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Computing flip-free mappings
with flip-free initializations



Problem definition -

High distortion ~ Low distortion



General solution

* Key idea:
* Starting from a flip-free initialization
* Keeping mappings always staying in the flip-free space

 Dimalin.
Pipeline: /\ Termination conditions

Generating a flip- Computing Performing line search l Outout

free initialization x, descent direction d Xiy1 < X; +ad P

d: the main difference  a: the flip-free
between methods. constraint is always
satisfied.

Fu, Xiao-Ming, et al. "Inversion-free geometric mapping construction: A survey." Computational Visual Media 7.3 (2021): 289-318.



Barrier functions

* Barrier functions diverge to infinity when elements
become degenerate, thus inhibiting flips.

* Auxiliary barrier
* log of the determinant

* Distortion metrics
* explode near degeneracies
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Descent directions

* Most approaches use a local quadratic approximation of the
objective function E:

E(x) = E(x) + (x — x)TVE (x;) + (x — x)THy (x — x;)
e E(x) is an osculating convex quadric approximation to E at x;.

* The minimization of E(x) determines descent direction d.

. Thg difference between the various methods lies in the choice
of E(x)

* More precisely, the choice of its proxy matrix H;.



Three rough categories

* First-order methods
* Only first derivatives
* Do not directly use second-order derivatives

* Quasi-Newton methods
* [teratively update H; to approximate second derivatives
* Using just differences in gradients and variables

* Newton-type methods

* Exploit expensive second-order derivative information



Line search

* Theoretical guarantee
* Each triangle has a positive area

* The triangle Au,u,u; becomes degenerate

when its signed area becomes zero:
(u; +vya) — (U +v1a)] _

det (uz + vya) — (uy +via)l 0
* It is quadratic in .
* The max step size for this triangle 4 via

= the smallest positive root.
* The max step size for all triangles
= the minimum parameter over all triangles .



Termination conditions

* The gradient is small ||VE|| < e.

* The absolute or relative error in energy and/or position are
small.

* A fixed number of iterations.



First-order



Block coordinate descent >

e BCD solver

* Optimization problem
min F(xq, X5, ..., Xp)

X
xX=(x,%5, .., %) EQ =0y X O, X+ X, SR"

X = {Bl Bz, ,Bm}

I t |
Fu X M, Liu Y, Guo B. Computing locally injective mappings by advanced MIPS[J]. ACM Transac tions on Graphics (TOG), 2015, 34(4): 1-12.




Inexact BCD vs. exact BCD

* Solver of subproblem

E2D exact BCD inexact BCD
- - mips 3.0 : e

Exact: solve it until convergence o

avooo— 2.5

' 4
: = 420
Inexact: one step of gradient descent ] é
" 6 21,31 aeen ;
[Bonettini 2011], [Tappenden et al. ] =S Y //“ S 15
2013], [Cassioli et al. 2013], [Xu and BN S \:”LA/\(W /\
Yin 2013] ... o] &
exact BCD

Efficiency: less computation T -
Lower objectives: not be trapped - fiiter

by local minimum easily



Inexact BCD for MIPS

* Initialization
* convex combinatorial mapping for parameterization
* Flip-free mesh for deformation, improvement

* Blocks of variables
* parallelization (Graph coloring)

* Vertex updating

*one step of gradient descent

* Stopping condition



Quadratic proxy

* Objective function: f(x) = h(x) + g(x)
*h(x) = %xTHx
* h(x) is a quadratic function.

*fntP)=h(yn+p)+9Qn+p)

*p is the descent direction.

*fn+P) = h(yn+P)+ 9 ) +Vg(n)'p
* Tayler expansion of g(y,, + p)

* Computingp: Vf(y,+Pp) =Hy, +p) +Vg(Qyn) =0
Hp = —-Hy, —Vg(y,) =-Vf(yn)

Kovalsky S Z, Galun M, Lipman Y. Accelerated quadratic proxy for geometric optimization[J]. ACM Transac tions on Graphics (TOG), 2016, 35(4): 1-11.
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Accelerated quadratic proxy

Algorithm 1: Accelerated Quadratic Proxy (AQP)

Data: feasible initialization X ; parameter 7

X 1 —=Xp—=X3,

1—/1/7 .
o1+ 1/n ’
while not converged do
/+ Acceleration
Y, = (1+0)Xn_1 —0Xn_2;

/+* Quadratic proxy minimization
p, =argmin, h(y, +p)+g(y,) + Vg(y,)p
s.t. Ap=0

/* Line search
| X, = linesearch g<;<1 f(y, +tp,,)
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Results
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Scalable Locally Injective Mappings

* Objective function ), Area(4;) D(J;)
* E.g., symmetric Dirichlet D(J,) = ||J:|z + |lJ; %

. 2
* The proxy function: ||Wtk([t — Rk)”F
» W[: matrix weight
* k: iteration number
* R¥: the projected matrix from JF~1 to the rotation matrix space

