

GAMES 301: 第7讲

参数化应用 - 网格生成

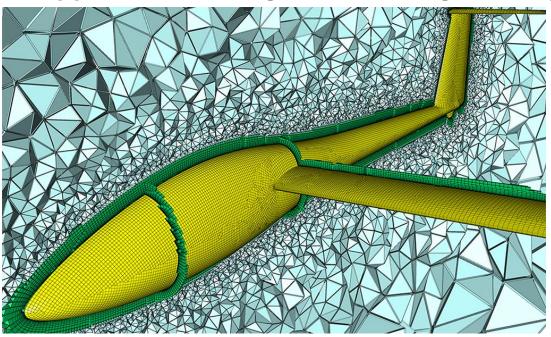
傅孝明 中国科学技术大学

Meshing

Meshing

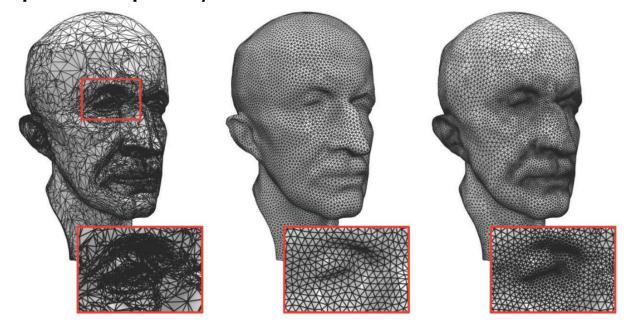
• Polygons or polyhedrons that connect in a series of lines and points to approximate a digital model's geometry.

• FEM

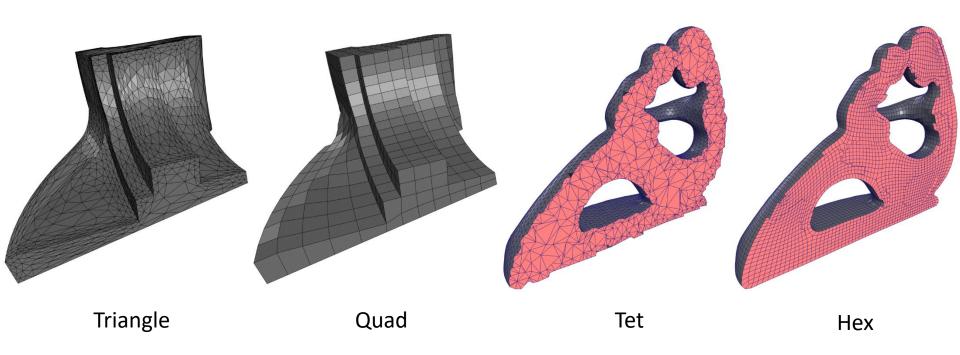


Remeshing

 Given a 3D mesh, compute another mesh, whose elements satisfy some quality requirements, while approximating the input acceptably.



Target mesh types

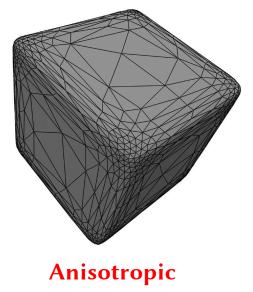


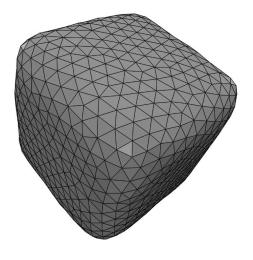
Quality metrics

- Different applications imply different quality criteria and requirements.
- Mesh quality
 - Sampling density
 - Regularity
 - Size
 - Orientation
 - Alignment
 - Shape of the mesh elements.
 - Non-topological issues (mesh repair)

