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Data set Clustering Result (K = 2)

Clustering Result (K = 3)
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What is Cluster Analysis?

* Finding groups of objects such that the objects in a group will be similar (or related)
to one another and different from (or unrelated to) the objects in other groups

Inter-cluster
Intra-cluster distances are
distances are maximized
minimized @




What is Cluster Analysis?

* Cluster: a collection of data objects
e Similar to one another within the same cluster
e Dissimilar to the objects in other clusters

* Cluster analysis
* Grouping a set of data objects into clusters

* Clustering is unsupervised classification: no predefined classes

* Typical applications
* As a stand-alone tool to get insight into data distribution
e As a preprocessing step for other algorithms



General Applications of Clustering

* Pattern Recognition

* Spatial Data Analysis
e create thematic maps in GIS by clustering feature spaces
* detect spatial clusters and explain them in spatial data mining

* Image Processing
* Economic Science (especially market research)
s WWW

* Document classification
e Cluster Weblog data to discover groups of similar access patterns



Examples of Clustering Applications

* Marketing: Help marketers discover distinct groups in their customer bases, and then use this
knowledge to develop targeted marketing programs

* Land use: Identification of areas of similar land use in an earth observation database

* Insurance: ldentifying groups of motor insurance policy holders with a high average claim cost

» City-planning: Identifying groups of houses according to their house type, value, and geographical
location

* Earth-quake studies: Observed earth quake epicenters should be clustered along continent faults
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Notion of a Cluster can be Ambiguous
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What |Is Good Clustering?

* A good clustering method will produce high quality clusters with

* high intra-class similarity

* low inter-class similarity

* The quality of a clustering result depends on both the similarity measure used by
the method and its implementation.

e The quality of a clustering method is also measured by its ability to discover some
or all of the hidden patterns.
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« BEXRERAKT5iE: Hierarchical Clustering — final clusters are built
following a distinct set of sequential steps

« EEXREEHKFE: Non-Hierarchical Clustering — Clusters are built in
such a way that if M clusters are built there is no guarantee that
putting together two of the clusters would give rise to the same (M-1)
clusters built separately by the method.
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AT ERNEXE A

o EREBZAT55%: Hierarchical Clustering — final clusters are built
following a distinct set of sequential steps

« EEXREEHKFE: Non-Hierarchical Clustering — Clusters are built in
such a way that if M clusters are built there is no guarantee that
putting together two of the clusters would give rise to the same (M-1)
clusters built separately by the method.



Hierarchical Clustering

* Produces a set of nested clusters organized as a hierarchical tree

* Can be visualized as a dendrogram
* Atree-like diagram that records the sequences of merges or splits

0.2

0.15r

0.1+

0.05




Strengths of Hierarchical Clustering

* No assumptions on the number of clusters

* Any desired number of clusters can be obtained by ‘cutting’ the dendogram
at the proper level

e Hierarchical clusterings may correspond to meaningful taxonomies

 Example in biological sciences (e.g., phylogeny reconstruction, etc), web (e.g.,
product catalogs) etc



Hierarchical Clustering

 Two main types of hierarchical clustering

 Agglomerative:
e Start with the points as individual clusters
* At each step, merge the closest pair of clusters until only one cluster (or k clusters) left

* Divisive:
* Start with one, all-inclusive cluster
* At each step, split a cluster until each cluster contains a point (or there are k clusters)

* Traditional hierarchical algorithms use a similarity or distance matrix
 Merge or split one cluster at a time



Agglomerative versus Divisive Approaches

A

Agglomerative

[p,q,r,s,t]

Divisive \F



The Dendrogram of Hierarchical Clustering

Dendrogram(Average linkage)




Complexity of hierarchical clustering

 Distance matrix is used for deciding which clusters to merge/split
* At least quadratic in the number of data points

* Not usable for large datasets



Agglomerative clustering algorithm

Most popular hierarchical clustering technique

Basic algorithm

1
2
3
4.
5
6

Compute the distance matrix between the input data points
Let each data point be a cluster
Repeat
Merge the two closest clusters
Update the distance matrix
Until only a single cluster remains

Key operation is the computation of the distance between two clusters

Different definitions of the distance between clusters lead to different algorithms



