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蠓虫分类问题



蠓虫分类问题：有监督分类



图形分类：无监督分类
下列图形能分成哪几类？



分类-1：按形状



分类-2：按颜色



分类-3：按大小



例子：分几类？



例子：分几类？



例子：分几类？



例子：分几类？



例子：分几类？



应用：图像分割与形状分割



聚类分析 (cluster analysis)

•聚类分析指将物理或抽象对象的集合分组为由类似的对象组成的多
个类的分析过程。

定义：

•给定一个数据点集，聚类算法将每个数据点分类到一个特定的组中。

•同一组数据点具有相似的性质或（和）特征，不同组数据点具有高
度不同的性质或（和）特征。



What is Cluster Analysis?

• Finding groups of objects such that the objects in a group will be similar (or related) 
to one another and different from (or unrelated to) the objects in other groups

Inter-cluster 
distances are 
maximized

Intra-cluster 
distances are 

minimized



What is Cluster Analysis?

• Cluster: a collection of data objects
• Similar to one another within the same cluster
• Dissimilar to the objects in other clusters

• Cluster analysis
• Grouping a set of data objects into clusters

• Clustering is unsupervised classification: no predefined classes

• Typical applications
• As a stand-alone tool to get insight into data distribution 
• As a preprocessing step for other algorithms



General Applications of Clustering 

• Pattern Recognition

• Spatial Data Analysis 
• create thematic maps in GIS by clustering feature spaces
• detect spatial clusters and explain them in spatial data mining

• Image Processing

• Economic Science (especially market research)

• WWW
• Document classification
• Cluster Weblog data to discover groups of similar access patterns



Examples of Clustering Applications

• Marketing: Help marketers discover distinct groups in their customer bases, and then use this 

knowledge to develop targeted marketing programs

• Land use: Identification of areas of similar land use in an earth observation database

• Insurance: Identifying groups of motor insurance policy holders with a high average claim cost

• City-planning: Identifying groups of houses according to their house type, value, and geographical 

location

• Earth-quake studies: Observed earth quake epicenters should be clustered along continent faults



聚类分析的应用

•数据预处理过程中，对于复杂结构的多维数据可以通过聚类分析
的方法对数据进行聚集，使复杂结构数据标准化。

•用来发现数据项之间的依赖关系，从而去除或合并有密切依赖关
系的数据项。

•为某些数据挖掘方法（如关联规则、粗糙集方法），提供预处理
功能。

•在商业类问题上，聚类分析是细分市场的有效工具，被用来发现
不同的客户群，并且它通过对不同的客户群的特征的刻画，被用
于研究消费者行为，寻找新的潜在市场等等。



Notion of a Cluster can be Ambiguous

How many clusters?

Four ClustersTwo Clusters

Six Clusters



What Is Good Clustering?

• A good clustering method will produce high quality clusters with

• high intra-class similarity

• low inter-class similarity 

• The quality of a clustering result depends on both the similarity measure used by 

the method and its implementation.

• The quality of a clustering method is also measured by its ability to discover some 

or all of the hidden patterns.



不同的特征导致不同的分类结果
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聚类分析的过程

•特征选择和提取

•度量：距离和相似系数

•聚类算法设计

•聚类验证



距离



相似系数



两种主要的聚类方法

•层次聚类方法：Hierarchical Clustering – final clusters are built 
following a distinct set of sequential steps

•非层次聚类方法： Non-Hierarchical Clustering – Clusters are built in 
such a way that if M clusters are built there is no guarantee that 
putting together two of the clusters would give rise to the same (M-1) 
clusters built separately by the method.       



两种主要的聚类方法

•层次聚类方法：Hierarchical Clustering – final clusters are built 
following a distinct set of sequential steps

•非层次聚类方法： Non-Hierarchical Clustering – Clusters are built in 
such a way that if M clusters are built there is no guarantee that 
putting together two of the clusters would give rise to the same (M-1) 
clusters built separately by the method.       