Local Structure

- Element shape
 - Isometric
 - Anisotropic

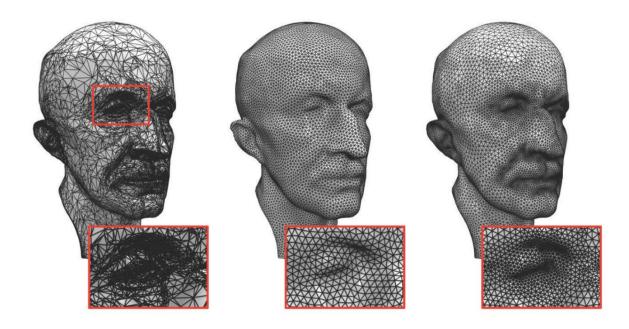




Isotropic

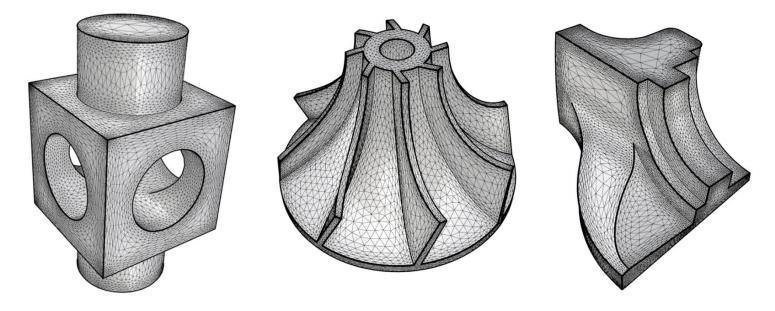
Local Structure

- Element density
 - uniform VS. nonuniform or adaptive



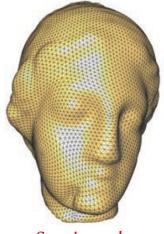
Local Structure

- Element alignment and orientation
 - elements should align to sharp features
 - orientation of anisotropic elements

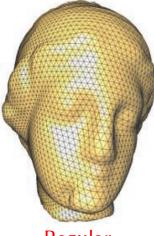


Global structure

- Vertex
 - Regular
 - Valence = 6 for triangle mesh
 - Valence = 4 for quad mesh
 - Irregular (singular)
- Global
 - Irregular
 - Semiregular
 - regular subdivision of a c
 - Highly regular
 - most vertices are regular
 - Regular
 - all vertices are regular



Semiregular



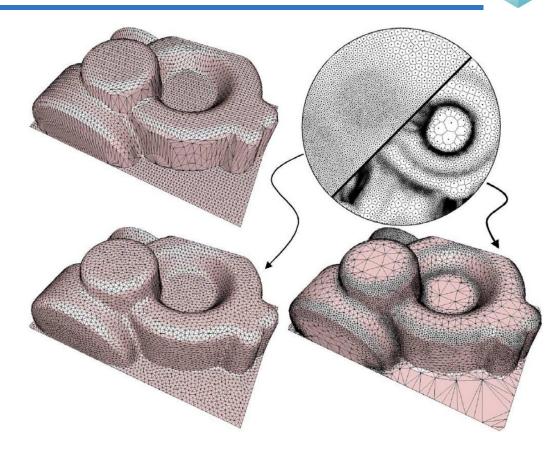
Regular

Method overview

- Delaunay triangulation / Voronoi diagram
- Advancing front
- Local operators
- Parameterization-based methods
- Topology structure optimization
-

Parameterization-based methods

• It is easy to perform meshing/remeshing in the parameter domain.

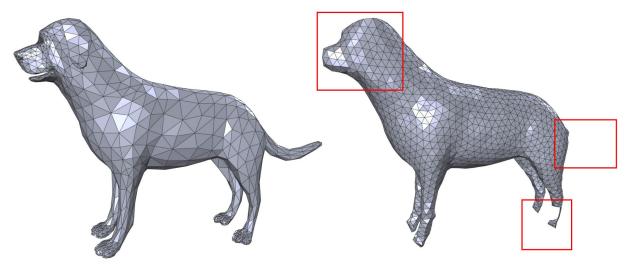


Requirements of parameterizations

- Low distortion
 - keeping shapes from the parameter domains
- Cuts
 - parameterization-based method requires cut paths
 - visit at least twice

