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Computing flip-free mappings 
with flip-free initializations



Problem definition
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High distortion Low distortion

?



General solution
• Key idea: 
• Starting from a flip-free initialization
•Keeping mappings always staying in the flip-free space

• Pipeline:

Fu, Xiao-Ming, et al. "Inversion-free geometric mapping construction: A survey." Computational Visual Media 7.3 (2021): 289-318.

Generating a flip-
free initialization 𝒙0

Computing 
descent direction 𝒅

Performing line search 
𝒙𝑖+1 ← 𝒙𝑖 + 𝛼𝒅

Output

Termination conditions

𝛼: the flip-free 
constraint is always 
satisfied.

𝒅: the main difference 
between methods.



Barrier functions
• Barrier functions diverge to infinity when elements 

become degenerate, thus inhibiting flips.
• Auxiliary barrier
• log of the determinant

• Distortion metrics
• explode near degeneracies

•MIPS: 
𝜎1

𝜎2
+

𝜎2

𝜎1
=

𝜎1
2+𝜎2

2

𝜎1𝜎2
=

𝐽𝑡 𝐹
2

det 𝐽𝑡

Degenerate 
triangle 𝑡

det 𝐽𝑡 → 0 MIPS → ∞



Descent directions
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• Most approaches use a local quadratic approximation of the 
objective function 𝐸:
෨𝐸 𝒙 = 𝐸 𝒙𝑖 + 𝒙 − 𝒙𝑖

𝑇∇𝐸 𝒙𝑖 +
1

2
𝒙 − 𝒙𝑖

𝑇𝐻𝑖(𝒙 − 𝒙𝑖)

• ෨𝐸 𝒙 is an osculating convex quadric approximation to 𝐸 at 𝒙𝑖 .
• The minimization of ෨𝐸 𝒙 determines descent direction 𝒅.
• The difference between the various methods lies in the choice 

of ෨𝐸 𝒙
• More precisely, the choice of its proxy matrix 𝐻𝑖.



Three rough categories
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• First-order methods
•Only first derivatives
•Do not directly use second-order derivatives

• Quasi-Newton methods
• Iteratively update 𝐻𝑖 to approximate second derivatives
•Using just differences in gradients and variables

• Newton-type methods
•Exploit expensive second-order derivative information



Line search
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• Theoretical guarantee
•Each triangle has a positive area

• The triangle ∆𝒖1𝒖2𝒖3 becomes degenerate 
when its signed area becomes zero:

det
𝒖2 + 𝒗2𝛼 − (𝒖1 + 𝒗1𝛼)
(𝒖3 + 𝒗2𝛼) − (𝒖1 + 𝒗1𝛼)

= 0

• It is quadratic in 𝛼.
• The max step size for this triangle 
= the smallest positive root.
• The max step size for all triangles
= the minimum parameter over all triangles .

𝒖1

𝒖2 𝒖3

𝒗1𝛼

𝒗2𝛼

𝒗3𝛼



Termination conditions
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• The gradient is small ∇𝐸 ≤ 𝜀.
• The absolute or relative error in energy and/or position are 

small.
• A fixed number of iterations.



First-order



Block coordinate descent
• BCD solver
• Optimization problem

min
𝒙

𝐹(𝑥1, 𝑥2, … , 𝑥𝑛)

𝒙 = 𝑥1, 𝑥2, … , 𝑥𝑛 ∈ Ω = Ω1 × Ω2 ×⋯× Ω𝑚 ⊆ ℝ𝑛

𝒙 = {𝐵1, 𝐵2, … , 𝐵𝑚}

Fu X M, Liu Y, Guo B. Computing locally injective mappings by advanced MIPS[J]. ACM Transactions on Graphics (TOG), 2015, 34(4): 1-12.