Input/ Initial setting

 Start with clusters of individual points and a distance/proximity
matrix

pl| p2 | p3 | p4|p5
® -
O O DZ
O O =
p4
O p5
O |
O Distance/Proximity Matrix
O
O O O

)
2O
b
)
N
o
o
o
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Intermediate State

* After some merging steps, we have some clusters
ci|c2| c3| ca|cs

C1
C2
(=) :
Cc4a
C5
@ Distance/Proximity Matrix

86 1ins

pl p2 p3 p4 pO pl0 pl1 pl2




Intermediate State

* Merge the two closest clusters (C2 and C5) and update the distance matrix.
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After Merging

 “How do we update the distance matrix?”
C2

ci1| cs5| c3 | ca
@ c1 2

cocucs | 2| 7] 7| 7

c3 2

? 1

| |

, |

|

|

pl p2 p3 p4 p9o p10 pll pl2




Distance between two clusters

e Each cluster is a set of points

* How do we define distance between two sets of points
* Lots of alternatives
* Not an easy task



Similarity?

< n
«

»

Min Average

Max Group



Distance between two clusters

* Single-link distance between clusters C; and C;is the minimum
distance between any object in C;, and any object in C;

* The distance is defined by the two most similar objects

DS,(Ci,Cj): minx,y{d(x, y)‘xECi,yeCj}



Single-link clustering: example

* Determined by one pair of points, i.e., by one link in the proximity
graph.

1 12 13 14 15 ‘
11 1.00 0.90 0.10 0.65 0.20

12| 0.90 1.00 0.70 0.60 0.50
13| 0.10 0.70 1.00 0.40 0.30 r“ |7‘|
14| 0.65 0.60 0.40 1.00 0.80

151 0.20 0.50 0.30 0.80 1.00 1 2 3 4 5




Single-link clustering: example

0.2-

0.15-

0.1-

0.05-

Nested Clusters Dendrogram



Strengths of single-link clustering

.....

Original Points Two Clusters

* Can handle non-elliptical shapes



Limitations of single-link clustering
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Original Points Two Clusters

» Sensitive to noise and outliers
* It produces long, elongated clusters



Distance between two clusters

* Complete-link distance between clusters C; and C; is the maximum
distance between any object in C;, and any object in C;

* The distance is defined by the two most dissimilar objects

D, (C,.C,)=max,,d(x y)xeC,yeC,|



Complete-link clustering: example

* Distance between clusters is determined by the two most distant
points in the different clusters

11 12 13 14 15
111 1.00 0.90 0.10 0.65 0.20
121 0.90 1.00 0.70 0.60 0.50

31010 0.70 1.00 0.40 0.30
14| 0.65 0.60 0.40 1.00 0.80 r_‘ r_‘

15/ 0.20 0.50 0.30 0.80 1.00 1 2 3 4 5




Complete-link clustering: example

04r

0.351

0.3r

0.251

0.2-
0.15-

0.1-
0.05-
0

Nested Clusters Dendrogram



Strengths of complete-link clustering

Original Points Two Clusters

 More balanced clusters (with equal diameter)
* Less susceptible to noise



Limitations of complete-link clustering
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Original Points Two Clusters

» Tends to break large clusters
« All clusters tend to have the same diameter — small
clusters are merged with larger ones



Distance between two clusters

* Group average distance between clusters C; and C; is the average
distance between any object in C; and any object in C,

D,,(C..C,)= S d(x, y)

xeC;i,yeC;

Cilx \C




Average-link clustering: example

* Proximity of two clusters is the average of pairwise
proximity between points in the two clusters.

11 12 13 14 15 ‘
111 1.00 0.90 0.10 0.65 0.20
121 0.90 1.00 0.70 0.60 0.30

131 0.10 0.70 1.00 0.40 0.30
141 0.65 0.60 0.40 1.00 0.80 r“

15/ 0.20 0.50 0.30 0.80 1.00 1 2 3 4 5




Average-link clustering: example

0.251

0.2r

0.15-

0.1r

0.05-

Nested Clusters Dendrogram



Average-link clustering: discussion

e Compromise between Single and Complete Link

* Strengths
e Less susceptible to noise and outliers

* Limitations
* Biased towards globular clusters



Distance between two clusters

* Centroid distance between clusters C; and C;is the distance between
the centroid r; of C; and the centroid r; of C,

Deentroics (Ci C; )= d (1, 1)

centroids



Distance between two clusters

* Ward’s distance between clusters C. and C.is the difference between the
total within cluster sum of squares for the two clusters separately, and
thelwithin cluster sum of squares resulting from merging the two clusters
in cluster C,.