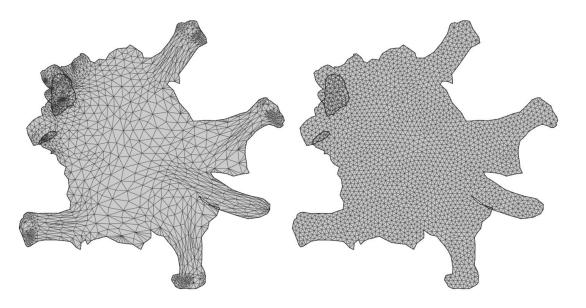
Isotropic triangular meshing

- Target: regular triangles
- Keeping closeness
 - projection onto the input surfaces
 - time-consuming
 - may be incorrect for small-scale features



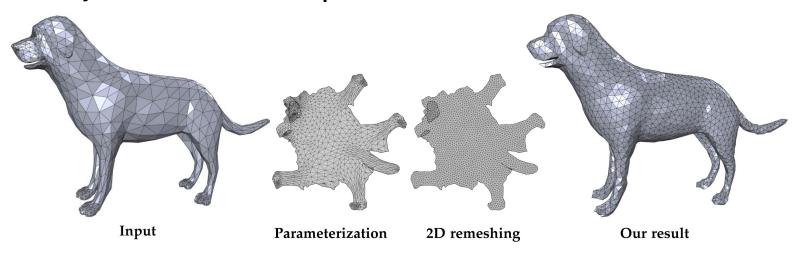
Key observation

- Remeshing on the plane
 - no projection
 - the Euclidean distance approximates the geodesic distance when the parameterizations is nearly isometric



Using planar parameterizations

- Cut the input surface to be disk topology
- Compute parameterizations
- Remesh the parameterized domain
- Project back to the input surface



Anisotropic remeshing

- Input:
 - Domain: $\Omega \in \mathbb{R}^d$
 - Metric field: M(x), $x \in \Omega$
 - $d \times d$ positive-definite matrix
- Isotropic remeshing
 - All edge lengths are as equal as possible.
- Anisotropic remeshing
 - All edge lengths with metric are as equal as possible.

Metric

• A metric on a set *X* is a function (called the distance function or simply distance)

$$d: X \times X \rightarrow [0, \infty)$$

where $[0, \infty)$ is the set of non-negative real numbers.

- For all $x, y, z \in X$, the following conditions are satisfied:
 - Non-negativity or separation axiom
 - $d(x, y) \ge 0$
 - Identity of indiscernibles
 - $d(x, y) = 0 \Leftrightarrow x = y$
 - Symmetry
 - $\bullet \ d(x,y) = d(y,x)$
 - Subadditivity or triangle inequality
 - $d(x,z) \le d(x,y) + d(y,z)$

Metric

- Conditions 1 and 2 together define a positive-definite function.
- The first condition is implied by the others.

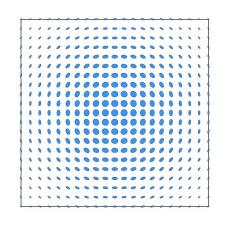
- In practice, the metric can be represented by a positive-definite symmetric $m \times m$ matrix M(x).
 - $\bullet M(x) = Q(x)^T Q(x).$
- Given a M(x), its decomposition to Q(x) is non-unique.

Length

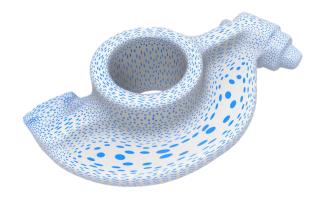
- Given the metric field M(x) and an open curve $C \subseteq \Omega$, the length of C is defined as the integration of the length of tangent vector along the curve C with metric M(x)
- The anisotropic distance $d_M(x, y)$ between two points x and y can be defined as the length of the (possibly non-unique) shortest curve (assuming line segment) that connects x and y.

