

傅孝明 中国科学技术大学

Art design

Peeling art

Computational Peeling Art Design

https://www.youtube.com/watch?v=JIOUHAkQdc4

NOW I'VE SEEN EVERYTHING

Popular art form

Peeling art examples

Problem: cut generation

complex, tedious, time consuming

Peeling art design problem

Challenges

- Non-trivial to optimize the similarity
- Unsuitable input shape

Existing work: cut generation

- Minimum spanning tree method [Chai et al. 2018; Sheffer 2002; Sheffer and Hart 2002]
- Mesh segmentation approaches [Julius et al. 2005; Lévy et al. 2002; Sander et al. 2002, 2003; Zhang et al. 2005; Zhou et al. 2004]
- Simultaneous optimization [Li et al. 2018; Poranne et al.2017]
- Variational method [Sharp and Crane 2018]

unfolded shapes *≠* **input shapes**

Our approach

Key idea

Mapping computation

Two goals:1. Low isometric distortion2. Area of *R* approaches zero

$$\min E_{iso}(S^m, S) + wE_{shr}(R)$$

Isometric energy

• ARAP distortion metric [Liu et al. 2008]

$$E_{iso}(S^{m}, S) = \sum_{i=1}^{N_{f}} Area(f_{i})||J_{i} - R_{i}||_{F}^{2}$$

 R_i is an orthogonal matrix

Shrink energy

• Our novel rank-one energy $E_{shr}(R) = \sum_{i=1}^{N_{R_f}} Area(t_i) ||J_i - B_i||_F^2$ $B_i \text{ is a rank one matrix}$

- Other choices
 - Frobenius energy $||J_i||_F^2$
 - Determinant energy $det(J_i)$

Suitable input

Unsuitable input

Iterative interaction

Interaction place

Interaction 1: shape augmentation

Interaction 2: part deletion

Interaction 3: angle augmentation

Mode 3: Angle augmentation

Interaction 4: curvature reduction

Interaction 5: pre-processing

Interaction 5: pre-processing

Input with specify area

Unprocessed: high distortion

Processed: low distortion

Cut generation

Real peeling

Real peeling

Drawing graticule

0 × playback

Shapes designed by Yoshihiro Okada 👩

Comparison to Yoshihiro Okada

Okada's

Eagle

Dove

Shrimp

anes Deci \mathbf{n} playback

Our results

Papercraft

Developable Surfaces

Zero Gaussian curvature

Developable Surfaces

Ship hulls

Clothing

Origami

Architecture

Goal

Not globally developable

Piecewise developable approximation Small number of patches High similarity

Challenges

• Determining the numbers, placements and shapes of patches under the developability and similarity constraints

Related Work

Segmentation-based

[Shatz et al. 2006]

[lon et al. 2020]

Pro: explicit patches

Con: large approximation error

Deformation-based

[Stein et al. 2018] [Binninger et al. 2021]

Pro: seam curves

Con: no explicit patch layouts

Method – Deformation

Edge-oriented Developability

The Gauss map degenerates if the determinant condition is satisfied

Edge-oriented Developability

U

- Weaker than the definition in [Stein et al. 2018]
- Some special examples satisfy our edge-oriented definition directly

Deformation Optimization

Challenges:

• Highly nonlinear

Auxiliary variables

• Hard to minimize

Deformation Energy – Developability

n, .

$$E_{dev} = \sum_{ij \in \mathcal{E}} \left(\|[\mathbf{n}_{ij}, \mathbf{n}_{ki}, \mathbf{n}_{il}] - P_r([\mathbf{n}_{ij}, \mathbf{n}_{ki}, \mathbf{n}_{il}])\|_F^2 + \\\|[\mathbf{n}_{ij}, \mathbf{n}_{jk}, \mathbf{n}_{lj}] - P_r([\mathbf{n}_{ij}, \mathbf{n}_{jk}, \mathbf{n}_{lj}])\|_F^2 \right) + \\\sum_{ijk \in \mathcal{F}} \|[\mathbf{n}_{ij}, \mathbf{n}_{jk}, \mathbf{n}_{ki}] - P_r([\mathbf{n}_{ij}, \mathbf{n}_{jk}, \mathbf{n}_{ki}])\|_F^2 \\ The projection to the rank-two matrix space$$

Deformation Energy – Approximation

$$E_{app} = \sum_{i \in \mathcal{V}} \|\mathbf{v}_i - \mathbf{P}_v(\mathbf{v}_i)\|_2^2$$

The projection to
the input mesh

Deformation Energy – Distortion

$$E_{\text{dis}} = E_{\text{shape}} + \omega_{\text{sim}} E_{\text{sim}}$$

$$E_{\text{shape}} = \frac{1}{2} \sum_{ij \in \mathcal{E}} \|\mathbf{e}_{ij} - s_{ij} R_{ij} \mathbf{e}_{ij}^{0}\|_{2}^{2} + \|\mathbf{n}_{jil} - R_{ij} U_{ij}^{\top} \mathbf{n}_{jil}^{0}\|_{2}^{2} \right)$$

$$\mathbf{n}_{ij} = R_{ij} \mathbf{n}_{ij}^{0}$$

$$\mathbf{n}_{ijk} = R_{ij} U_{ij} \mathbf{n}_{ijk}^{0}$$

Deformation optimization

repeat

$$\begin{split} & P_r(\cdot) \leftarrow \mathsf{UpdatePr}(A), \forall A \in \mathcal{A}_{ij}; \\ & R_{ij} \leftarrow \mathsf{UpdateR}(\mathbf{v}_i, s_{ij}, U_{ij}, \mathbf{n}_{ijk}, P_r(\cdot)); \\ & U_{ij} \leftarrow \mathsf{UpdateU}(R_{ij}, \mathbf{n}_{ijk}); \\ & P_v(\cdot) \leftarrow \mathsf{UpdatePv}(\mathbf{v}_i); \\ & \mathbf{v}_i \leftarrow \mathsf{UpdateV}(s_{ij}, R_{ij}, P_v(\cdot)); \\ & \mathbf{n}_{ijk} \leftarrow \mathsf{UpdateN}(U_{ij}, R_{ij}); \\ & s_{ij} \leftarrow \mathsf{UpdateS}(\mathbf{v}_i, R_{ij}); \\ & k \leftarrow k + 1; \end{split}$$

until k < N;

Method – Segmentation

Segmentation – Coarse partition

Segmentation algorithm Step-by-step in [Tong et al. 2020]

Segmentation – Patch merging

Minimum area P_{min}

 $P = \arg \min_{P \in \mathcal{P}_{\min}} Str(P, P_{\min})$ Straightness

 $Len(P, P_{min}) > \epsilon_{len} \qquad Length \\ Cur(P, P_{min}) < \epsilon_{cur} \qquad Curvature$

Iterative strategy

 $N_p = 103$

Method – Refinement

- Small approximation error
- Smooth patches
- Smooth seam curves

Method – Refinement

- Method in [lon et al. 2020]: DOG projection The distance to \mathcal{M}_d
- Developability
- Smoothness
- Seam smoothness
- Connectedness

Cut overlaps

More Examples

Comparisons

Comparisons

Fabrication

Fabrication