J

Dw(Ci’Cj): D (x=1) +Z(x—rj f- Z(x—rij f
xeC, xeC; xeCjj
* r;: centroid of C,
* r;: centroid of C,
* r;;: centroid of C;



Ward’s distance for clusters

* Similar to group average and centroid distance
* Less susceptible to noise and outliers
* Biased towards globular clusters

e Hierarchical analogue of k-means
e (Can be used to initialize k-means



Hierarchical Clustering: Comparison

Ward’s Method
Group Average




Hierarchical Clustering: Time and Space requirements

* For a dataset X consisting of n points

* 0O(n?) space; it requires storing the distance matrix

* O(n3) time in most of the cases

* There are n steps and at each step the size n? distance matrix must be
updated and searched

Complexity can be reduced to O(n? log(n) ) time for some approaches by
using appropriate data structures



Divisive hierarchical clustering

Start with a single cluster composed of all data points

Split this into components

Continue recursively

Monothetic divisive methods split clusters using one variable/dimension at a time
Polythetic divisive methods make splits on the basis of all variables together

Any intercluster distance measure can be used

Computationally intensive, less widely used than agglomerative methods



.

NI FERNE L%

BXBIK 5% Hierarchical Clustering — final clusters are built
following a distinct set of sequential steps

« EEXREZI 7% Non-Hierarchical Clustering — Clusters are built in
such a way that if M clusters are built there is no guarantee that
putting together two of the clusters would give rise to the same (M-1)
clusters built separately by the method.



K-Means Clustering

* K-Means Clustering is a non-hierarchical method in the sense that if
one has 2 clusters, say, generated by pre-specifying 2 means
(centroids) in the K-means algorithm and 3 clusters generated by pre-
specifying 3 means in the K-means algorithm, then it may be the case
that no combination of any two clusters of the 3 cluster group can
give rise to the 2 cluster grouping.
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Steps in the K-Means Clustering Approach

* Given a set of observations (X4, X3, :**.Xy) Where each observation is a d-dimensional
real vector, then K-means clustering aims to partition the n observations into K sets (K
<n), S = {5,,5,,:-+.Sk} so as to minimize the within-cluster sum of squares (WCSS):

arg min X Yy es |l — |’ (1)
where u; is the mean of the points in S; . Now minimizing (1) can,
in theory, be done by the integer programming method but this
can be extremely time-consuming. Instead the Lloyd algorithm is

more often used.



Lloyd Algorithm

The steps of the Lloyd algorithm are as follows. Given the initial set of K-means mgl), e mg)which can be
specified randomly or by some heuristic, the algorithm proceeds by alternating between two steps:

Assignment Step: Assign each observation to the cluster with the closest mean

t
| < ”x]-— mg*)

Si(t) = {xj: ”xj — ml@

} foralli* = 1,2,-,K. (2)

Update Step: Calculate the new means to be the centroids of the observations in the clusters, i.e.
(¢+1) _ 1 . | =

Repeat the Assignment and Update steps until WCSS (equation (1)) no longer changes. Then the centroids and
members of the K clusters are determined.

Note: When using random assignment of the K-means to start the algorithm, one might try several starting point
K-means and then choose the “best” starting point to be the random K-means that produces the smallest WCSS
among all of the random starting points tried in the K-means procedure.

Regardless of the clustering technique used, one should strive to choose clusters that are interpretable and
make sense given the domain-specific knowledge that we have about the problem at hand.



Variations of the K-Means Method

e A few variants of the k-means which differ in
e Selection of the initial Kk means
* Dissimilarity calculations

» Strategies to calculate cluster means

* Handling categorical data: k-modes (Huang’98)
* Replacing means of clusters with modes
* Using new dissimilarity measures to deal with categorical objects

e Using a frequency-based method to update modes of clusters

* A mixture of categorical and numerical data: k-prototype method



What is the problem of k-Means Method?

* The k-means algorithm is sensitive to outliers !

* Since an object with an extremely large value may substantially distort the distribution of the data.