$$\int_{0}^{\infty} \sqrt{(x-y)^{T}M(tx+(1-t)y)(x-y)}dt$$

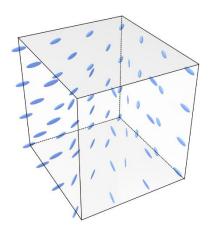
Input examples



 Ω = 2D square, M(p) = Hessian of given u



 $\Omega = 3D$ surface, M(p) = mesh curvature



 Ω = 3D cube, M(p) = given tensor field

Anisotropic remeshing

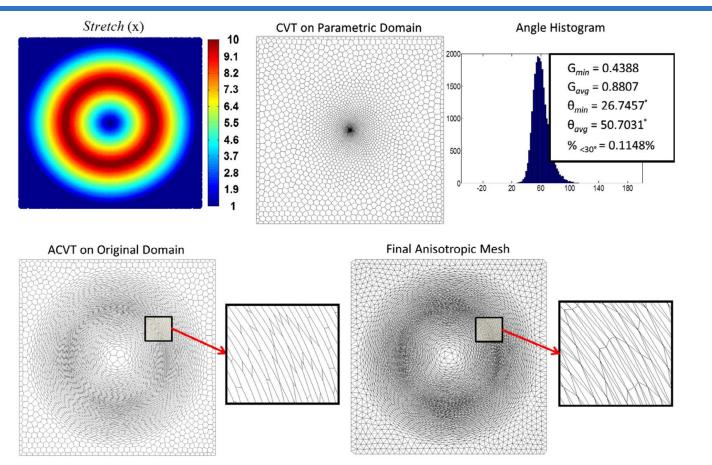
- Eigen-decomposition: $M(x) = U(x)\Lambda U(x)^T$
- Transformation $\Phi = \Lambda^{1/2} U(x)^T$
- The quality metrics are measured in the transformed space.

transforms simplex to isotropic space

Key observation

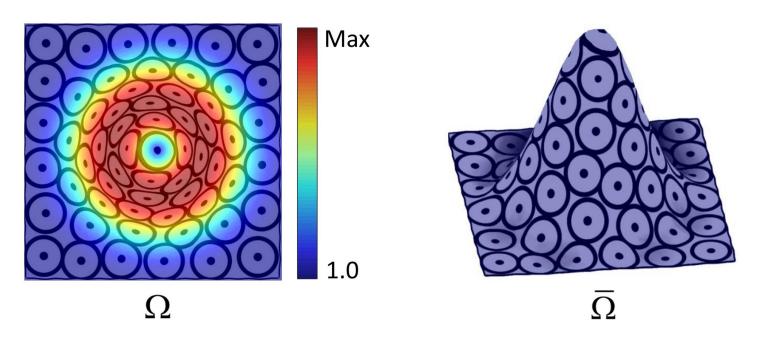
- Key idea: convert anisotropic meshing to isotropic meshing through parameterization/mapping
- Two common mappings:
 - Conformal mapping
 - Uniformization Theorem
 - any surface admits a Riemannian metric of a constant Gaussian curvature, which is conformal to the original one.
 - High-dim isometric embedding
 - Nash embedding theorem
 - every Riemannian manifold can be isometrically embedded into some high-dimensional (high-d) Euclidean space
 - In such high-d embedding space, the metric is uniform and isotropic.

Using conformal parameterizations



High-dim isometric embedding

• For an arbitrary metric field M(x) defined on the surface or volume $\Omega \subset R^m$, there exists a high-d space R^l (m < l), in which Ω can be embedded with Euclidean metric as $\overline{\Omega} \subset R^l$.



