
Eurographics Symposium on Geometry Processing 2012
Eitan Grinspun and Niloy Mitra
(Guest Editors)

Volume 31 (2012), Number 5

Parallel Blue-noise Sampling by
Constrained Farthest Point Optimization

Renjie Chen† and Craig Gotsman‡

Technion – Israel Institute of Technology

Abstract
We describe a fast sampling algorithm for generating uniformly-distributed point patterns with good blue noise
characteristics. The method, based on constrained farthest point optimization, is provably optimal and may be
easily parallelized, resulting in an algorithm whose performance/quality tradeoff is superior to other state-of-the-
art approaches.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image
Generation—I.4.1 [Image Processing and Computer Vision]: Digitization and Image Capture-Sampling—

1. Introduction

Many computer graphics applications such as rendering,
imaging and importance sampling require uniform but not
regular point samplings of the plane, i.e. a distribution of
points whose density is almost the same everywhere, yet
the points not follow any obvious visual patterns. Ulichney
[Uli87] provided the so-called "blue-noise characterization"
of these point distributions in the Fourier domain, namely
that the power density spectrum of a blue noise distribution
has no low frequency energy or structural bias. Essentially, it
avoids visually objectionable artifacts by replacing low fre-
quency aliasing with high frequency noise. For easier analy-
sis of the power density spectrum, Ulichney [Uli87] derived
two useful one-dimensional statistics from the power spec-
trum of point distributions, i.e. the radially averaged power
spectrum and the anisotropy. The power spectrum of a good
blue-noise distribution has a structural residual peak which
decays as slow as possible, while the anisotropy remains flat
in the frequency domain.

In the last two decades, many algorithms have been de-
veloped to generate point sets possessing a blue-noise spec-
trum, but superior spectral properties seem to be accompa-
nied by lengthy computation times. One of the most recent
algorithms, based on Farthest Point Optimization (FPO)
[SHD11], produces point distributions with excellent spatial

† renjie.c@gmail.com
‡ gotsman@cs.technion.ac.il

statistics and blue-noise spectra. In a nutshell, it produces
point distributions by starting with an initial distribution and
then improves the positions of the points by iteratively mov-
ing them to globally optimal positions, in the sense that they
are as far away as possible from all other points. The process
terminates when no more improvement is possible. Unfortu-
nately, FPO is relatively slow and not easily parallelizable
because of its reliance on global data structures. In this paper
we present a localized version of FPO, based on constrained
farthest point optimization (CFPO). It uses a methodology
very similar to that of FPO, except that it is localized. We
prove that despite its local nature, it is equivalent to FPO,
in the sense that it generates point distributions which FPO
cannot improve further. It is difficult to over-emphasize the
importance of this locality property. Not only does it sim-
plify the algorithm in terms of the sophistication of the data
structures employed, but it is also faster, without compro-
mising at all the quality of the results. As we will see later,
CFPO is 8× faster than FPO. Most important, it is easily
parallelized with almost perfect speedup, resulting in a par-
allel version on the GPU which is 75× faster than FPO.

2. Related Work

Within the family of blue noise distributions, the Poisson
disk distribution is the most popular. In these pseudo-random
patterns, each sample is separated from all other samples by
a minimal distance, the distribution does not exhibit any vi-
sual artifacts and may be shown to possess good blue-noise
spectra. Many algorithms have been proposed to generate

c© 2012 The Author(s)
Computer Graphics Forum c© 2012 The Eurographics Association and Blackwell Publish-
ing Ltd. Published by Blackwell Publishing, 9600 Garsington Road, Oxford OX4 2DQ,
UK and 350 Main Street, Malden, MA 02148, USA.

R. Chen & C. Gotsman / Parallel Blue-noise Sampling by Constrained Farthest Point Optimization

Poisson disk distributions. We mention here just the most
important variants, but an extensive survey of these methods
can be found in [LD08].

