

GAMES 301: 第10讲

共形参数化1 Spin变换、Circle填充 & 共轭调和函数

- 1. Introduction to conformal mapping
- 2. Differential of conformal mapping
- 3. Spin transformations
- 4. Circle packing and circle patterns
- 5. Conjugate harmonic functions

Introduction to conformal mapping

Angle-based flattening (ABF)

- Key observation: the parameterized triangles are uniquely defined by all the angles at the corners of the triangles.
 - Find angles instead of uv coordinates.
 - Use angles to reconstruct uv coordinates.
- Angel preservation:
 - Interior vertex:

$$\beta_i^{jk} = \frac{\alpha_i^{jk} \cdot 2\pi}{\sum_i \alpha_i^{jk}}.$$

- Boundary vertex:

$$\beta_i^{jk} = \alpha_i^{jk}.$$

Angle-based flattening (ABF)

• Least square optimization:

S

Least-square conformal mapping (LSCM)

1)

Least-square conformal mapping (LSCM)

Lévy, Bruno, et al. "Least squares conformal maps for automatic texture atlas generation." ACM transactions on graphics (TOG) 21.3 (2002): 362-371.

Least-square conformal mapping (LSCM)

• Least square optimization:

$$E_{LSCM} = \sum_{ijk} A_{ijk} \left(\left(\frac{\partial u}{\partial x} - \frac{\partial v}{\partial y} \right)^2 + \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \right)^2 \right)$$

• Not unique minimizer \rightarrow fixing at least two vertices.

Conformal mapping

• Angle preservation

Applications

- Texturing
- Morphing

• . . .

- Remeshing
- Shape analysis
- analysis

Applications

- Cartography
- Architecture
- Art design
- Fabrication

• . . .

Applications

- Fluids
- Microstructures
- Topology optimization

Differential of conformal mapping

育天下英才

Conformal mapping

- Discrete conformal mapping.
 - Angle of triangles.
 - Piecewise linear function.

Conformal mapping

- Discrete conformal mapping.
 - Angle of triangles.
 - Piecewise linear function.
- Continuous conformal mapping.
 - Angle between vectors.
 - Smooth function.

• Push forward of vector:
$$df(v) = \lim_{t \to 0} \frac{f(p+tv) - f(p)}{t}$$

• Linear operator: $df(v) = J_f v$, J_f Jacobian matrix.

- Angle preservation: $-\theta[v,w] \Leftrightarrow \theta[df(v),df(w)]$
- Complex number
 - Rotate & scale : $z = |z|e^{i\phi}$

vz

12

Z

θ

 $\theta + \phi$

 $-v \rightarrow w \iff w = vz = |v||z|e^{i(\theta + \phi)}$

W B v

p

• Let
$$f = f_x + if_y$$
.
- $df(i) = \lim_{t \to 0} \frac{f(x+yi+ti) - f(x+yi)}{t} = \frac{\partial f_x}{\partial y} + \frac{\partial f_y}{\partial y}i$
- $df(1) = \lim_{t \to 0} \frac{f(x+yi+t) - f(x+yi)}{t} = \frac{\partial f_x}{\partial x} + \frac{\partial f_y}{\partial x}i$

• Cauchy-Riemann equation: df(i) = idf(1)

$$-\begin{cases} \frac{\partial f_x}{\partial x} = \frac{\partial f_y}{\partial y} \\ \frac{\partial f_x}{\partial y} = -\frac{\partial f_y}{\partial x} \end{cases} \Leftrightarrow J_f = \begin{pmatrix} a & -b \\ b & a \end{pmatrix}$$

-
$$\forall v \in \mathbb{C}, df(v) = df(1)v$$

Similar transform!

• Plane to plane :
$$df(v) = \lim_{t \to 0} \frac{f(p+tv) - f(p)}{t}$$

Manifold to manifold

- Curve :
$$\Gamma(0) = p, \Gamma'(0) = v$$

- $df(v) = \lim_{t \to 0} \frac{f(\Gamma(t)) - f(\Gamma(0))}{t}$ $df(v) : v \in T_pM \to w \in T_{f(p)}N$

Cauchy-Riemann equation

- Plane : df(i) = idf(1)
- Manifold : $df(J_M v) = J_N df(v), \forall v \in T_p M$

Spin transformation

Quaternions

- 2D plane : complex number
- Surface embedding in \mathbb{R}^3 : quaternions

Quaternions

.