Initial guess
Solve convex subproblems iteratively, 

𝑙 = 1,… ,𝑚:
min
𝐵𝑙

𝐹(𝐵1
𝑘 , … , 𝐵𝑙−1

𝑘 , 𝐵𝑙 , 𝐵𝑙+1
𝑘−1, … , 𝐵𝑚

𝑘−1)

Converge

multi-convex



Inexact BCD vs. exact BCD
• Solver of subproblem

Exact: solve it until convergence

Inexact: one step of gradient descent
[Bonettini 2011], [Tappenden et al. 
2013], [Cassioli et al. 2013], [Xu and 
Yin 2013] ...

Efficiency: less computation 
Lower objectives: not be trapped 
by local minimum easily

𝜹𝒂𝒗𝒈
𝒄𝒐𝒏 = 𝟏. 𝟑𝟏 𝜹𝒂𝒗𝒈

𝒄𝒐𝒏

= 𝟏. 𝟐𝟏



Inexact BCD for MIPS
• Initialization
• convex combinatorial mapping for parameterization
• Flip-free mesh for deformation, improvement

• Blocks of variables
•parallelization (Graph coloring)

• Vertex updating
• one step of gradient descent

• Stopping condition



Quadratic proxy
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• Objective function: 𝑓(𝒙) = ℎ(𝒙) + 𝑔(𝒙)

• ℎ(𝒙) =
1

2
𝒙𝑇𝐻𝒙

•ℎ(𝒙) is a quadratic function. 

• 𝑓(𝒚𝑛 + 𝒑) = ℎ(𝒚𝑛 + 𝒑) + 𝑔(𝒚𝑛 + 𝒑)
•𝒑 is the descent direction.

• 𝑓(𝒚𝑛 + 𝒑) ≈ ℎ(𝒚𝑛 + 𝒑) + 𝑔(𝑦𝑛 ) + ∇𝑔 𝑦𝑛
𝑇𝑝

•Tayler expansion of 𝑔(𝒚𝑛 + 𝒑)

• Computing 𝒑: ∇𝑓(𝒚𝑛 + 𝒑) = 𝐻(𝒚𝑛 + 𝒑) + ∇𝑔(𝒚𝑛 ) = 0
𝐻𝒑 = −𝐻𝒚𝑛 − ∇𝑔(𝒚𝑛 ) = −∇𝑓(𝒚𝑛 )

Kovalsky S Z, Galun M, Lipman Y. Accelerated quadratic proxy for geometric optimization[J]. ACM Transactions on Graphics (TOG), 2016, 35(4): 1-11.



Accelerated quadratic proxy
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Results
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Scalable Locally Injective Mappings
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• Objective function σArea(𝐴𝑡) 𝐷(𝐽𝑡)
•E.g., symmetric Dirichlet 𝐷 𝐽𝑡 = 𝐽𝑡 𝐹

2 + 𝐽𝑡
−1

𝐹
2

• The proxy function: 𝑊𝑡
𝑘(𝐽𝑡 − 𝑅𝑘)

𝐹

2

•𝑊𝑡
𝑘: matrix weight

•𝑘: iteration number
•𝑅𝑘 : the projected matrix from 𝐽𝑡

𝑘−1 to the rotation matrix space

• Condition: ∇𝐽𝑡 𝑊𝑡
𝑘(𝐽𝑡 − 𝑅𝑘)

𝐹

2
= ∇𝐽𝑡𝐷 𝐽𝑡

𝛻𝐽tr 𝑊
𝑇𝑊 𝐽 − 𝑅 𝐽 − 𝑅 𝑇 = 𝑊𝑇𝑊+𝑊𝑊𝑇 𝐽 − 𝑅 = 𝛻𝐽𝐷 𝐽

𝑊 =
1

2
𝛻𝐽𝐷 𝐽 𝐽 − 𝑅 −1

Τ1 2

Rabinovich M, Poranne R, Panozzo D, et al. Scalable locally injective mappings[J]. ACM Transactions on Graphics (TOG), 2017, 36(4): 1.