Computing high-dim embedding

 $E_{\text{embedding}} + \mu E_{\text{smooth}}$

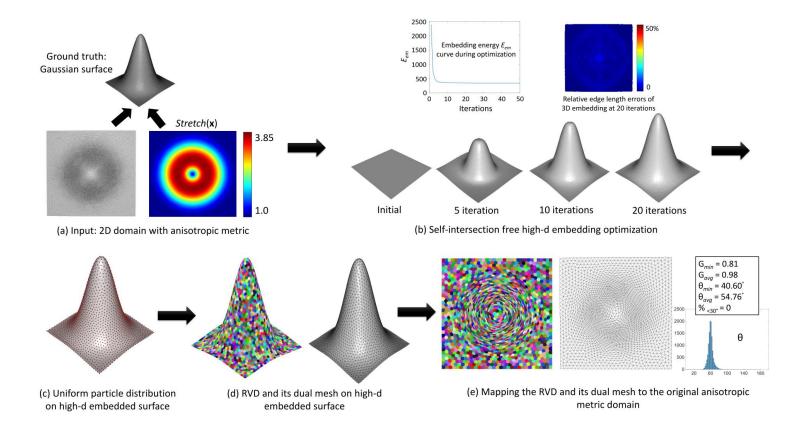
 $E_{\rm embedding}$: measure the rigidity, like ARAP

 $E_{\rm smooth}$: measure the smoothness of the embedding

Solver: local-global solver

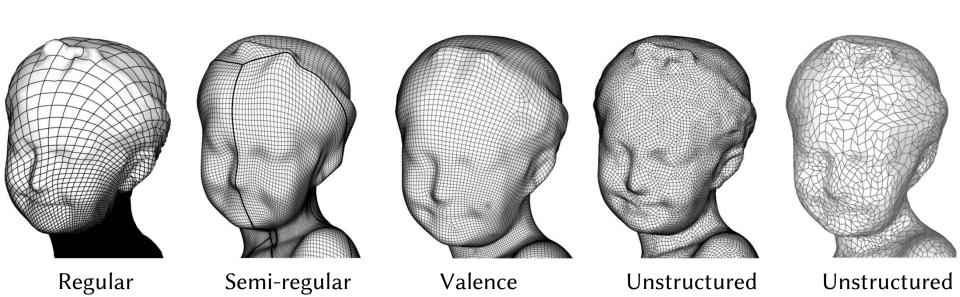
A 3D embedding from a 2D domain with an anisotropic metric