+ Condition: V,||W£(J, — R¥)||% = v,,D(J)
7AW TW( = R = R)T) = (WTW + WWT)( = R) = 7,D()
1

W = (% V,D(H([J — R)‘1>

Rabinovich M, Poranne R, Panozzo D, et al. Scalable locally injective mappings[J]. ACM Transac tions on Graphics (TOG), 2017, 36(4): 1.
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Scalable Locally Injective Mappings

Computing rPerforming

RF Lline search
Updating Mlnlmlzmg Y \wkq, - Rk)” Computing descent

Wtk to get p direction d¥ = pk — xk-1

19




Results -
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Quasi-Newton



L-BFGS

* Secant equation:

1
f(x) ~ f(xn+1) + Vf(xn+1)T(x - xn+1) + E (x - xn+1)THn+1(x - xn+1)

Vi(Xns1) + Hpp1 (X — Xn41) = Vf(xp)
Hpy1(Xny1 — x3) = Vf(xpy1) — VI (xy)
sn: difference in positions, y,,: difference in gradients

Hyy1Sn =Y Sn = Dns1Yn Dpyq = _-l%l
 Rank-two modification
YnsT\' YnSn.  SnSn
Dn+1: I — T Dn(l_ T )+ T
SnYn SnYn SnYn

* Descent direction
dyi1 = _Dn+1‘7f(xn+1)



BCQN

* In mesh-based mappings, the Laplacian L is often a much
more effective proxy than the L-BFGS secant version.

* Near distorted triangles, y,, = Vf(x,+1) — Vf(x;,) may introduce
spurious coupling or have badly scaled values.

*Ls, = L(x,+1 — X,;) would be the better behaved than y,,.
* Replacing y,, with Ls,,.
* To achieve the super-linear convergence of L-BFGS near
the solution:
Yn < (1 _ ,Bn)yn + .BnLSn
Extensive testing to determine .

Zhu Y, Bridson R, Kaufman D M. Blended cured quasi-newton for distortion optimization[J]. ACM Transactions on Graphics (TOG), 2018, 37(4): 1-14.
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Second-order



Overview

* Second-order methods generally can achieve the most
rapid convergence.

* But require the costly assembly, factorization, and
backsolve of new linear systems per step.

* Second-order methods use the energy Hessian, VE to
form a proxy matrix H.
* Work for convex energies.

* Require modification for non-convex energies to ensure that H is at
least positive semi-definite to achieve a descent direction.

* General solution: add small multiples of the identity
* generally damp convergence too much



Overview

* The common objective form: );; D;
* Sum over all locally individual elements (triangle or tetrahedra).

* The global Hessian matrix of the objective function is
constructed from the element Hessian matrix.

* As long as the Hessian matrices of all elements are PSD,
then the global Hessian matrix is PSD.

* Thus, most second-order methods locally modify the
element Hessian matrices

H+=ZHt+
t

the dimensions of H; are far lower than H™.

27



Projected Newton

* Eigendecomposition on per-element Hessian V2D,

A, 0 0
VD, =V|0 A 0 |VT
0 0 A

* Clamps all negative eigenvalues to zero to project per-
element Hessian to the PSD H; .

* Shortcomings:
* eigendecomposition is time-consuming.

* Goal of the next methods:
« analytically achieve H; .



Analytic Eigensystem

* The majority of distortion energies used in geometry optimization
are isotropic and can be expressed using the following invariants:
* Polar decomposition: J; = R;S;
* The first invariant I; sums one-dimensional stretches: I; = tr(S;) = ),; 7;
« I, is the Frobenius squared norm of J;: I, = ||S;||? = ¥; 6/
* The third invariant I3 encodes the volume change: I = det(S;) = Il;0;

* Example: Dapap(Je) = Xi(0; — 1)? =1, — 2I; +d
* Closed-form expressions for the eigensystems for invariants

* systematically derive the eigensystems of any isotropic energy.
* these systems can be used to project energy Hessian to PSD analytically.

Smith B, Goes F D, Kim T. Analytic eigensystems for isotropic distortion energies[J]. ACM Transactions on Graphics (TOG), 2019, 38(1): 1-15.
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Problem

* Energy form:
f(x) = z hi (g; () = Z(hi 0g;)(x),f:R" - R h:R¥ - R, g;: R" — R¥

* Convex-concave decompositions:

h; = hi + h;,g; = g{ + g7 with hj" convex and the vector-valued functions g; convex in
each of their coordinates and, respectively, h; and g; concave.

* Example:

. _ a; bl) _llai+di _llai—di
Given J; = <Ci d; ,we set @; = - ¢ — b, and B; = 2L, + by |
Then, we have: 0 = |la;ll; + [|Bill2 and o = lla;ll2 — [l ;-

Finally, g; = (01;02);92_ = (lla;llz + 115l IIaiIIz),gz = (0,—IB:ll2)
Symmetric Dirichlet energy: h; (gi (x)) = Area(t;)(of + 07 + 07 % + 05 %) is convex with
respect to 0y,0, > 0, thus h; = h}.