Hierarchical Clustering 

• Produces a set of nested clusters organized as a hierarchical tree

• Can be visualized as a dendrogram
• A tree-like diagram that records the sequences of merges or splits
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Strengths of Hierarchical Clustering

• No assumptions on the number of clusters
• Any desired number of clusters can be obtained by ‘cutting’ the dendogram

at the proper level

• Hierarchical clusterings may correspond to meaningful taxonomies
• Example in biological sciences (e.g., phylogeny reconstruction, etc), web (e.g., 

product catalogs) etc



Hierarchical Clustering

• Two main types of hierarchical clustering
• Agglomerative:  

• Start with the points as individual clusters

• At each step, merge the closest pair of clusters until only one cluster (or k clusters) left

• Divisive:  
• Start with one, all-inclusive cluster 

• At each step, split a cluster until each cluster contains a point (or there are k clusters)

• Traditional hierarchical algorithms use a similarity or distance matrix
• Merge or split one cluster at a time



Agglomerative versus Divisive Approaches



The Dendrogram of Hierarchical Clustering 
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Complexity of hierarchical clustering

• Distance matrix is used for deciding which clusters to merge/split

• At least quadratic in the number of data points

• Not usable for large datasets



Agglomerative clustering algorithm

• Most popular hierarchical clustering technique

• Basic algorithm
1. Compute the distance matrix between the input data points
2. Let each data point be a cluster
3. Repeat
4. Merge the two closest clusters
5. Update the distance matrix
6. Until only a single cluster remains

• Key operation is the computation of the distance between two clusters
• Different definitions of the distance between clusters lead to  different algorithms



Input/ Initial setting

...
p1 p2 p3 p4 p9 p10 p11 p12

• Start with clusters of individual points and a distance/proximity 
matrix

p1

p3

p5

p4

p2

p1 p2 p3 p4 p5 . . .

.

.

.Distance/Proximity Matrix



Intermediate State

...
p1 p2 p3 p4 p9 p10 p11 p12

• After some merging steps, we have some clusters 

C1

C4

C2 C5

C3

C2C1

C1

C3

C5

C4

C2

C3 C4 C5

Distance/Proximity Matrix



Intermediate State

...
p1 p2 p3 p4 p9 p10 p11 p12

• Merge the two closest clusters (C2 and C5)  and update the distance matrix. 

C1

C4

C2 C5

C3

C2C1

C1

C3

C5

C4

C2

C3 C4 C5

Distance/Proximity Matrix



After Merging

...
p1 p2 p3 p4 p9 p10 p11 p12

• “How do we update the distance matrix?” 

C1

C4

C2 U C5
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U 

C5C1
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Distance between two clusters

• Each cluster is a set of points

• How do we define distance between two sets of points
• Lots of alternatives

• Not an easy task



Similarity?

 

Max

Min Average

Group



Distance between two clusters

• Single-link distance between clusters Ci and Cj is the minimum 
distance between any object in Ci and any object in Cj 

• The distance is defined by the two most similar objects

( )  jiyxjisl CyCxyxdCCD = ,),(min, ,



Single-link clustering: example 

• Determined by one pair of points, i.e., by one link in the proximity 
graph.

I1 I2 I3 I4 I5

I1 1.00 0.90 0.10 0.65 0.20

I2 0.90 1.00 0.70 0.60 0.50

I3 0.10 0.70 1.00 0.40 0.30

I4 0.65 0.60 0.40 1.00 0.80

I5 0.20 0.50 0.30 0.80 1.00 1 2 3 4 5



Single-link clustering: example

Nested Clusters Dendrogram
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Strengths of single-link clustering

Original Points Two Clusters

• Can handle non-elliptical shapes



Limitations of single-link clustering

Original Points Two Clusters

• Sensitive to noise and outliers

• It produces long, elongated clusters



Distance between two clusters

• Complete-link distance between clusters Ci and Cj is the maximum 
distance between any object in Ci and any object in Cj 