* K-Medoids: Instead of taking the mean value of the object in a cluster as a reference point, medoids

can be used, which is the most centrally located object in a cluster.
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Solutions to Initial Centroids Problem

* Multiple runs
* Helps, but probability is not on your side

e Sample and use hierarchical clustering to determine initial centroids

* Select more than k initial centroids and then select among these
initial centroids

* Select most widely separated
* Postprocessing

* Bisecting K-means
* Not as susceptible to initialization issues



Limitations of K-means: Differing Density
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Limitations of K-means: Non-globular Shapes

10+
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Model-based clustering

* Assume data generated from k probability distributions
* Goal: find the distribution parameters
* Algorithm: Expectation Maximization (EM)

e Output: Distribution parameters and a soft assignment of points to

clusters



Model-based clustering

* Assume k probability distributions with parameters: (6,,..., 6,)

* Given data X, compute (6,,..., 6,) such that Pr(X|96,,..., 6,)
[likelihood] or In(Pr(X]6,,..., 8,)) [loglikelihood] is maximized.

* Every point xeX need not be generated by a single distribution but it
can be generated by multiple distributions with some probability

[soft clustering]



EM Algorithm

* Initialize k distribution parameters (6,,..., 6,); Each distribution parameter
corresponds to a cluster center

* Iterate between two steps
* Expectation step: (probabilistically) assign points to clusters

* Maximation step: estimate model parameters that maximize the likelihood
for the given assignment of points



EM Algorithm

* |nitialize k cluster centers

* Iterate between two steps
* Expectation step: assign points to clusters

Prix, <€) =Pr(x IC,) / Y Pr(xIC)
ZPr(XieCk) |

W, =—

n

* Maximation step: estimate model parameters

i Pr(x, €C,)

ZPI‘(X =C;)



Cluster Evaluation



Cluster Validity

For supervised classification we have a variety of measures to evaluate how good
our model is
e Accuracy, precision, recall

For cluster analysis, the analogous question is how to evaluate the “goodness” of
the resulting clusters?

But “clusters are in the eye of the beholder”!

Then why do we want to evaluate them?
* To avoid finding patterns in noise
* To compare clustering algorithms
* To compare two sets of clusters
* To compare two clusters



Clusters found in Random Data
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Different Aspects of Cluster Validation

1. Determining the clustering tendency of a set of data, i.e., distinguishing whether non-random
structure actually exists in the data.

2. Comparing the results of a cluster analysis to externally known results, e.g., to externally given
class labels.

3. Evaluating how well the results of a cluster analysis fit the data without reference to external
information.
- Use only the data

Comparing the results of two different sets of cluster analyses to determine which is better.

5. Determining the ‘correct’ number of clusters.

For 2, 3, and 4, we can further distinguish whether we want to evaluate the entire clustering or
just individual clusters.



Measures of Cluster Validity

 Numerical measures that are applied to judge various aspects of cluster validity, are
classified into the following three types.
* External Index: Used to measure the extent to which cluster labels match externally supplied
class labels.
* Entropy

* Internal Index: Used to measure the goodness of a clustering structure without respect to
external information.

e Sum of Squared Error (SSE)

* Relative Index: Used to compare two different clusterings or clusters.
* Often an external or internal index is used for this function, e.g., SSE or entropy

e Sometimes these are referred to as criteria instead of indices

 However, sometimes criterion is the general strategy and index is the numerical measure that
implements the criterion.



Measuring Cluster Validity Via Correlation

e  Two matrices

. Proximity Matrix
. “Incidence” Matrix
. One row and one column for each data point

. An entry is 1 if the associated pair of points belong to the same cluster
. An entry is O if the associated pair of points belongs to different clusters

e Compute the correlation between the two matrices

. Since the matrices are symmetric, only the correlation between n(n-1) / 2 entries needs to be
calculated.

 High correlation indicates that points that belong to the same cluster are close
to each other.

