

GAMES 301: 第13讲

参数化应用 一曲面对应与高阶多项式映射

傅孝明 中国科学技术大学

Inter-surface mappings

Surface Mapping

_6

- Inter-surface mapping, Cross parameterization
- A one-to-one mapping f between two surfaces M_s and M_t

Compatible meshes

• Meshes with identical connectivity (M_s and $\widehat{M_t}$)

Applications

- Morphing
- Attribute transfer
- •

Applications

• Morphing

.

• Attribute transfer

Inputs

• Two (*n*) models and some corresponding landmarks

Goal

• Bijection and low distortion

Algorithm stages

- Construct a common base domain
 - Topologically identical triangular layouts of the two meshes.
- Compute a low distortion cross-parameterization
 Each patch is mapped to the corresponding base mesh triangle.
- Compatibly remesh the input models using the parameterizations

One common base domain

•
$$f = f_t^{-1} \circ f_{st} \circ f_s$$

Algorithm steps

- (a) Cutting to disk topology.
- (b) Computing the joint flattenings Φ , Ψ .
- (c) Bijection Lifting.

Cutting paths

- Bijective correspondence
 - Shortest path
 - Minimal spanning tree

Computing Φ , Ψ

• Constraint

Common boundary condition

- Locally injective
- Solvers:
 - Former methods

Bijection Lifting

• Bijective parameterizations

Bijection Lifting

_6

• Only locally injective constrains

Disadvantages

• Cut-dependent

More methods

- Inter-Surface Mapping, 2004
- Functional Maps: A Flexible Representation of Maps Between Shapes, 2012
- Hyperbolic Orbifold Tutte Embeddings, 2016
- Variance-Minimizing Transport Plans for Inter-surface Mapping, 2017
- •

High-order polynomial mappings

for high-order meshing

High-order meshes

High-order meshes

- Ready to approximate complex curved domains
- Feature low numerical dissipation and dispersion
- Faster than low-order methods

High-order meshes

High-order basis

• Bézier basis:

$$B_i^n(t) = C_n^i t^i (1-t)^{n-i}$$

$$B_i^n(t) = (1-t) B_i^{n-1}(t) + t B_{i-1}^{n-1}(t)$$

• Function:
$$f(t) = \sum_{i=0}^{n} p_i B_i^n(t)$$

High-order basis

- Lagrange basis: $l_i^n(t) = \prod_{\substack{j=0\\i\neq j}}^n \frac{t-t_j}{t_i-t_j}$
- Function: $f(t_j) = \sum_{i=0}^n p_i l_i^n(t_i) = p_j$

$$l_i^n(t_j) = \delta_{ij}$$

- Others:
 - monomial basis,
 - orthogonal basis of polynomials
 - ...

Elements

- Tetrahedron:
 - $f_t(\boldsymbol{\xi}) = \sum_{i=1}^{N_p} B_i^p(\boldsymbol{\xi}) \boldsymbol{P}_i$ • B_i^p : Bézier basis • $\boldsymbol{\xi} = (\xi_0, \xi_1, \xi_2, 1 - \xi_0 - \xi_1 - \xi_2)$
 - •**P**_i: control points

Jacobian

 $f_t(\boldsymbol{\xi}) = J_t \boldsymbol{\xi} + \boldsymbol{b}_t$ $det(J_t(\boldsymbol{\xi})) = const$

 $f_{t}(\boldsymbol{\xi}) = \sum_{i=1}^{N_{p}} B_{i}^{p}(\boldsymbol{\xi}) \boldsymbol{P}_{i}$ $f_{t,\boldsymbol{\xi}} = \left(\frac{\partial f_{t}}{\partial \xi_{0}}, \frac{\partial f_{t}}{\partial \xi_{1}}, \frac{\partial f_{t}}{\partial \xi_{2}}\right)$ $det(f_{t,\boldsymbol{\xi}}) = poly(\boldsymbol{\xi})$

$$f_t = \phi \circ \psi^{-1}, \psi: T \to t, \phi: T \to R^2$$

$$J_{f_t}(\xi) = J_{\phi}(\xi) J_{\psi}^{-1}, \quad J_{\psi} = \begin{bmatrix} e_0^T e_0 & e_1^T e_0 \\ 0 & e_1^T e_{\perp} \end{bmatrix}$$

$$J_{\phi} = \begin{bmatrix} \frac{\partial u}{\partial \xi_0}(\boldsymbol{\xi}) & \frac{\partial u}{\partial \xi_1}(\boldsymbol{\xi}) \\ \frac{\partial v}{\partial \xi_0}(\boldsymbol{\xi}) & \frac{\partial v}{\partial \xi_1}(\boldsymbol{\xi}) \end{bmatrix},$$

$$\frac{\partial u}{\partial \xi_0}(\xi) = \sum_{i+j+k=n-1} \left(u_{(i+1)jk} - u_{ij(k+1)} \right) B_{ijk}^{n-1}(\xi)$$

$$\frac{\partial u}{\partial \xi_1}(\xi) = \sum_{i+j+k=n-1} \left(u_{i(j+1)k} - u_{ij(k+1)} \right) B_{ijk}^{n-1}(\xi)$$