Scalable Locally Injective Mappings
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Computing 
𝑅𝑘

Updating 
𝑊𝑡

𝑘
Minimizing σ𝑡 𝑊𝑡

𝑘(𝐽𝑡 − 𝑅𝑘)
𝐹

2

to get 𝒑𝑘
Computing descent 
direction 𝒅𝑘 = 𝒑𝑘 − 𝒙𝑘−1

Performing 
line search



Results
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Quasi-Newton



L-BFGS
• Secant equation:

𝑓 𝒙 ≈ 𝑓 𝒙𝑛+1 + 𝛻𝑓 𝒙𝑛+1
𝑇 𝒙 − 𝒙𝑛+1 +

1

2
𝒙 − 𝒙𝑛+1

𝑇𝐻𝑛+1 𝒙 − 𝒙𝑛+1

𝛻𝑓 𝒙𝑛+1 +𝐻𝑛+1 𝒙𝑛 − 𝒙𝑛+1 = 𝛻𝑓 𝒙𝑛
𝐻𝑛+1 𝒙𝑛+1 − 𝒙𝑛 = 𝛻𝑓 𝒙𝑛+1 − 𝛻𝑓 𝒙𝑛

𝒔𝑛: difference in positions, 𝒚𝑛: difference in gradients
𝐻𝑛+1𝒔𝑛 = 𝒚𝑛, 𝒔𝑛 = 𝐷𝑛+1𝒚𝑛, 𝐷𝑛+1 = 𝐻𝑛+1

−1

• Rank-two modification

𝐷𝑛+1 = 𝐼 −
𝒚𝑛𝒔𝑛

𝑇

𝒔𝑛
𝑇𝒚𝑛

𝑇

𝐷𝑛(𝐼 −
𝒚𝑛𝒔𝑛

𝑇

𝒔𝑛
𝑇𝒚𝑛

) +
𝒔𝑛𝒔𝑛

𝑇

𝒔𝑛
𝑇𝒚𝑛

• Descent direction 
𝒅𝑛+1 = −𝐷𝑛+1𝛻𝑓 𝒙𝑛+1



BCQN
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• In mesh-based mappings, the Laplacian 𝐿 is often a much 
more effective proxy than the L-BFGS secant version.
•Near distorted triangles, 𝒚𝑛 = 𝛻𝑓 𝒙𝑛+1 − 𝛻𝑓 𝒙𝑛 may introduce 

spurious coupling or have badly scaled values.
•𝐿𝒔𝑛 = 𝐿(𝒙𝑛+1 − 𝒙𝑛) would be the better behaved than 𝒚𝑛.
•Replacing 𝒚𝑛 with 𝐿𝒔𝑛.

• To achieve the super-linear convergence of L-BFGS near 
the solution:

𝒚𝑛 ← 1 − 𝛽𝑛 𝒚𝑛 + 𝛽𝑛𝐿𝒔𝑛

Extensive testing to determine 𝛽𝑛.

Zhu Y, Bridson R, Kaufman D M. Blended cured quasi-newton for distortion optimization[J]. ACM Transactions on Graphics (TOG), 2018, 37(4): 1-14.



Results

24



Second-order



Overview
• Second-order methods generally can achieve the most 

rapid convergence.
• But require the costly assembly, factorization, and 

backsolve of new linear systems per step.
• Second-order methods use the energy Hessian, ∇2𝐸 to 

form a proxy matrix 𝐻.
•Work for convex energies.
•Require modification for non-convex energies to ensure that 𝐻 is at 

least positive semi-definite to achieve a descent direction.

• General solution: add small multiples of the identity
• generally damp convergence too much



Overview
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• The common objective form: σ𝑡𝐷𝑡
• Sum over all locally individual elements (triangle or tetrahedra). 

• The global Hessian matrix of the objective function is 
constructed from the element Hessian matrix.

• As long as the Hessian matrices of all elements are PSD, 
then the global Hessian matrix is PSD. 

• Thus, most second-order methods locally modify the 
element Hessian matrices

𝐻+ =෍

𝑡

𝐻𝑡
+

the dimensions of 𝐻𝑡
+ are far lower than 𝐻+.



Projected Newton
• Eigendecomposition on per-element Hessian ∇2𝐷𝑡:

∇2𝐷𝑡 = 𝑉

𝜆1 0 0
0 𝜆1 0
0 0 𝜆3

𝑉𝑇

• Clamps all negative eigenvalues to zero to project per-
element Hessian to the PSD 𝐻𝑡

+.
• Shortcomings:
• eigendecomposition is time-consuming. 

