

傅孝明 中国科学技术大学

Atlas generation

Texture Mapping

• Texture mapping is a method for defining high frequency detail, surface texture, or color information on a computer-generated graphic or 3D model.

• Requires defining a **mapping** from the model space to the texture space.

Model Space

Texture Space

Generation process

Mesh Cutting

- Low distortion
- As short as possible length

Seams introduce filtering artifacts

High-resolution texture

Parameterizations

- Bijective
- Low isometric distortion

Packing

• High packing efficiency

Packing

• High packing efficiency

Applications

- Signal storage
- Geometric processing

Mesh cutting

- Points \rightarrow Paths
- Segmentation

Distortion points

- Iterative method
 - Parameterize the mesh to the plane.
 - Add the point of greatest isometric distortion.

Segmentation

• Goal: mesh segmentation into compact charts that unfold with minimal distortion

Proxy

- Devlopable surfaces of constant slope
- Constant angle between surface normal and axis
- Proxy: < axis, angle >, < N_c , θ_c >

Fitting error

- Measures how well triangle fits a chart $F(C,t) = (N_c \cdot n_t cos\theta_c)^2$
- Combine with compactness

$$C(C,t) = \frac{\pi D(S_c,t)^2}{A_c}$$

 $\checkmark S_c$ is the seed triangle of the given chart

- $\checkmark D(S_c, t)$ is the length of the shortest path (inside the chart) between the two triangles
- A_c is the area of chart C
- Cost function

$$Cost(C,t) = A_t F(C,t)^{\alpha} C(C,t)^{\beta}$$

Segmentation method

- Lloyd algorithm
 - 1. Select random triangles to act as seeds
 - 2. Grow charts around seeds using a greedy approach
 - 3. Find new proxy for each chart
 - 4. Repeat from step 2 until convergence
- K-means
- CVT

Packing

Packing efficiency (PE)

Packing efficiency (PE)

Maximizing atlas packing efficiency is NP-hard! [Garey and Johnson 1979; Milenkovic 1999]

Other requirements

High Distortion

Low Distortion

Other requirements

6

- Low distortion
 - [Golla et al. 2018; Liu et al. 2018; Shtengel et al. 2017; Zhu et al. 2018]
- Consistent orientation
 - [Floater 2003; Tutte 1963; Claici et al. 2017; Hormann and Greiner 2000; Rabinovich et al. 2017; Schüller et al. 2013]
- Overlap free
 - [Jiang et al. 2017; Smith and Schaefer 2015]
- Low boundary length
 - [Li et al. 2018; Poranne et al. 2017; Sorkine et al. 2002]

These methods do not consider PE!

Previous work

Box Cutter [Limper et al. 2018] D.

No guarantee for a high PE result!

Packing problems

Irregular shapes Hard to achieve high PE Rectangles Simple to achieve high PE Widely used in practice

Axis-aligned structure

Axis-aligned structure

Rectangle decomposition

High PE (87.6%)!

General Cases

Higher distortion

Distortion Reduction

Bounded PE

PolyAtlas: Atlas Refinement with Bounded Packing Efficiency

Submitted to ACM SIGGRAPH 2019

ID: 339

• Input

Single chart With overlap 10 charts Without overlap

Direction vector Ambiguous rotating directions

Fail!

Clear rotating direction

Input

Target polar angle

• Energy of boundary alignment

6

• Energy of isometric distortion(symmetric Dirichlet)

$$E_{d}(c) = \frac{1}{4} \sum_{f_{i} \in F^{C}} \frac{\operatorname{Area}(f_{i})}{\operatorname{Area}(M^{C})} (\|J_{i}\|_{F}^{2} + \|J_{i}^{-1}\|_{F}^{2})$$

Keep low distortion and orientation consistency.

0.2X Playback

Rectangle Decomposition and Packing

The faces are all rectangles. But the number is too many.

Rectangle Decomposition and Packing

Motorcycle graph algorithm

Distortion Reduction

[Jiang et al. 2017]

Distortion reduction

Benchmark (5,588)

Benchmark (5,588)