Pipeline and results



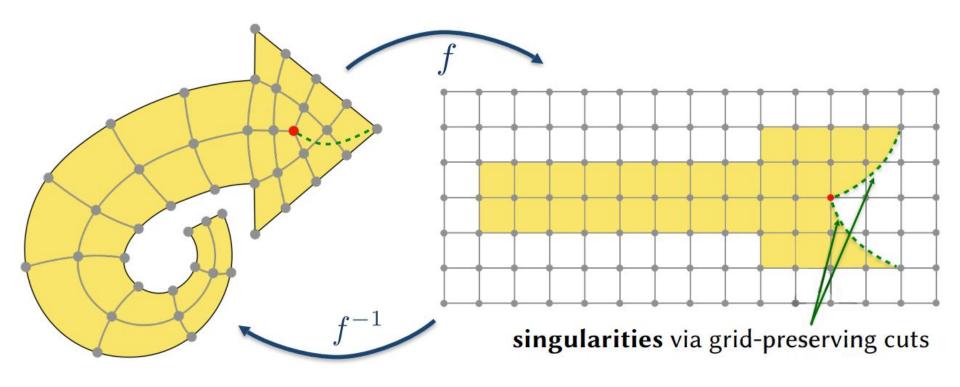
Quad meshing

Higher accuracy

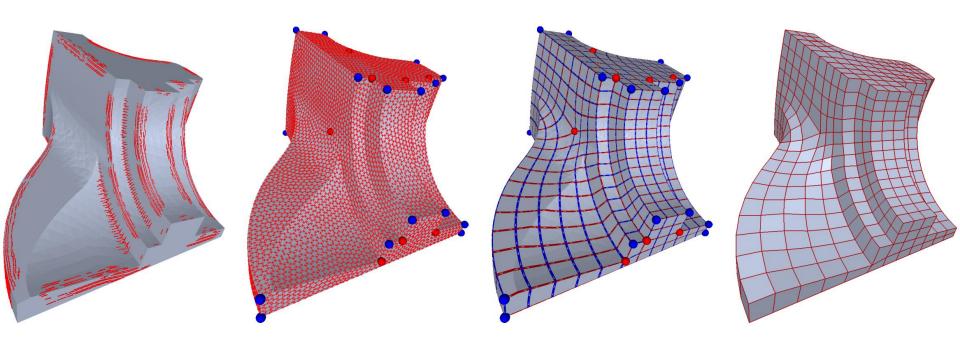


semi-regular

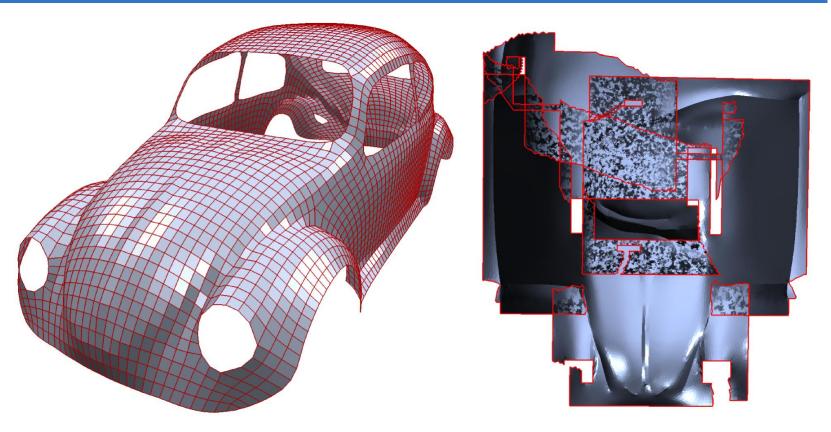
Key observation



Pipeline

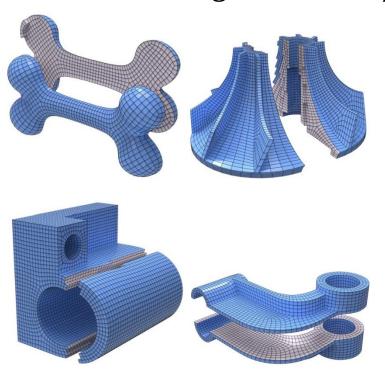


Results

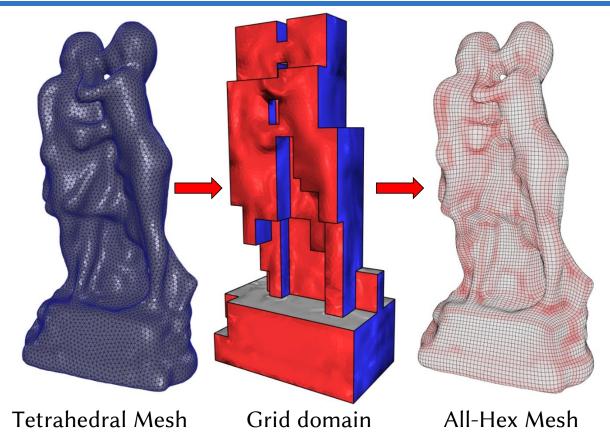


All-hex meshing

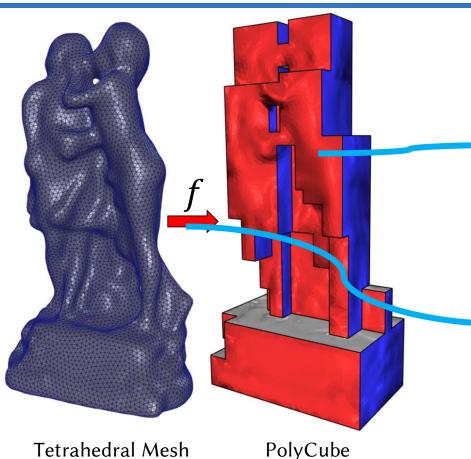
• Fewer elements and higher accuracy



Key observation



PolyCube-maps



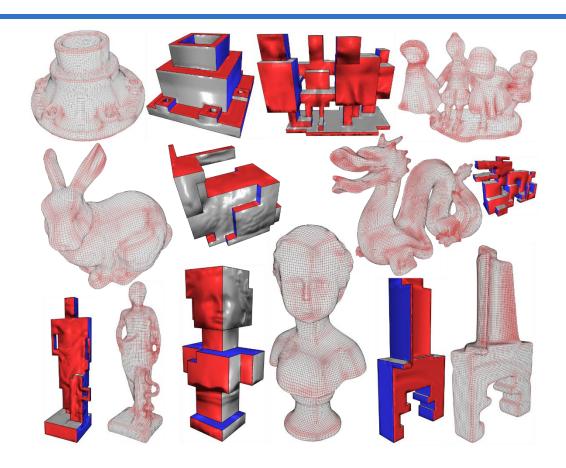
PolyCube:

- 1. Compact representations for closed complex shapes
- 2. Boundary normal aligns to the axes.
- 3. Axes: $(\pm 1,0,0)^T$, $(0,\pm 1,0)^T$, $(0,0,\pm 1)^T$.