• The distance is defined by the two most dissimilar objects

( )  jiyxjicl CyCxyxdCCD = ,),(max, ,



Complete-link clustering: example

• Distance between clusters is determined by the two most distant 
points in the different clusters

I1 I2 I3 I4 I5

I1 1.00 0.90 0.10 0.65 0.20

I2 0.90 1.00 0.70 0.60 0.50

I3 0.10 0.70 1.00 0.40 0.30

I4 0.65 0.60 0.40 1.00 0.80

I5 0.20 0.50 0.30 0.80 1.00 1 2 3 4 5



Complete-link clustering: example

Nested Clusters Dendrogram
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Strengths of complete-link clustering

Original Points Two Clusters

• More balanced clusters (with equal diameter)

• Less susceptible to noise



Limitations of complete-link clustering

Original Points Two Clusters

• Tends to break large clusters

• All clusters tend to have the same diameter – small  

clusters are merged with larger ones



Distance between two clusters

• Group average distance between clusters Ci and Cj is the average 
distance between any object in Ci and any object in Cj 

( ) 


=
ji CyCxji

jiavg yxd
CC
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,
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1

,



Average-link clustering: example

• Proximity of two clusters is the average of pairwise 
proximity between points in the two clusters.

I1 I2 I3 I4 I5

I1 1.00 0.90 0.10 0.65 0.20

I2 0.90 1.00 0.70 0.60 0.50

I3 0.10 0.70 1.00 0.40 0.30

I4 0.65 0.60 0.40 1.00 0.80

I5 0.20 0.50 0.30 0.80 1.00 1 2 3 4 5



Average-link clustering: example

Nested Clusters Dendrogram
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Average-link clustering: discussion

• Compromise between Single and Complete Link

• Strengths
• Less susceptible to noise and outliers

• Limitations
• Biased towards globular clusters



Distance between two clusters

• Centroid distance between clusters Ci and Cj is the distance between 
the centroid ri of Ci and the centroid rj of Cj 

( ) ),(, jijicentroids rrdCCD =



Distance between two clusters

• Ward’s distance between clusters Ci and Cj is the difference between the 
total within cluster sum of squares for the two clusters separately, and 
the within cluster sum of squares resulting from merging the two clusters 
in cluster Cij

• ri: centroid of Ci

• rj: centroid of Cj

• rij: centroid of Cij

( ) ( ) ( ) ( )


−−−+−=
ijji Cx
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Cx
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Ward’s distance for clusters

• Similar to group average and centroid distance

• Less susceptible to noise and outliers

• Biased towards globular clusters

• Hierarchical analogue of k-means
• Can be used to initialize k-means



Hierarchical Clustering: Comparison
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Ward’s Method
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Hierarchical Clustering:  Time and Space requirements

• For a dataset X consisting of n points

• O(n2) space; it requires storing the distance matrix 

• O(n3) time in most of the cases
• There are n steps and at each step the size n2 distance matrix must be 

updated and searched

• Complexity can be reduced to O(n2 log(n) ) time for some approaches by 
using appropriate data structures



Divisive hierarchical clustering

• Start with a single cluster composed of all data points

• Split this into components

• Continue recursively

• Monothetic divisive methods split clusters using one variable/dimension at a time

• Polythetic divisive methods make splits on the basis of all variables together

• Any intercluster distance measure can be used

• Computationally intensive, less widely used than agglomerative methods



两种主要的聚类方法

•层次聚类方法：Hierarchical Clustering – final clusters are built 
following a distinct set of sequential steps

•非层次聚类方法： Non-Hierarchical Clustering – Clusters are built in 
such a way that if M clusters are built there is no guarantee that 
putting together two of the clusters would give rise to the same (M-1) 
clusters built separately by the method.       