• From
$$\mathbb{R}^3$$
 to \mathbb{H} : $\vec{x} = (x_1, x_2, x_3) \rightarrow x = (0, \vec{x}) = 0 + x_1 \vec{i} + x_2 \vec{j} + x_3 \vec{k}$
• Rotation around the axis $\vec{u} = (u_1, u_2, u_3)$, $\|\vec{u}\| = 1$
 $-q = \left(\cos\frac{\theta}{2}, -\sin\frac{\theta}{2}\vec{u}\right) = \cos\frac{\theta}{2} - \sin\frac{\theta}{2}(u_1\vec{i} + u_2\vec{j} + u_3\vec{k})$
 $-\bar{q} = \left(\cos\frac{\theta}{2}, \sin\frac{\theta}{2}\vec{u}\right)$, $q\bar{q} = 1 \rightarrow \bar{q} = q^{-1}$
 $-y = \bar{q}xq = 0 + y_1\vec{i} + y_2\vec{j} + y_3\vec{k} \rightarrow \vec{y} = (y_1, y_2, y_3)$
• Scale
 $-q' = cq, c \in \mathbb{R} \Rightarrow y' = \bar{q'}xq = c^2y$
 $\vec{i} = \vec{j}^2 = \vec{k}^2 = i\vec{j}\vec{k} = -1$

Spin transformation

• Spin equivalence:

$$f: M \to \mathbb{R}^3$$

$$\tilde{f}: M \to \mathbb{R}^3$$

- $\textbf{-}\,d\tilde{f}(X)=\bar{\lambda}df(X)\lambda,\;\exists\;\lambda{:}\,M\to\mathbb{H}$
- Dirac equation (integrable condition): $-D\lambda = -\frac{df \wedge d\lambda}{|df|^2}$ $-(D-\rho)\lambda = 0, \exists \rho: M \to \mathbb{R}$
- Given initial ρ , solve λ (eigenvalue problem): - $(D - \rho)\lambda = \gamma\lambda$ - $\rho \rightarrow \rho + \lambda$

Spin transformation

• Mean curvature half-density:

$$\begin{array}{l} -(D-\rho)\lambda = 0, \exists \ \rho, \lambda: M \to \mathbb{R} \\ -d\tilde{f}(X) = \bar{\lambda}df(X)\lambda \to \widetilde{H} \left| d\tilde{f} \right| = H \left| df \right| + \rho \left| df \right| \end{aligned}$$

- Relation to conformal equivalence
 - Spin \rightarrow conformal
 - Conformal +> spin

Circle packing and circle patterns

- Smooth: infinitesimal circles preservation
- Discrete: preserve circles associated with mesh elements

• Limit \rightarrow smooth conformal map

• For a triangulation *K*, $P = \{c_v\}$ is

the circle packing of K if:

- The center of $c_v \Leftrightarrow v \in V \subset K$
- $\forall e_{ij} = v_i v_j, c_{v_i}, c_{v_j}$ are tangent
- $\forall f_{ijk} = v_i v_j v_k, \ c_{v_i}, c_{v_j}, c_{v_k}$ form a

positively oriented triple

Collins, C. R., & Stephenson, K. (2003). A circle packing algorithm. Computational Geometry.

Collins, C. R., & Stephenson, K. (2003). A circle packing algorithm. Computational Geometry.

Circle packing

 Necessary and Sufficient Condition:

Given a triangulation K of a topological disk and a constraint radius at each boundary vertex, there is an (essentially) unique circle packing realizing the boundary constraints, with interior angles summing to 2π .

$$\cos \theta_t = \frac{(r_0 + r_1)^2 + (r_0 + r_2)^2 - (r_1 + r_2)^2}{2(r_0 + r_1)(r_0 + r_2)}$$

• Algorithm: repeat

For each $v_i \in V^\circ$:

- 1. Let θ be total angle currently covered by k neighbors
- 2. Let r be radius such that k neighbors of radius r also cover θ
- 3. Set new radius of c_{v_i} such that *k* neighbors of radius *r* cover 2π

Lack of geometry information

- Associate each face with its circumcircle
- Preserve circle intersection angles

• For planar Delaunay triangulation

$$\forall e_{ij} \in E : \alpha_e = \begin{cases} \pi - \theta_k^{ij} - \theta_l^{ij}, & \text{for interior edges} \\ \pi - \theta_k^{ij}, & \text{for boundary edges} \end{cases}$$

- $\neg \forall e_{ij} \in E : 0 < \alpha_e < \pi$
- $\forall v_i$ interior vertices : $\sum_{e \ni v_i} \alpha_e = 2\pi$
- $\forall v_i$ boundary vertices : $\sum_{e \ni v_i} \alpha_e = 2\pi \kappa_i$

• For planar Delaunay triangulation

Kharevych, L. et al. (2006). Discrete conformal mappings via circle patterns. ACM Transactions on Graphics.