PolyCube-Map *f*:

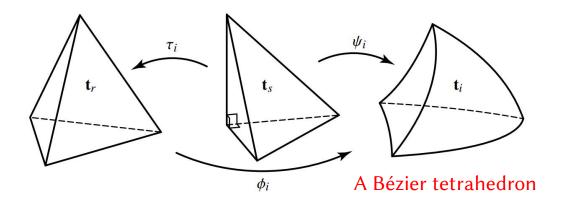
- 1. A mesh-based map.
- 2. Inversion-free and low distortion.

Results



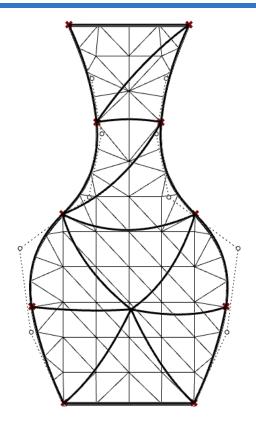
High-order meshes

Meshes with high-order elements



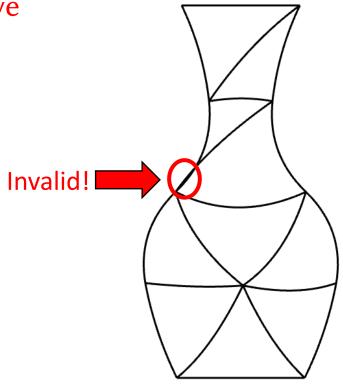
VS. linear meshes

- Capture the boundary using much fewer elements
- Higher solution accuracy for the FEM simulation



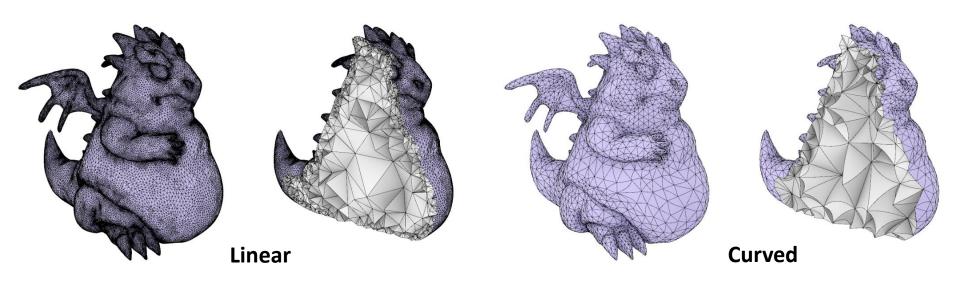
Validity constraint

• The Bézier map is bijective



Deforming linear meshes

- Construct a coarse linear mesh
- Deform the coarse linear mesh to be curved using different energies while keeping bijection.



谢谢!