Cook [Coo86] first proposed the famous "dart throwing"
method for generating Poisson disk distributions: Given the
radius d of the Poisson disk, the goal is to position as many
points as possible in the unit square such that the disks of
radius d centered at each point are all empty. At each step, a
candidate point (the dart) is randomly generated and added
to the point set only if it does not conflict with the existing
points, i.e. overlap with any of the disks centered at exist-
ing points. However, as the number of points increases, the
chance that a dart is accepted decreases dramatically, making
the dart throwing algorithm very expensive and slow. Sev-
eral improvements have been developed, and a parallelized
variant taking advantage of graphics hardware was proposed
by Wei [Wei08]. Ebeida et al. [EDP∗11] proposed the max-
imal Poisson disk sampling algorithm where provably no
more samples can be added into the set without violating
the empty Poisson disk condition. (Note that the maximal-
ity property does not necessarily imply that the point set is
the largest possible with Poisson disk radius d). The same
paper provides a parallel implementation and, very recently,
Ebeida et al. [EMP∗12] generalized the maximal Poisson
disk sampling algorithm to higher dimensions.

Another type of algorithm to generate blue-noise distri-
butions is Lloyd’s relaxation scheme [Llo82]. McCool and
Fiume [MF92] first used it to optimize the point set gen-
erated by the dart throwing approach by iteratively mov-
ing closely-spaced points apart and widely-spaced points
closer. Lloyd’s algorithm eventually converges to a Cen-
troidal Voronoi Tessellation (CVT), where each point re-
sides at the centroid of its Voronoi cell. Unfortunately, CVT
usually closely resembles a regular hexagonal grid, exhibit-
ing high regularity with no blue noise characteristics, so the
process must be stopped before it converges. Balzer et al.
[BSD09] proposed the Capacity-Constrained Voronoi Tes-
sellation (CCVT), a modification of the CVT, by imposing
an extra capacity constraint - that all generalized Voronoi
cells should have the same area. They demonstrate that the
resulting point distributions possess high-quality blue noise
spectra and the distribution does not converge to the hexago-
nal grid due to the random initialization in their pixel-based
algorithm. Furthermore, given a density function, the area
of a Voronoi cell can be generalized to its capacity, the to-
tal density contained in the cell. By equalizing the capac-
ity of the cells, a non-uniform distribution conforming to
the density function can be obtained. However, CCVT is
extremely slow due to the pixel-based nature of the algo-
rithm. Li et al. [LNW∗10] proposed the fast CCVT algo-
rithm, which achieves orders of magnitude acceleration over
CCVT without compromising the blue noise characteristics.
More recently Xu et al. [XLGG11] proposed the Capacity-
Constrained Delaunay Triangulation (CCDT), which can be
thought of as the dual of CCVT, where a Delaunay trian-

gulation is optimized such that each triangle has the same
capacity. Thanks to its use of a simple triangulation struc-
ture, CCDT was shown to produce point distributions com-
parable to those of CCVT, but at a fraction of the cost in
runtime (and still faster than the accelerated algorithm of Li
et al. [LNW∗10]).

A third type of algorithm for generating blue-noise distri-
butions, first introduced by Shade et al. [SCM00], is based
on precomputed tiles of point sets. They use a dart throw-
ing algorithm to generate a Poisson disk distribution over a
set of Wang tiles in a preprocessing stage. Then during run-
time, the tiles can be randomly and seamlessly assembled
to obtain a Poisson disk distribution of arbitrary size. Since
then several improved algorithms have been proposed. La-
gae and Dutre [LD08] conclude that tile-based approaches
are the only practical option for real-time applications and
applications requiring large sample sets, and among all these
approaches, corner-based Poisson disk tiles [LD06] has the
best blue noise spectrum, yet due to the limited number of
patterns obtainable from the precomputed tiles, the spectrum
is far from optimal.