Shtengel A, Poranne R, Sorkine-Hornung O, et al. Geometric optimization via composite majorization[J]. ACM Trans. Graph., 2017, 36(4): 38:1-38:11.
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Majorization-Minimization

* Majorization Minimization (MM)
* at each iteration, fitting a convex surrogate upper bound, called a
majorizer, which is minimized to drive the objective function downbhill.

*replacing a difficult optimization with a sequence of simpler optimizations.

* Given a scalar function r:
The majorizer at xo: 7(x; xp) = 1 (x) + v~ (xg) + Vr~(xy) (x — x;)
The minorizer at xy: r(x; xo) =1~ (x) + r*(xy) + Vr(xy)(x — x;)
* 7 (1) satisfies:

* It is a convex (concave) function.

* It coincides with 7 up to first order( i.e., value and first derivative) at x = x,,.
* It is a global majorizer (minorizer) of r: r(x; xo) < r (x) < 7(x; x), VX.

* A natural idea: approximate Hessian to be the Hessian of the
convex majorizer.
31



A convex majorizer

* A convex majorizer to f centered at a general point x:
Fxx0) = ) Rillgil(x x0); 91 (x0))

h; is a majorizer of h; centered at g;(x,) and [g;](x; x,) is a vector function whose entries are
either majorizers or minorizers of g; centered at x,.

For one entry g; ; of g;, we define:

‘

[gi,j](xi Xg) = A

\

Proof: sz(x Xy) =

gi,j (x; xO)

9:,;(x; x0)

] \72h+a +Z]

agl]

 (%); 9i(x0)) 2 0

9%, ,
F(gi (x);9i(x)) <0
LJ

(gl (X) gz(xo)) =0
Vig; E(gi (x);9i(x0)) <0

32



Log Energy vs. Iterations

Log Energy vs. Time

100 150 200 0 40 60 80 100 0 100 200 300 400 500 O 40 60

20 20
Iteration Iteration Iteration Iteration
0 10 20 30 40 50 60 0 20 40 60 80 100 0 5 10 15 20 25 0 20 40 60 80 100
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Progressive Parameterizations
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Parameterized mesh MP

Liu L, Ye C, Ni R, et al. Progressive parameterizations[J]. ACM Trans. Graph., 2018, 37(4): 41:1-41:12.

Existing methods choose the
triangles f; of input mesh M
as reference triangles. The
energy is numerically difficult
to optimize, leading to
numerous iterations and
high computational costs.
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Motivation

lfD(fir,fip) < K, Vi, only a few
iterations in the optimization of
E(M", MP) are necessary.

E(MT,MP)

Two iterations

Goal: find a triangle between f;
and f” as the reference f;" that
satisfies D(fir,fl-p) <K.

35




New reference triangles

* Exponential function :
Ji(t) = Udiag(af, T))V;
where J; = U;diag(o;, 7))V,
* Bounded distortion:
D(f7 f7) = (o7 + 072 + 22 +172) /4 < K

It is strictly increasing w.r.t t.

* Maximize the guidance of reference triangle:
(ot + o072 + 12t + 172 /4 =K

Newton-Raphson method

36



Construction of new reference



Pipeline -

Input: a 3D
triangular mesh +
initialization

Construct new Update Final Output 2D
references Parameterization Optimization parameterization




Hybrid solver

* SLIM [Rabinovich et al. 2017]

* A reweighting scheme
* Pros: effectively penalize the maximum distortion
* Cons: a poor convergence rate

* CM [Shtengel et al. 2017]

* Pros: converge quickly
* Cons: cannot reduce large distortion quickly

* Hybrid
* First perform SLIM solver
* Then use the CM solver

39



Results >

log(E(M, MP))

5
4
3
2
A b
0 o
0 10 20 30 40 50 60
°I (f) #iter
5
4
3
o -]
1
: I ] ? 0 20 40 60 80 100 120 140
a) Initialization C ime
Initializati b) SLIM AKVF Ti

40



Connectivity-updated methods



Formulation

E(u,T)=E;u,T)+E.(uw)+ Ep(u,T)
Distortion energy:

Eqw,T) = Xi(oy — 1)?+(0; — 1)?
Position constraints:

E.(u) = Xillu; — pill?

Barrier functions:

E b (u,T) = X —log(Ar)

Jin'Y, Huang J, Tong R. Remeshing-assisted optimization for locally injective mappings[C]//Computer Graphics Forum. 2014, 33(5): 269-279.
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Remeshing

E(u,7)=E;uT)+E.(u) + Ep,(u,T)

— VE|l ol oo
AbC: EbC_Eb Cond(E) — ” ”E” ”
Ape> NEp, cond(E,.) > cond(E,.)

The = {Acbd:Acab} g_}pc = {Adab»Adca}

At > O: t € {Adab: Adca}
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Remeshing
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ARAP Energy Deformation
for the Woody Shape
(Without Flip v.s. With Flip)
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