- Parameterization
 - Input Delaunay triangulation :

$$\sum_{e \ni v_i} \alpha_e \,! = 2\pi$$

• Coherent angle system for $\hat{\alpha}_{e}$: $\exists \hat{\theta}_{k}^{ij}$, s.t. $- \hat{\theta}_{k}^{ij} > 0$ $\neg \forall t_{ijk} \in T, \hat{\theta}_{k}^{ij} + \hat{\theta}_{i}^{jk} + \hat{\theta}_{j}^{ki} = \pi$ $\neg \forall e_{ij} \in E$: $\hat{\alpha}_{e} = \begin{cases} \pi - \hat{\theta}_{k}^{ij} - \hat{\theta}_{l}^{ij}, \text{ for interior edges} \\ \pi - \hat{\theta}_{k}^{ij}, & \text{ for boundary edges} \end{cases}$

Optimize
$$\hat{\theta}_k^{ij}$$
!

$$\min_{\hat{\theta}_{k}^{ij}} \sum \left(\hat{\theta}_{k}^{ij} - \theta_{k}^{ij} \right)^{2}$$

Kharevych, L. et al. (2006). Discrete conformal mappings via circle patterns. ACM Transactions on Graphics.

Conjugate harmonic functions

39

Conjugate harmonic functions

Cauchy-Riemann equation on complex plane

$$-\begin{cases} \frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} \\ \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x} \end{cases} \Leftrightarrow \nabla v = \mathbf{i} \nabla u$$

Harmonic functions

$$-\begin{cases} \Delta u = \nabla \cdot (\nabla u) = \nabla \cdot (-\mathbf{i}\nabla v) = 0\\ \Delta v = \nabla \cdot (\nabla v) = \nabla \cdot (\mathbf{i}\nabla u) = 0 \end{cases}$$

- Discretization on triangular meshes
 - Edges (conjugate harmonic 1-forms)
 - Vertices (conjugate harmonic coordinates)

1-form ω

Gu, X., & Yau, S. T. (2003). Global conformal surface parameterization. In Proceedings of the 2003 Eurographics/ACM SIGGRAPH symposium on Geometry processing.

Conjugate harmonic 1-forms

• Harmonic 1-forms:

$$\begin{aligned} - \forall t_{ijk}, \ \omega_{ij} + \omega_{jk} + \omega_{ki} &= 0 \\ - \forall v_i \text{interior vertex}, \sum_{e_{ij} \ni v_i} \alpha_{ij} \omega_{ij} &= 0 \end{aligned}$$

- Dimension of harmonic 1-forms:
 - Genus $g \implies \{\omega^{(1)}, \dots, \omega^{(2g)}\}$
 - Homology basis P_1, \dots, P_{2g} : $\sum_{e_{ij} \in \mathbf{P}_k} \omega_{ij} = c_k, k = 1, \dots, 2g$
- Conjugate gradients
 - { * $\omega^{(1)}$, ..., * $\omega^{(2g)}$ } - Integrate $\omega^{(k)} + \sqrt{-1} * \omega^{(k)}$

Conjugate harmonic coordinates

• Solving Laplacian equations:

- For interior vertices
$$\begin{cases} \Delta u = 0\\ \Delta v = 0 \end{cases}$$

- Boundary control
- Dirichlet boundary condition: - Boundary curve $\gamma: \partial M \to \mathbb{R}^2$ $u \Big|_{\partial M} = \gamma_u, v \Big|_{\partial M} = \gamma_v$
- Neumann boundary condition:
 - Boundary gradients h: $\partial M \to \mathbb{R}^2$ $\partial_M u = h_u, \partial_M v = h_v$

Conformal, conjugate gradients

Sawhney, R., & Crane, K. (2017). Boundary first flattening. ACM Transactions on Graphics.

