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Meshing



Meshing
• Polygons or polyhedrons that connect in a series of lines 

and points to approximate a digital model's geometry.
• FEM



Remeshing
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• Given a 3D mesh, compute another mesh, whose elements 
satisfy some quality requirements, while approximating 
the input acceptably.



Target mesh types
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Triangle Quad Tet Hex



Quality metrics
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• Different applications imply different quality criteria and 
requirements.

• Mesh quality
• Sampling density
• Regularity
• Size
• Orientation
• Alignment
• Shape of the mesh elements.
• Non-topological issues (mesh repair)



Local Structure
• Element shape

• Isometric
• Anisotropic

Anisotropic Isotropic



Local Structure
• Element density

• uniform VS. nonuniform or adaptive



Local Structure
• Element alignment and orientation

• elements should align to sharp features
• orientation of anisotropic elements



Global structure
• Vertex

• Regular
• Valence = 6 for triangle mesh
• Valence = 4 for quad mesh

• Irregular (singular)
• Global

• Irregular
• Semiregular

• regular subdivision of a coarse initial mesh
• Highly regular

• most vertices are regular
• Regular

• all vertices are regular

Semiregular RegularIrregular



Method overview
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• Delaunay triangulation / Voronoi diagram
• Advancing front
• Local operators
• Parameterization-based methods
• Topology structure optimization
• …..



Parameterization-based methods
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• It is easy to perform 
meshing/remeshing in 
the parameter domain.



Requirements of parameterizations 
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• Low distortion
• keeping shapes from the parameter domains 

• Cuts
• parameterization-based method requires cut paths
• visit at least twice



Isotropic triangular meshing
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• Target: regular triangles
•  Keeping closeness

• projection onto the input surfaces
• time-consuming
• may be incorrect for small-scale features



Key observation
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• Remeshing on the plane
• no projection
• the Euclidean distance approximates the geodesic distance when the 

parameterizations is nearly isometric



Using planar parameterizations
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• Cut the input surface to be disk topology
• Compute parameterizations
• Remesh the parameterized domain
• Project back to the input surface



Anisotropic remeshing
• Input:

• Domain: Ω ∈ ℝ�

• Metric field: � � ,   � ∈ Ω 
• � × � positive-definite matrix

• Isotropic remeshing
• All edge lengths are as equal as possible.

• Anisotropic remeshing
• All edge lengths with metric are as equal as possible.



Metric
• A metric on a set � is a function (called the distance function or 

simply distance)
�: � × � →  0,  ∞ 

where  0,  ∞  is the set of non-negative real numbers. 
• For all �, �, � ∈ �, the following conditions are satisfied:

•  Non-negativity or separation axiom
• � �, � ≥ 0

• Identity of indiscernibles
• � �, � = 0 ⟺ � = �

• Symmetry
• � �, � = � �, � 

• Subadditivity or triangle inequality
• � �, � ≤ � �, � + � �, � 



Metric
• Conditions 1 and 2 together define a positive-definite function. 
• The first condition is implied by the others.

• In practice, the metric can be represented by a positive-definite  
symmetric � × � matrix � � .
•� � = � � �� � .

• Given a � � , its decomposition to � �  is non-unique.



Length
• Given the metric field � �  and an open curve � ⊂ Ω, the 

length of � is defined as the integration of the length of 
tangent vector along the curve � with metric � � 

• The anisotropic distance �� �,  �  between two points � 
and � can be defined as the length of the (possibly non-
unique) shortest curve (assuming line segment) that 
connects � and �.

 
0

1

 � − � �� �� +  1 − � �  � − � ��



Input examples
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Ω = 2D square, 
� �  = Hessian of given �

Ω =  3D surface, 
� �  = mesh curvature

Ω = 3D cube, 
� �  = given tensor field



Anisotropic remeshing
• Eigen-decomposition: � � = � � �� � � 
• Transformation Φ = �1/2� � �

• The quality metrics are measured in the transformed 
space. 

Φ

transforms simplex to isotropic space



Key observation
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• Key idea: convert anisotropic meshing to isotropic meshing 
through parameterization/mapping

• Two common mappings:
• Conformal mapping

• Uniformization Theorem
• any surface admits a Riemannian metric of a constant Gaussian curvature, 

which is conformal to the original one.
• High-dim isometric embedding

• Nash embedding theorem
• every Riemannian manifold can be isometrically embedded into some high-

dimensional (high-d) Euclidean space
• In such high-d embedding space, the metric is uniform and isotropic.



Using conformal parameterizations
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High-dim isometric embedding
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• For an arbitrary metric field � �  defined on the surface or 
volume Ω ⊂ ��, there exists a high-d space ��  � < � , in 
which Ω can be embedded with Euclidean metric as Ω ⊂ ��.



Computing high-dim embedding
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�embedding + ��smooth
�embedding: measure the rigidity, like ARAP
�smooth: measure the smoothness of the embedding
Solver: local-global solver

A 3D embedding from a 2D 
domain with an anisotropic metric



Pipeline and results
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Quad meshing
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• Higher accuracy

Regular Semi-regular Valence 
semi-regular

Unstructured Unstructured



Key observation
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Pipeline
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Results
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All-hex meshing
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• Fewer elements and higher accuracy



Key observation
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Tetrahedral Mesh Grid domain All-Hex Mesh



PolyCube-maps

Tetrahedral Mesh PolyCube

PolyCube:
1. Compact representations for closed 
complex shapes
2. Boundary normal aligns to the axes.
3. Axes:  ±1,0,0 �,  0, ± 1,0 �,  0,0, ±
1 �.

PolyCube-Map �:
1. A mesh-based map.
2. Inversion-free and low distortion.

�



Results
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High-order meshes
• Meshes with high-order elements

A Bézier tetrahedron



VS. linear meshes
• Capture the boundary using much 

fewer elements
• Higher solution accuracy for the FEM 

simulation 



Validity constraint
• The Bézier map is bijective

Invalid! 



Deforming linear meshes
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• Construct a coarse linear mesh
• Deform the coarse linear mesh to be curved using different 

energies while keeping bijection.

Linear Curved
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