Not a good measure for some density or contiguity based clusters



Measuring Cluster Validity Via Correlation

e Correlation of incidence and proximity matrices for the K-means
clusterings of the following two data sets.
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Using Similarity Matrix for Cluster Validation

* Order the similarity matrix with respect to cluster labels and inspect visually
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Using Similarity Matrix for Cluster Validation

* Clusters in random data are not so crisp
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Using Similarity Matrix for Cluster Validation

* Clusters in random data are not so crisp
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Internal Measures: SSE

Clusters in more complicated figures aren’t well separated

Internal Index: Used to measure the goodness of a clustering structure without respect to external
information

* SSE
SSE is good for comparing two clusterings or two clusters (average SSE).
Can also be used to estimate the number of clusters
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Internal Measures: SSE

e SSE curve for a more complicated data set
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Framework for Cluster Validity

* Need a framework to interpret any measure.

. For example, if our measure of evaluation has the value, 10, is that good, fair, or poor?
e Statistics provide a framework for cluster validity
. The more “atypical” a clustering result is, the more likely it represents valid structure in the data
. Can compare the values of an index that result from random data or clusterings to those of a
clustering result.
. If the value of the index is unlikely, then the cluster results are valid
. These approaches are more complicated and harder to understand.

* For comparing the results of two different sets of cluster analyses, a framework
is less necessary.
. However, there is the question of whether the difference between two index values is significant



Statistical Framework for SSE

* Example

* Compare SSE of 0.005 against three clusters in random data

* Histogram shows SSE of three clusters in 500 sets of random data points of size 100 distributed
over the range 0.2 — 0.8 for x and y values
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Statistical Framework for Correlation

e Correlation of incidence and proximity matrices for the K-means clusterings of
the following two data sets.
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Internal Measures: Cohesion and Separation

* Cluster Cohesion: Measures how closely related are objects in a cluster

 Example: SSE
 Cluster Separation: Measure how distinct or well-separated a cluster is

from other clusters

* Example: Squared Error
e Cohesion is measured by the within cluster sum of squares (SSE)

WSS =% >(x-m)

| xeC.
* Separation is measured by the between cluster sum of squares
2

* Where |C]| is the dize of cluster i



Internal Measures: Cohesion and Separation

* Example: SSE
* BSS + WSS = constant

m
SR NS & X &
1 m, 2 3 4 m, 5
K=1 cluster: WSS=(1-3)* +(2-3)* +(4-3)°+(5-3)* =10

BSS=4x(3-3)2=0
Total =10+0=10

K=2 clusters: WSS= (1-1.5)* +(2-1.5)* + (4-4.5)* + (5-4.5)* =1
BSS=2x(3-1.5)*+2x(45-3)°=9
Total =1+9=10



Internal Measures: Cohesion and Separation

* A proximity graph based approach can also be used for cohesion and separation.
e Cluster cohesion is the sum of the weight of all links within a cluster.
* Cluster separation is the sum of the weights between nodes in the cluster and nodes outside the cluster.

cohesion separation



Internal Measures: Silhouette Coefficient

* Silhouette Coefficient combine ideas of both cohesion and separation, but for individual points, as
well as clusters and clusterings
* For an individual point, i
e Calculate a = average distance of i to the points in its cluster
e Calculate b = min (average distance of i to points in another cluster)

* The silhouette coefficient for a point is then given by

s=1-a/b ifa<b, (ors=b/a-1 ifa>b,notthe usual case)

b
e Typically between 0 and 1. 7
* The closer to 1 the better. —_|

* Can calculate the Average Silhouette width for a cluster or a clustering



External Measures of Cluster Validity: Entropy and Purity

Table 5.9. K-means Clustering Results for LA Document Data Set

Cluster | Entertainment | Financial | Foreign | Metro | National | Sports | Entropy | Purity
1 3 5 40 506 96 27 1.2270 | 0.7474

2 4 7 280 29 39 2 1.1472 | 0.7756

3 1 1 1 7 4 671 0.1813 | 0.9796

4 10 162 3 119 73 2 1.7487 | 0.4390

5 331 22 5 70 13 23 1.3976 | 0.7134

6 5 358 12 212 48 13 1.5523 | 0.5525
Total 354 555 341 943 273 738 1.1450 | 0.7203

entropy For each cluster, the class distribution of the data is calculated first, i.e., for cluster j
we compute p;;, the ‘probability’ that a member of cluster 7 belongs to class ¢ as follows:
Pi; = méj/mj, where m; is the number of values in cluster 7 and m,;; is the number of values
of class ¢ in cluster 7. Then using this class distribution, the entropy of each cluster j is
calculated using the standard formula e; = Zf=1pij log, ps;, where the L is the number of

classes. The total entropy for a set of clusters is calculated as the sum of the entropies of each

cluster weighted by the size of each cluster, i.e., e = Zfil e, where m; is the size of cluster

1, K 1s the number of clusters, and m is the total number of data points.

purity Using the terminology derived for entropy, the purity of cluster 7, is given by purity; =
max p;; and the overall purity of a clustering by purity = Zfil L purity;.