K-Means Clustering

• K-Means Clustering is a non-hierarchical method in the sense that if 
one has 2 clusters, say, generated by pre-specifying 2 means 
(centroids) in the K-means algorithm and 3 clusters generated by pre-
specifying 3 means in the K-means algorithm, then it may be the case 
that no combination of any two clusters of the 3 cluster group can 
give rise to the 2 cluster grouping. 



The K-Means Clustering Method

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10

K=2

Arbitrarily choose K 
object as initial 
cluster center

Assign 
each 
objects 
to most 
similar 
center

Update 
the 
cluster 
means

Update 
the 
cluster 
means

reassignreassign



Steps in the K-Means Clustering Approach

• Given a set of observations (𝐱1, 𝐱𝟐, ⋯ . 𝐱𝐧) where each observation is a d-dimensional 
real vector, then K-means clustering aims to partition the n observations into K sets (K 
< n), 𝑺 = 𝑆1, 𝑆2, ⋯ . 𝑆𝐾 so as to minimize the within-cluster sum of squares (WCSS):

𝑎𝑟𝑔min
𝑺

σ𝑖=1
𝐾 σ𝒙𝒋∈𝑆𝑖

𝒙𝒋 − 𝝁𝒊
2

(1)

where 𝝁𝒊 is the mean of the points in 𝑆𝑖 .  Now minimizing (1) can,

in theory, be done by the integer programming method but this

can be extremely time-consuming.  Instead the Lloyd algorithm is

more often used.



Lloyd Algorithm

• The steps of the Lloyd algorithm are as follows.  Given the initial set of K-means 𝒎𝟏
(𝟏)
, ⋯ ,𝒎𝑲

(𝟏)
which can be 

specified randomly or by some heuristic, the algorithm proceeds by alternating between two steps:

• Assignment Step: Assign each observation to the cluster with the closest mean

𝑆𝑖
(𝑡)

= 𝒙𝒋: 𝒙𝒋 − 𝒎𝒊
(𝒕)

≤ 𝒙𝒋 − 𝒎𝒊∗
(𝒕)

for all 𝑖∗ = 1,2,⋯ , 𝐾. (2)

• Update Step: Calculate the new means to be the centroids of the observations in            the clusters, i.e.

𝒎𝒊
(𝒕+𝟏)

=
1

𝑆
𝑖
(𝑡) σ𝒙𝒋∈𝑆𝑖

(𝑡) 𝒙𝒋 for 𝑖 = 1,2,⋯ , 𝐾.    (3)

• Repeat the Assignment and Update steps until WCSS (equation (1)) no longer changes.  Then the centroids and 
members of the K clusters are determined. 

• Note: When using random assignment of the K-means to start the algorithm, one might try several starting point 
K-means and then choose the “best” starting point to be the random K-means that produces the smallest WCSS 
among all of the random starting points tried in the K-means procedure.  

• Regardless of the clustering technique used, one should strive to choose clusters that are interpretable and 
make sense given the domain-specific knowledge that we have about the problem at hand.  



Variations of the K-Means Method

• A few variants of the k-means which differ in

• Selection of the initial k means

• Dissimilarity calculations

• Strategies to calculate cluster means

• Handling categorical data: k-modes (Huang’98)

• Replacing means of clusters with modes

• Using new dissimilarity measures to deal with categorical objects

• Using a frequency-based method to update modes of clusters

• A mixture of categorical and numerical data: k-prototype method



What is the problem of k-Means Method?

• The k-means algorithm is sensitive to outliers !

• Since an object with an extremely large value may substantially distort the distribution of the data.

