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Meshing
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Remeshing

* Given a 3D mesh, compute another mesh, whose elements
satisfy some quality requirements, while approximating
the input acceptably.
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Target mesh types ¢

Triangle Quad Tet Hex



Quality metrics

* Different applications imply different quality criteria and
requirements.

* Mesh quality
* Sampling density
* Regularity
*Size
* Orientation
* Alignment
* Shape of the mesh elements.
* Non-topological issues (mesh repair)



Local Structure

* Element shape
* Isometric
* Anisotropic

Anisotropic Isotropic



Local Structure

* Element density
* uniform VS. nonuniform or adaptive
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Local Structure

* Element alignment and orientation

* elements should align to sharp features
* orientation of anisotropic elements
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Global structure -

* Vertex

* Regular
* Valence = 6 for triangle mesh
* Valence = 4 for quad mesh

* Irregular (singular)

e Global

* Irregular
* Semiregular

* regular subdivision of a c
* Highly regular

* most vertices are regular
* Regular

* all vertices are regular

[rregular Semiregular Regular



Method overview

* Delaunay triangulation / Voronoi diagram
* Advancing front

* Local operators

* Parameterization-based methods

* Topology structure optimization

[ ]
LN 3

11



Parameterization-based method

_

* It is easy to perform
meshing/remeshing in
the parameter domain.
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Requirements of parameterizations

* Low distortion
* keeping shapes from the parameter domains

e Cuts

* parameterization-based method requires cut paths
*visit at least twice
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Isotropic triangular meshing -

* Target: regular triangles

* Keeping closeness
* projection onto the input surfaces
* time-consuming
* may be incorrect for small-scale features
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Key observation

* Remeshing on the plane
*no projection

*the Euclidean distance approximates the geodesic

distance when the
parameterizations is nearly isometric
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Using planar parameterizations

* Cut the input surface to be disk topology
* Compute parameterizations

* Remesh the parameterized domain

* Project back to the input surface
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Anisotropic remeshing

* Input:
* Domain: Q
* Metric field: , Q

* X positive-definite matrix

* Isotropic remeshing
* All edge lengths are as equal as possible.

* Anisotropic remeshing
* All edge lengths with metric are as equal as possible.



Metric

* A metric on a set is a function (called the distance function or
simply distance)

>< — O, (0.0
where 0, o is the set of non-negative real numbers.
e Forall , |, , the following conditions are satisfied:
* Non-negativity or separation axiom
. , =0
* Identity of indiscernibles
. ’ =0 =
* Symmetry

* Subadditivity or triangle inequality
. =+



Metric

* Conditions 1 and 2 together define a positive-definite function.
* The first condition is implied by the others.

* In practice, the metric can be represented by a positive-definite
symmetric X  matrix

* Given a , its decomposition to IS hon-unique.



Length

* Given the metric field and an open curve Q, the
length of is defined as the integration of the length of
tangent vector along the curve with metric

* The anisotropic distance ,  between two points
and can be defined as the length of the (possibly non-
unique) shortest curve (assuming line segment) that
connects, and
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Input examples
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Q = 2D square, Q = 3D surface,
= Hessian of given = mesh curvature

Q = 3D cube,
= given tensor field
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Anisotropic remeshing

* Eigen-decomposition: =
e Transformation ® = 172

* The quality metrics are measured in the transformed
space.
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transforms simplex to isotropic space




Key observation

* Key idea: convert anisotropic meshing to isotropic meshing
through parameterization/mapping

* Two common mappings:

* Conformal mapping
e Uniformization Theorem

* any surface admits a Riemannian metric of a constant Gaussian curvature,
which is conformal to the original one.

* High-dim isometric embedding
* Nash embedding theorem

* every Riemannian manifold can be isometrically embedded into some high-
dimensional (high-d) Euclidean space

* In such high-d embedding space, the metric is uniform and isotropic.

23



Using conformal parameterizations
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High-dim isometric embedding

* For an arbitrary metric field defined on the surface or
volume Q , there exists a high-d space < ,in
which Q can be embedded with Euclidean metric as Q

Max

1.0

25



Computing high-dim embedding

embedding + smooth
embedding: Mmeasure the rigidity, like ARAP

smooth: measure the smoothness of the embedding
Solver: local-global solver
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A 3D embedding from a 2D
domain with an anisotropic metric
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Pipeline and results
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Quad meshing ‘

* Higher accuracy
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Key observation




Pipeline
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Results
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All-hex meshing

* Fewer elements and higher accuracy
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Key observation

Tetrahedral Mesh Grid domain

All-Hex Mesh
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PolyCube-maps

(" PolyCube: )
1. Compact representations for closed
complex shapes

2. Boundary normal aligns to the axes.
3.Axes: *100 , 0,10 , 00,

\L_ J

é )
PolyCube-Map

1. A mesh-based map.
2. Inversion-free and low distortion.

\ J

Tetrahedral Mesh PolyCube



Results
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High-order meshes

* Meshes with high-order elements

]

bi A Bézier tetrahedron




VS. linear meshes

* Capture the boundary using much
fewer elements

* Higher solution accuracy for the FEM
simulation




Validity constraint

* The Bézier map is bijective
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Deforming linear meshes

 Construct a coarse linear mesh

* Deform the coarse linear mesh to be curved using different
energies while keeping bijection.

3
U

A
R
AR
‘A:l 3&‘.4

7
%

Linear Curved

39



FRAEZLL%S

University of Science and Technology of China




