏𝑡

2 + 𝑐𝑡
2 + 𝑑𝑡

2

𝜎𝑚𝑖𝑛 = 𝑎𝑡
2 + 𝑏𝑡

2 − 𝑐𝑡
2 + 𝑑𝑡

2

det 𝐽𝑡 > 0 𝑐𝑡
2 + 𝑑𝑡

2 < 𝑎𝑡
2 + 𝑏𝑡

2

𝛿𝑡
𝑐𝑜𝑛 < 𝐾 𝑐𝑡

2 + 𝑑𝑡
2 ≤

𝐾 − 1

𝐾 + 1
𝑎𝑡
2 + 𝑏𝑡

2

}
𝑟𝑡 ≤ 𝑎𝑡

2 + 𝑏𝑡
2

𝑐𝑡
2 + 𝑑𝑡

2 ≤
𝐾 − 1

𝐾 + 1
𝑟𝑡

𝑟𝑡 > 0 Convex

Convex

Non-convex

𝛿𝑡
𝑐𝑜𝑛 < 𝐾, det 𝐽𝑡 > 0



Maximum convex subset

𝛼𝑗 = 𝑎𝑗 + 𝑖 ∙ 𝑏𝑗

𝑟𝑡 ≤ 𝑎𝑡
2 + 𝑏𝑡

2 𝑟𝑡 ≤ 𝑎𝑡 Convex

𝑡

Local frame

Local frame changes, 𝑎𝑡 changes.
Local frame is also a variable.



Optimization process
• Objective function: 
•LSCM: 𝐸 = σ𝑡Area(𝑡) ∙ (𝑐𝑡

2 + 𝑑𝑡
2)

•ARAP: 𝐸 = σ𝑡Area(𝑡) ∙ 𝑎𝑡 − 1 2 + 𝑏𝑡
2 + 𝑐𝑡

2 + 𝑑𝑡
2

• Optimization:
• Fix the local frame on each triangle: Second-Order Cone Programming;
•Update local frame to let 𝑏𝑡 = 0.

𝐽𝑡 =
𝑎𝑡 + 𝑐𝑡 𝑑𝑡 − 𝑏𝑡
𝑑𝑡 + 𝑏𝑡 𝑎𝑡 − 𝑐𝑡

𝛿𝑚𝑎𝑥
𝑐𝑜𝑛 = 26.98

Time: 4.03s

1. How to choose K?
2. The speed is slow.



Known 𝑈 and 𝑉
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• Signed singular value decomposition:
• 𝐽𝑖 = 𝑈𝑖𝑆𝑖𝑉𝑖

𝑇

•𝑈𝑖 and 𝑉𝑖 are two rotation matrices
• 𝑆𝑖 = diag 𝜎𝑖,1, 𝜎𝑖,2, 𝜎𝑖,3 , 𝜎𝑖,1 ≥ 𝜎𝑖,2 ≥ 𝜎𝑖,3

• Observation:
• 𝑆𝑖 = 𝑈𝑖

𝑇𝐽𝑖𝑉𝑖
• if 𝑈𝑖 and 𝑉𝑖 are known, 𝑆𝑖 is a linear vector function w.r.t vertex 

positions.
•Bounded conformal distortion constraint

• 𝜏 𝐽𝑖 = 𝜎𝑖,1/𝜎𝑖,3 ≤ 𝐾 become linear inequality constraint.

• Problem: how to get 𝑈𝑖 and 𝑉𝑖?

Aigerman, Noam, and Yaron Lipman. "Injective and bounded distortion mappings in 3D." ACM Transactions on Graphics (TOG) 32.4 (2013): 1-14.



Pipeline
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Results
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• A small number of iterations
•< 10 iterations

• Quadratic programming is time-consuming
• Set 𝐾?