• K-Medoids:  Instead of taking the mean value of the object in a cluster as a reference point, medoids

can be used, which is the most centrally located object in a cluster. 
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Importance of Choosing Initial Centroids
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Solutions to Initial Centroids Problem

• Multiple runs
• Helps, but probability is not on your side

• Sample and use hierarchical clustering to determine initial centroids

• Select more than k initial centroids and then select among these 
initial centroids
• Select most widely separated

• Postprocessing

• Bisecting K-means
• Not as susceptible to initialization issues



Limitations of K-means: Differing Density

Original Points K-means (3 Clusters)



Limitations of K-means: Non-globular Shapes

Original Points K-means (2 Clusters)



Model-based clustering

• Assume data generated from k probability distributions

• Goal: find the distribution parameters

• Algorithm: Expectation Maximization (EM)

• Output: Distribution parameters and a soft assignment of points to 

clusters



Model-based clustering

• Assume k probability distributions with parameters: (θ1,…, θk)

• Given data X, compute (θ1,…, θk) such that Pr(X|θ1,…, θk) 

[likelihood] or ln(Pr(X|θ1,…, θk)) [loglikelihood] is maximized.

• Every point xєX need not be generated by a single distribution but it 

can be generated by multiple distributions with some probability 

[soft clustering]



EM Algorithm

• Initialize k distribution parameters (θ1,…, θk); Each  distribution parameter 
corresponds to a cluster center

• Iterate between two steps

• Expectation step:  (probabilistically) assign points to clusters

• Maximation step: estimate model parameters that maximize the likelihood 
for the given assignment of points



EM Algorithm

• Initialize k cluster centers

• Iterate between two steps

• Expectation step: assign points to clusters

• Maximation step: estimate model parameters
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Cluster Evaluation



Cluster Validity 

• For supervised classification we have a variety of measures to evaluate how good 
our model is
• Accuracy, precision, recall

• For cluster analysis, the analogous question is how to evaluate the “goodness” of 
the resulting clusters?

• But “clusters are in the eye of the beholder”! 

• Then why do we want to evaluate them?
• To avoid finding patterns in noise

• To compare clustering algorithms

• To compare two sets of clusters

• To compare two clusters



Clusters found in Random Data
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Different Aspects of Cluster Validation

1. Determining the clustering tendency of a set of data, i.e., distinguishing whether non-random 
structure actually exists in the data. 

2. Comparing the results of a cluster analysis to externally known results, e.g., to externally given 
class labels.

3. Evaluating how well the results of a cluster analysis fit the data without reference to external 
information. 

- Use only the data

4. Comparing the results of two different sets of cluster analyses to determine which is better.

5. Determining the ‘correct’ number of clusters.

For 2, 3, and 4, we can further distinguish whether we want to evaluate the entire clustering or 
just individual clusters. 



Measures of Cluster Validity

• Numerical measures that are applied to judge various aspects of cluster validity, are 
classified into the following three types.
• External Index: Used to measure the extent to which cluster labels match externally supplied 

class labels.
• Entropy 

• Internal Index: Used to measure the goodness of a clustering structure without respect to 
external information. 

• Sum of Squared Error (SSE)

• Relative Index: Used to compare two different clusterings or clusters. 
• Often an external or internal index is used for this function, e.g., SSE or entropy

• Sometimes these are referred to as criteria instead of indices
• However, sometimes criterion is the general strategy and index is the numerical measure that 

implements the criterion.



Measuring Cluster Validity Via Correlation

• Two matrices 
• Proximity Matrix
• “Incidence” Matrix

• One row and one column for each data point

• An entry is 1 if the associated pair of points belong to the same cluster

• An entry is 0 if the associated pair of points belongs to different clusters

• Compute the correlation between the two matrices
• Since the matrices are symmetric, only the correlation between n(n-1) / 2 entries needs to be 

calculated.

• High correlation indicates that points that belong to the same cluster are close 
to each other. 