Validity condition

Notation

 $J_{min} := min_{\xi} J(\xi)$

Lagrange basis

$$J(\xi,\eta) = J_1 \underbrace{(1-\xi-\eta)(1-2\xi-2\eta)}_{L_1^2(\xi,\eta)} + J_2 \underbrace{\xi(2\xi-1)}_{L_2^2(\xi,\eta)} + J_3 \underbrace{\eta(2\eta-1)}_{L_3^2(\xi,\eta)} + J_4 \underbrace{4(1-\xi-\eta)\xi}_{L_4^2(\xi,\eta)} + J_5 \underbrace{4\xi\eta}_{L_5^2(\xi,\eta)} + J_6 \underbrace{4(1-\xi-\eta)\eta}_{L_6^2(\xi,\eta)} + J_6 \underbrace{4(1-\xi-\eta)\eta}_{L_6^$$

Lagrange basis

$$J(\xi,\eta) = J_1 \underbrace{(1-\xi-\eta)(1-2\xi-2\eta)}_{L_1^2(\xi,\eta)} + J_2 \underbrace{\xi(2\xi-1)}_{L_2^2(\xi,\eta)} + J_3 \underbrace{\eta(2\eta-1)}_{L_3^2(\xi,\eta)} + J_4 \underbrace{4(1-\xi-\eta)\xi}_{L_4^2(\xi,\eta)} + J_5 \underbrace{4\xi\eta}_{L_5^2(\xi,\eta)} + J_6 \underbrace{4(1-\xi-\eta)\eta}_{L_6^2(\xi,\eta)} + J_6 \underbrace{4(1-\xi-\eta)\eta}_{L_6^$$

$$\frac{\partial J}{\partial \xi} = \frac{\partial J}{\partial \eta} = 0 \implies \begin{bmatrix} 4(J_1 + J_2 - 2J_4) & 4(J_1 - J_4 + J_5 - J_6) \\ 4(J_1 - J_4 + J_5 - J_6) & 4(J_1 + J_3 - 2J_6) \end{bmatrix} \begin{pmatrix} \xi_{sta} \\ \eta_{sta} \end{pmatrix} = \begin{pmatrix} -(-3J_1 - J_2 + 4J_4) \\ -(-3J_1 - J_3 + 4J_6) \end{pmatrix}$$

Monomial basis

Bézier basis

$$J(\xi,\eta) = J_{1}\underbrace{(1-\xi-\eta)^{2}}_{B_{1}^{(2)}(\xi,\eta)} + J_{2}\underbrace{\xi^{2}}_{B_{2}^{(2)}(\xi,\eta)} + J_{3}\underbrace{\eta^{2}}_{B_{3}^{(2)}(\xi,\eta)} + \left(2J_{4} - \frac{1}{2}(J_{2} + J_{1})\right)\underbrace{2\xi(1-\xi-\eta)}_{B_{4}^{(2)}(\xi,\eta)} + \left(2J_{5} - \frac{1}{2}(J_{3} + J_{2})\right)\underbrace{2\xi\eta}_{B_{5}^{(2)}(\xi,\eta)} + (2J_{6} - \frac{1}{2}(J_{1} + J_{3}))\underbrace{2\eta(1-\xi-\eta)}_{B_{6}^{(2)}(\xi,\eta)}$$

$$min_{\xi,\eta}J(\xi,\eta) = min_{\xi,\eta}\left(\sum_{i}B_{i}^{(2)}(\xi,\eta)K_{i}\right) \ge min_{\xi,\eta}\left(\sum_{i}B_{i}^{(2)}(\xi,\eta)\right)min_{i}K_{i} = min_{i}K_{i}$$

Bounds

$$J_{min} \ge \min\left\{J_1, J_2, J_3, 2J_4 - \frac{J_2 + J_1}{2}, 2J_5 - \frac{J_2 + J_3}{2}, 2J_6 - \frac{J_3 + J_1}{2}\right\}$$

$$\le \min\{J_1, J_2, J_3\}$$

Bézier basis

• Subdivision & General Bounds

$$b'_{min} = min_{i,q} \ b_i^{[q]} \le J_{min} \le min_{i < K_{f,q}} b_i^{[q]}$$

Result

	Curved Element Classification			# elements	CPU time for
	Valid	Invalid	Undertermined	analysed at	given stage [s]
	elements	elements	elements	given stage	0 0 []
First stage	29,715	8,039	1,224	38,978	1.865
1 subdiv.	+787	+0	437	1,224	1.16e-1
2 subdiv.	+285	+17	135	437	8.40e-2
3 subdiv.	+56	+15	64	135	4.02e-2
4 subdiv.	+16	+22	26	64	2.40e-2
5 subdiv.	+5	+15	6	26	1.10e-2
6 subdiv.	+1	+2	3	6	4.34e-3
7 subdiv.	+1	+2	0	3	1.47e-3
Subtotal	30,866	8,112			2 146
Total	38,978				2.140

Extensions

- Bezier bounds + Iterative refinement
 - High-order triangle
 - High order quadrangles
 - High order tetrahedra
 - High-order prisms
 - Hexahedra (trilinear map):