Area-based methods



Total unsigned area
• Signed area 𝑆𝑡 of a triangle 𝑡
• Unsigned area 𝑈𝑡 of a triangle 𝑡

• Facts for any 2D triangulation or 3D tetrahedron 𝒯:
•Total signed area σ𝑡 𝑆𝑡 = Area(𝒯)
•Total unsigned area σ𝑡𝑈𝑡 ≥ Area 𝒯
•𝒯 is flip-free iff σ𝑡𝑈𝑡 = Area(𝒯)

• Optimizing total unsigned area for achieving flip-free 
mappings.

Xu, Yin, et al. "Embedding a triangular graph within a given boundary." Computer Aided Geometric Design 28.6 (2011): 349-356.



Failure reasons
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• It is not smooth, considered as a function of the embedding
•TUA exhibits a 𝐶1 discontinuity as a vertex moves across the 

supporting line of its opposite edge in a triangle.

• While any injective embedding achieves the global minimum 
of TUA, the inverse is not true
• the triangulation containing degenerate elements is a global minimum 

of TUA but a non-injective embedding 

• TUA has zero gradients with respect to any vertex 
surrounded by a ring of consistently oriented triangles.

Du, Xingyi, et al. "Lifting simplices to find injectivity." ACM Trans. Graph. 39.4 (2020): 120.



Total lifted content
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෍

𝑡

1

𝑑!
det(𝑋𝑇𝑋 + 𝛼 ෨𝑋𝑇 ෨𝑋)

• 𝑋: a 𝑑 × 𝑑 matrix whose column vectors are the edge vectors 
from one vertex to the other 𝑑 vertices.

• Thus, det(𝑋𝑇𝑋) = 𝑈𝑡.
• ෨𝑋: similar to 𝑋, but from an auxiliary simplex, such as an 

equilateral triangles or tetrahedra of the same size as the input.
• TLC becomes TUA when 𝛼 = 0.



Properties of TLC
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• TLC is smooth over the entire space 

• TLC has only an injective global minimum for sufficiently 
small values of 𝛼.



Results
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Different representations



Affine transformation
• Key observation:  the parameter space is a 2D triangulation, 

uniquely defined by all the AFFINE TRANSFORAMTIONS 
on the triangles.

• Edge assembly constraints:
𝐽𝑖(𝑣𝑎 − 𝑣𝑏) = 𝐽𝑗(𝑣𝑎 − 𝑣𝑏)

Fu, Xiao-Ming, and Yang Liu. "Computing inversion-free mappings by simplex assembly." ACM Transactions on Graphics (TOG) 35.6 (2016): 1-12.

𝑡𝑖

𝑡𝑗

𝑣𝑎 𝑣𝑏



Key idea
• Disassembly + Assembly

• Treat affine transformation as 
variables

• Unconstrained optimization

(a) (b)

(c) (d)



Unconstrained optimization problem

min
𝐽1,…,𝐽𝑁
𝑇1,…,𝑇𝑁

𝜆𝐸𝑎𝑠𝑠𝑒𝑚𝑏𝑙𝑦 + 𝐸𝐶 + 𝜇𝐸𝑚

𝐸𝑎𝑠𝑠𝑒𝑚𝑏𝑙𝑦:  summation of squares of 
edge, assembly constraints.

𝐸𝐶 : Barrier function on distortion

𝐸𝑚: users’ designed energy

Disassembly: project 
initial 𝐴𝑖

0 into feasible 
space.

𝜆k+1 = min 𝜆min ∙ max
𝐸𝐶,𝑘 + 𝜇𝐸𝑚,𝑘

𝐸𝑎𝑠𝑠𝑒𝑚𝑏𝑙𝑦,𝑘
, 1 , 𝜆m𝑎𝑥

1. 𝐸𝑎𝑠𝑠𝑒𝑚𝑏𝑙𝑦 dominates the energy, approach zero;
2. 𝜆m𝑎𝑥: avoid large distortion.

Assembly: unconstrained 
optimization. 





Angles
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• 2D: Angle-based flattening
• 3D: Dihedral Angle-based Maps of Tetrahedral Meshes

Paillé, Gilles-Philippe, et al. "Dihedral angle-based maps of tetrahedral meshes." ACM Transactions on Graphics (TOG) 34.4 (2015): 1-10.
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