Final Comment on Cluster Validity

“The validation of clustering structures is the most difficult and
frustrating part of cluster analysis.

Without a strong effort in this direction, cluster analysis will remain a

black art accessible only to those true believers who have experience
and great courage.”

Algorithms for Clustering Data, Jain and Dubes
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Spatial vs Object Partitions

Spatial partition (e.g.KD-tree)
® Partition space into
non-overlapping regions

® An object can be contained
in multiple regions

Object partition (e.g. BVH)
e Partition set of objects into
disjoint subsets

e Bounding boxes for each set
may overlap in space
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+ = [8) B 2L (Subspace clustering)

* Input:
* high dimensional datasets having low intrinsic dimensions
D

* {X}j=1,..nmX ER

¢

* Qutput:
— multiple low-dimensional linear subspaces
— L, P, P,




Sub-manifolds




High-Dim Data with Mixed (multiple) Low-Dim Structures




Sparse subspace clustering(SSC)

[Elhamifar and Vidal 2009]

e Based on the observation:

e each point can always be represented as a linear combination of the
points belonging to the same subspace

N X
xj=ZWijxi,j=1,...,N | o 56
= 0 39
0 88
X = XW, where
X = (xl, ...,xN) S RDXN 56 0
45 0
87 0
135 0

https://www.cis.jhu.edu/~ehsan/Downloads/SSC-CVPR09-Ehsan.pdf



Sparse subspace clustering(SSC)

[Elhamifar and Vidal 2009]

e Based on the observation:

* each point can always be represented as a linear combination of
the points belonging to the same subspace

N W _
X] ZZWijxi,j = 1,...,N
i=1

X = XW, where Wij

X = (Xl, ...,XN) S RDXN

W = (WU) € ]RNXN



Sparse subspace clustering(SSC)

[Elhamifar and Vidal 2009]

e Based on the observation:

e each point can always be represented as a linear combination of the
points belonging to the same subspace

min [[Wlly,q min [ XW = Xllz* + 2Wllx,1
B w
s.t. X =XW, diag(W) =0 s.t. diag(W) =0

where [[W][,; = ZHWJ‘”1 = X|wy



S5SQP

min [XW = X|lp* + AWy, || min 1XW = X[lz° + W W]l

[Wang et al. 2011]

s.t. diag(W) =20 s.t. W=0, diag(lW) =0

« W = 0: provides better interpretations
o ||[WTW]||11: more efficient than SSC
* Block diagonal property:

where I is a permutation matrix, submatrix W*, € RVk*Nk

Wang et al. Efficient Subspace Segmentation via Quadratic Programming. AAAI 2011.



Supervised learning (DL)

Rk
(1] [O] ()
0 0
0] |0 1

Figure: Black Box Classification: vy is the class label of & represented as a
“one-hot” vector in R¥. To learn a nonlinear mapping f(-,0) :  — y, say
modeled by a deep network.

In a supervised setting, using cross-entropy (CE) loss:

+ . 1 -
min CE(0, z,y) = —E[(y. log[f(z.0)])] ~ —— ;(yiﬁlog[f(miﬁl]>




See more...

« O3 (nFfET XFEEF oK)
s ETE—RENRE (B1R) BEMNS
* https://mp.weixin.qq.com/s/JopCQgoFg5CDI6nikrQ7yw




summary

* Cluster analysis groups objects based on their similarity and has wide
applications

* Measure of similarity can be computed for various types of data

* Clustering algorithms can be categorized into partitioning methods, hierarchical
methods, density-based methods, grid-based methods, and model-based
methods

e Qutlier detection and analysis are very useful for fraud detection, etc. and can be
performed by statistical, distance-based or deviation-based approaches

There are still lots of research issues on cluster analysis, such as constraint-based
clustering
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