• Not a good measure for some density or contiguity based clusters



Measuring Cluster Validity Via Correlation

• Correlation of incidence and proximity matrices for the K-means 
clusterings of the following two data sets. 
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Using Similarity Matrix for Cluster Validation

• Order the similarity matrix with respect to cluster labels and inspect visually 
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Using Similarity Matrix for Cluster Validation

• Clusters in random data are not so crisp
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Using Similarity Matrix for Cluster Validation

• Clusters in random data are not so crisp

K-means
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Using Similarity Matrix for Cluster Validation
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Internal Measures: SSE

• Clusters in more complicated figures aren’t well separated

• Internal Index:  Used to measure the goodness of a clustering structure without respect to external 
information
• SSE

• SSE is good for comparing two clusterings or two clusters (average SSE).

• Can also be used to estimate the number of clusters
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Internal Measures: SSE

• SSE curve for a more complicated data set
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Framework for Cluster Validity

• Need a framework to interpret any measure. 
• For example, if our measure of evaluation has the value, 10, is that good, fair, or poor?

• Statistics provide a framework for cluster validity
• The more “atypical” a clustering result is, the more likely it represents valid structure in the data
• Can compare the values of an index that result from random data or clusterings to those of a 

clustering result.
• If the value of the index is unlikely, then the cluster results are valid

• These approaches are more complicated and harder to understand.

• For comparing the results of two different sets of cluster analyses, a framework 
is less necessary.
• However, there is the question of whether the difference between two index values is significant



Statistical Framework for SSE

• Example
• Compare SSE of 0.005 against three clusters in random data

• Histogram shows SSE of three clusters in 500 sets of random data points of size 100 distributed 
over the range 0.2 – 0.8 for x and y values
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Statistical Framework for Correlation

• Correlation of incidence and proximity matrices for the K-means clusterings of 
the following two data sets. 
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Internal Measures: Cohesion and Separation

• Cluster Cohesion: Measures how closely related are objects in a cluster
• Example: SSE

• Cluster Separation: Measure how distinct or well-separated a cluster is 
from other clusters

• Example: Squared Error
• Cohesion is measured by the within cluster sum of squares (SSE)

• Separation is measured by the between cluster sum of squares

• Where |Ci| is the size of cluster i
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Internal Measures: Cohesion and Separation

• Example: SSE
• BSS + WSS = constant
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Internal Measures: Cohesion and Separation

• A proximity graph based approach can also be used for cohesion and separation.
• Cluster cohesion is the sum of the weight of all links within a cluster.

• Cluster separation is the sum of the weights between nodes in the cluster and nodes outside the cluster.

cohesion separation



Internal Measures: Silhouette Coefficient

• Silhouette Coefficient combine ideas of both cohesion and separation, but for individual points, as 
well as clusters and clusterings

• For an individual point, i
• Calculate a = average distance of i to the points in its cluster
• Calculate b = min (average distance of i to points in another cluster)
• The silhouette coefficient for a point is then given by 

s = 1 – a/b   if a < b,   (or s = b/a - 1    if a  b, not the usual case)

• Typically between 0 and 1. 
• The closer to 1 the better.

• Can calculate the Average Silhouette width for a cluster or a clustering

a

b



External Measures of Cluster Validity: Entropy and Purity



Final Comment on Cluster Validity

“The validation of clustering structures is the most difficult and 
frustrating part of cluster analysis. 

Without a strong effort in this direction, cluster analysis will remain a 
black art accessible only to those true believers who have experience 
and great courage.”

Algorithms for Clustering Data, Jain and Dubes



应用：搜索加速结构



大量搜索计算

•点与三角网格的求交

•点与三角形的求交



加速策略：Bounding Volumes

• Axis-Aligned Bounding Box (AABB) (轴对⻬包围盒)

•包围球



加速策略：空间组织



加速结构：Bounding Volume Hierarchy (BVH)



Spatial vs Object Partitions



Clustering-II

复杂高维数据

Yi Ma: Deep (Convolution) Networks from First Principles



子空间聚类（Subspace clustering）

• Input: 
• high dimensional datasets having low intrinsic dimensions

• {𝑥𝑗}𝑗=1,…,𝑁, 𝑥𝑡 ∈ ℝ𝐷

• Output: 