• Goal of the next methods:
• analytically achieve 𝐻𝑡

+. 



Analytic Eigensystem
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• The majority of distortion energies used in geometry optimization 
are isotropic and can be expressed using the following invariants:
• Polar decomposition: 𝐽𝑡 = 𝑅𝑡𝑆𝑡
• The first invariant 𝐼1 sums one-dimensional stretches: 𝐼1 = tr 𝑆𝑡 = σ𝑖 𝜎𝑖
• 𝐼2 is the Frobenius squared norm of 𝐽𝑡: 𝐼2 = 𝑆𝑡

2 = σ𝑖 𝜎𝑖
2

• The third invariant 𝐼3 encodes the volume change: 𝐼3 = det(𝑆𝑡) = Π𝑖𝜎𝑖

• Example: 𝐷ARAP 𝐽𝑡 = σ𝑖 𝜎𝑖 − 1 2 = 𝐼2 − 2𝐼1 + 𝑑

• Closed-form expressions for the eigensystems for invariants
• systematically derive the eigensystems of any isotropic energy.
• these systems can be used to project energy Hessian to PSD analytically.

Smith B, Goes F D, Kim T. Analytic eigensystems for isotropic distortion energies[J]. ACM Transactions on Graphics (TOG), 2019, 38(1): 1-15.



Problem
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• Energy form:
𝑓 𝒙 =෍

𝑖

ℎ𝑖 𝒈𝑖 𝒙 =෍

𝑖

ℎ𝑖 ∘ 𝒈𝑖 𝒙 , 𝑓: ℝ𝑛 ⟶ℝ,ℎ𝑖: ℝ
𝑘 ⟶ ℝ,𝒈𝑖: ℝ

𝑛 ⟶ℝ𝑘

• Convex-concave decompositions: 
ℎ𝑖 = ℎ𝑖

+ + ℎ𝑖
_, 𝒈𝑖 = 𝒈𝑖

+ + 𝒈𝑖
_ with ℎ𝑖

+ convex and the vector-valued functions 𝒈𝑖
+ convex in 

each of their coordinates and, respectively, ℎ𝑖
_ and 𝒈𝑖

_ concave.

• Example: 

Given 𝐽𝑖 =
𝑎𝑖 𝑏𝑖
𝑐𝑖 𝑑𝑖

, we set 𝛼𝑖 =
1

2

𝑎𝑖 + 𝑑𝑖
𝑐𝑖 − 𝑏𝑖

and 𝛽𝑖 =
1

2

𝑎𝑖 − 𝑑𝑖
𝑐𝑖 + 𝑏𝑖

. 

Then, we have: 𝜎1 = 𝛼𝑖 2 + 𝛽𝑖 2 and 𝜎2 = 𝛼𝑖 2 − 𝛽𝑖 2.

Finally, 𝒈𝑖 = 𝜎1, 𝜎2 , 𝒈𝑖
+ = 𝛼𝑖 2 + 𝛽𝑖 2, 𝛼𝑖 2 , 𝒈𝑖

_ = (0,− 𝛽𝑖 2)

Symmetric Dirichlet energy: ℎ𝑖 𝒈𝑖 𝒙 = Area(𝑡𝑖)(𝜎1
2 + 𝜎2

2 + 𝜎1
−2 + 𝜎2

−2) is convex with 
respect to 𝜎1, 𝜎2 > 0, thus ℎ𝑖 = ℎ𝑖

+.

Shtengel A, Poranne R, Sorkine-Hornung O, et al. Geometric optimization via composite majorization[J]. ACM Trans. Graph., 2017, 36(4): 38:1-38:11.



Majorization-Minimization 
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• Majorization Minimization (MM)
• at each iteration, fitting a convex surrogate upper bound, called a 

majorizer, which is minimized to drive the objective function downhill.
• replacing a difficult optimization with a sequence of simpler optimizations.

• Given a scalar function 𝑟:
The majorizer at 𝒙0: 𝑟 𝒙; 𝒙0 = 𝑟+ 𝒙 + 𝑟− 𝒙0 + 𝛻𝑟− 𝒙0 𝒙 − 𝒙0
The minorizer at 𝒙0: 𝑟 𝒙; 𝒙0 = 𝑟− 𝒙 + 𝑟+ 𝒙0 + 𝛻𝑟+ 𝒙0 𝒙 − 𝒙0

• 𝑟 (𝑟) satisfies:
• It is a convex (concave) function.
• It coincides with 𝑟 up to first order( i.e. , value and first derivative) at 𝒙 = 𝒙0.
• It is a global majorizer (minorizer) of 𝑟: 𝑟 𝒙; 𝒙0 ≤ 𝑟 𝑥 ≤ 𝑟 𝒙; 𝒙0 , ∀𝒙.

• A natural idea: approximate Hessian to be the Hessian of the 
convex majorizer.



A convex majorizer

32

• A convex majorizer to 𝑓 centered at a general point 𝒙0:
𝑓 𝒙; 𝒙0 =෍

𝑖

ℎ𝑖 𝒈𝑖 𝒙; 𝒙0 ; 𝒈𝑖(𝒙0)

ℎ𝑖 is a majorizer of ℎ𝑖 centered at 𝒈𝑖(𝒙0) and 𝒈𝑖 𝒙; 𝒙0 is a vector function whose entries are 
either majorizers or minorizers of 𝒈𝑖 centered at 𝒙0.

For one entry 𝑔𝑖,𝑗 of 𝒈𝑖 , we define:

𝑔𝑖,𝑗 𝒙; 𝒙0 =
𝑔
𝑖,𝑗

𝒙; 𝒙0
𝜕ℎ𝑖

𝜕𝑔𝑖,𝑗
(𝒈𝑖 𝒙 ;𝒈𝑖(𝒙0)) ≥ 0

𝑔𝑖,𝑗 𝒙; 𝒙0
𝜕ℎ𝑖

𝜕𝑔𝑖,𝑗
(𝒈𝑖 𝒙 ; 𝒈𝑖(𝒙0)) < 0

, 

Proof: 𝛻𝒙
2𝑓 𝒙; 𝒙0 =

𝜕 𝒈 𝑇

𝜕𝒙
𝛻2ℎ+

𝜕 𝒈

𝜕𝒙
+ σ𝑗

𝜕ℎ

𝜕𝑔𝑖,𝑗

𝛻2𝑔𝑗
+ 𝜕ℎ𝑖

𝜕𝑔𝑖,𝑗
(𝒈𝑖 𝒙 ; 𝒈𝑖(𝒙0)) ≥ 0

𝛻2𝑔𝑗
− 𝜕ℎ𝑖

𝜕𝑔𝑖,𝑗
(𝒈𝑖 𝒙 ; 𝒈𝑖(𝒙0)) < 0



Results
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Progressive Parameterizations

34Liu L, Ye C, Ni R, et al. Progressive parameterizations[J]. ACM Trans. Graph., 2018, 37(4): 41:1-41:12.

𝜙𝑖(𝒙) = 𝐽𝑖𝒙 + 𝒃𝑖

𝑓𝑖
𝑟 𝑓𝑖

𝑝

Reference 𝑀𝑟: A set of 
individual triangles Parameterized mesh 𝑀𝑝

Existing methods choose the 
triangles 𝑓𝑖 of input mesh 𝑀
as reference triangles. The 
energy is numerically difficult 
to optimize, leading to 
numerous iterations and 
high computational costs.



Motivation
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𝜙𝑖(𝒙) = 𝐽𝑖𝒙 + 𝒃𝑖

𝑓𝑖
𝑟 𝑓𝑖

𝑝

If 𝐷 𝑓𝑖
𝑟 , 𝑓𝑖

𝑝
≤ 𝐾, ∀𝑖, only a few 

iterations in the optimization of 
𝐸 𝑀𝑟 , 𝑀𝑝 are necessary.