– multiple low-dimensional linear subspaces

– 𝐿, 𝑃1, 𝑃2



Sub-manifolds



High-Dim Data with Mixed (multiple) Low-Dim Structures



Sparse subspace clustering(SSC)

• Based on the observation:
• each point can always be represented as a linear combination of the 

points belonging to the same subspace

𝑥𝑗 =

𝑖=1

𝑁

𝑤𝑖𝑗𝑥𝑖 , 𝑗 = 1,… ,𝑁

[Elhamifar and Vidal 2009]

𝑋 = 𝑋𝑊, where

𝑋 𝑁

𝐷

0 56

0 39

0 88

⋮ … ⋮

56 0

45 0

87 0

135 0

𝑋 = 𝑥1, … , 𝑥𝑁 ∈ ℝ𝐷×𝑁

https://www.cis.jhu.edu/~ehsan/Downloads/SSC-CVPR09-Ehsan.pdf



Sparse subspace clustering(SSC)

• Based on the observation:
• each point can always be represented as a linear combination of 

the points belonging to the same subspace

𝑥𝑗 =

𝑖=1

𝑁

𝑤𝑖𝑗𝑥𝑖 , 𝑗 = 1,… ,𝑁

[Elhamifar and Vidal 2009]

𝑊 𝑁

𝑁 𝑊𝑖𝑗

𝑊 = (𝑤𝑖𝑗) ∈ ℝ𝑁×𝑁

𝑋 = 𝑋𝑊, where

𝑋 = 𝑥1, … , 𝑥𝑁 ∈ ℝ𝐷×𝑁



min
𝑊

𝑊 1,1

s. t. 𝑋 = 𝑋𝑊, diag 𝑊 = 0

Sparse subspace clustering(SSC)

• Based on the observation:
• each point can always be represented as a linear combination of the 

points belonging to the same subspace

min
𝑊

𝑋𝑊 − 𝑋 𝐹
2
+ 𝜆 𝑊 1,1

s. t. diag 𝑊 = 0

[Elhamifar and Vidal 2009]

where 𝑊 1,1 = σ 𝑤𝑗 1
= σ 𝑤𝑖𝑗



SSQP

min
𝑊

𝑋𝑊 − 𝑋 𝐹
2
+ 𝜆 𝑊 1,1

s. t. diag 𝑊 = 0

• 𝑊 ≥ 0:  provides better interpretations 

• ‖𝑊𝑇𝑊‖1,1:  more efficient than SSC

• Block diagonal property:

ഥ𝑊∗ = Γ−1 ഥ𝑊Γ =

ഥ𝑊∗
1

ഥ𝑊∗
2

0

⋱
0 ഥ𝑊∗

𝐾 𝑁×𝑁

where Γ is a permutation matrix, submatrix ഥ𝑊∗
𝑘 ∈ ℝ𝑁𝑘×𝑁𝑘

min
𝑊

𝑋𝑊 − 𝑋 𝐹
2
+ 𝜆‖𝑊𝑇𝑊‖1,1

s. t. 𝑊 ≥ 0, diag 𝑊 = 0

[Wang et al. 2011]

Wang et al. Efficient Subspace Segmentation via Quadratic Programming.  AAAI 2011.



Supervised learning (DL)



See more…

• 马毅（加利福尼亚大学伯克利分校）：
• 基于第一原理的深度（卷积）神经网络

• https://mp.weixin.qq.com/s/JopCQqoFq5CDl6nikrQ7yw



Summary

• Cluster analysis groups objects based on their similarity and has wide 
applications

• Measure of similarity can be computed for various types of data

• Clustering algorithms can be categorized into partitioning methods, hierarchical 
methods, density-based methods, grid-based methods, and model-based 
methods

• Outlier detection and analysis are very useful for fraud detection, etc. and can be 
performed by statistical, distance-based or deviation-based approaches

• There are still lots of research issues on cluster analysis, such as constraint-based 
clustering
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