Goal: find a triangle between 𝑓𝑖
and 𝑓𝑖

𝑝 as the reference 𝑓𝑖
𝑟 that 

satisfies 𝐷 𝑓𝑖
𝑟 , 𝑓𝑖

𝑝
≤ 𝐾.

𝐸 𝑀𝑟 , 𝑀𝑝

#iter

Two iterations



New reference triangles
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• Exponential function : 

𝐽𝑖 𝑡 = 𝑈𝑖diag(𝜎𝑖
𝑡, 𝜏𝑖

𝑡)𝑉𝑖
𝑇

where 𝐽𝑖 = 𝑈𝑖diag(𝜎𝑖 , 𝜏𝑖)𝑉𝑖
𝑇

• Bounded distortion:

𝐷 𝑓𝑖
𝑟 , 𝑓𝑖

𝑝
= Τ𝜎𝑖

2𝑡 + 𝜎𝑖
−2𝑡 + 𝜏𝑖

2𝑡 + 𝜏𝑖
−2𝑡 4 ≤ 𝐾

It is strictly increasing w.r.t 𝑡.

• Maximize the guidance of reference triangle: 

Τ𝜎𝑖
2𝑡 + 𝜎𝑖

−2𝑡 + 𝜏𝑖
2𝑡 + 𝜏𝑖

−2𝑡 4 = 𝐾

Newton-Raphson method

𝜙𝑖(𝒙) = 𝐽𝑖𝒙 + 𝒃𝑖

𝑓𝑖
𝑝
∈ 𝑀𝑝

𝑓𝑖 ∈ 𝑀 𝐽𝑖(𝑡)

𝑓𝑖
𝑟 ∈ 𝑀𝑟
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Pipeline
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Input: a 3D 
triangular mesh + 

initialization

Construct new 
references

Update 
Parameterization

Final 
Optimization

Output 2D 
parameterization



Hybrid solver
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• SLIM [Rabinovich et al. 2017]
•A reweighting scheme
•Pros: effectively penalize the maximum distortion
•Cons: a poor convergence rate

• CM [Shtengel et al. 2017]
•Pros: converge quickly
•Cons: cannot reduce large distortion quickly

• Hybrid 
• First perform SLIM solver
•Then use the CM solver



Results
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Connectivity-updated methods



Formulation

42Jin Y, Huang J, Tong R. Remeshing‐assisted optimization for locally injective mappings[C]//Computer Graphics Forum. 2014, 33(5): 269-279.

𝐸 𝑢, 𝒯 = 𝐸𝑑 𝑢, 𝒯 + 𝐸𝑐 𝑢 + 𝐸𝑏(𝑢, 𝒯)

Distortion energy:

𝐸𝑑 𝑢, 𝒯 = σ𝑡(𝜎1 − 1)2+(𝜎2 − 1)2

Position constraints:

𝐸𝑐 𝑢 = σ𝑖 𝑢𝑖 − 𝑝𝑖
2

Barrier functions:

𝐸_𝑏 (𝑢, 𝒯) = σ𝑡− log(𝐴𝑡)



Remeshing

43

𝐸 𝑢, 𝒯 = 𝐸𝑑 𝑢, 𝒯 + 𝐸𝑐 𝑢 + 𝐸𝑏(𝑢, 𝒯)

𝒯𝑏𝑐 = ∆𝑐𝑏𝑑, ∆𝑐𝑎𝑏 ത𝒯𝑏𝑐 = ∆𝑑𝑎𝑏, ∆𝑑𝑐𝑎

∆𝑏𝑐= 𝐸𝑏𝑐 − ത𝐸𝑏𝑐

∆𝑏𝑐> 𝜂𝐸𝑏𝑐

cond 𝐸 =
𝛻𝐸 ∞ 𝑢 ∞

𝐸

cond 𝐸𝑏𝑐 > cond ത𝐸𝑏𝑐

𝐴𝑡 > 0, 𝑡 ∈ ∆𝑑𝑎𝑏, ∆𝑑𝑐𝑎
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谢 谢 ！