3. Parallel constrained farthest point optimization

3.1. Farthest point distribution

Let X be a set of points in the plane. For any x ∈ X , denote
by δ(x) the minimal distance between x and any other point
in X . Denote by δ(X) the minimum of δ(x) among all x ∈ X .
Point sets X having large values of δ(X) are desirable and
tend to have good blue noise properties. We say that a point
x ∈ X has the global farthest point property if it is a point
inside the convex hull of X farthest away from all points of
X\{x}. This means that δ(x) cannot be increased by mov-
ing x within the convex hull. If all interior points in X (i.e.
all points except the ones on the convex hull of X), have the
global farthest point property, we say that X has the global
farthest point property and is a Farthest Point Distribution
(FPD) or that X is a FPD with distance δ(X). This means
that δ(X) cannot be increased by moving any single interior
point of X within the convex hull of X . In the following,
we restrict ourselves to periodic point sets, i.e. point sets on
the unit torus. Thus all the points can be treated in the same
way, and the convex hull constraint for each point can be ig-
nored. It is well known [SHD11] that if X contains n points,
then δ(X)≤ ∆(n), where ∆(n) =

√
2√
3n

. The bound is tight,
achieved when the points of X are positioned on the hexag-
onal grid.

Schlömer et al. [SHD11] proposed to achieve FPD’s by
a (greedy) Farthest Point Optimization (FPO) procedure:
starting off with an essentially random point set X , and re-
peatedly moving each point x ∈ X to the location which is
farthest from all the other points in X\{x}. The farthest lo-
cation of a point set (inside the domain) is at the center of
its largest empty circle, which is found using the Delaunay

c© 2012 The Author(s)
c© 2012 The Eurographics Association and Blackwell Publishing Ltd.

R. Chen & C. Gotsman / Parallel Blue-noise Sampling by Constrained Farthest Point Optimization

triangulation of X . Each iteration of the algorithm performs
a pass over all points. Since each iteration cannot decrease
δ(X), FPO will converge to a local maximum of this quan-
tity. Typically 50− 100 iterations are required until conver-
gence. By definition, the limit point set X is a FPD with dis-
tance δ(X).

To locate the largest empty circle efficiently, FPO main-
tains a dynamic global Delaunay triangulation DT (X) and a
priority queue of the triangles in DT (X), where the priority
of a triangle is the radius of its circumcircle. FPO proceeds
by removing a point from the set, updating the triangula-
tion and inserting the point back into the triangulation at the
center of the largest circumcircle. The triangulation is kept
Delaunay all the time using a suitable update algorithm.

Querying the priority queue for the largest empty circle
requires O(logn) time, thus the time complexity of a full
FPO iteration is at least O(n logn), where n is number of
points. To speed it up, Schlömer et al. [SHD11] proposed
a local version of the FPO algorithm (LFPO) computing
the farthest point locally, for example, only inside the 2-ring
neighborhood of the current vertex. This way only O(g2)
time is required to find the largest empty circle, where g is
the average number of neighbors in DT (X). As g is essen-
tially independent of n, a full iteration requires only O(n)
time.

However, the true bottleneck of the FPO/LFPO proce-
dure is the insertion of the point back at a new location. This
can require O(n) time in the worst case (to update the De-
launay triangulation), so in practice, one iteration costs more
time than simply rebuilding the entire Delaunay triangula-
tion from scratch, which costs only O(n logn) time [SD95].
Ironically, in the experiments we performed, the LFPO
method actually runs a little slower than the global FPO
method, as shown in Fig. 8. Furthermore, as the global De-
launay triangulation is required to identify the 2-ring neigh-
borhood, the LFPO method is not truly a local algorithm.

On the positive side, the point set that FPO converges
to exhibits extremely good blue noise properties. More
precisely, the power spectrum of the point sets that FPO
converges to have radially averaged power spectrum with
structured residual peaks which decays much slower than
the other state-of-the-art algorithms, while the anisotropy
still remains flat. Beyond these two quantitative measures,
Schlömer et al. [SHD11] measure δ(X) and δ̄(X) - the min-
imal and average distance, respectively, between a point and
its closest neighbor, normalized by the best possible value
∆(n), thus in the range [0,1]. They show that their algorithm
achieves values larger than 0.9 for all values of n, compared
to other state-of-the-art algorithms, which seem to achieve
much worse values. Thus this would seem to be the algo-
rithm with best quality results. The aim of this paper is to lo-
calize the FPO algorithm in order to accelerate it and make
it easier to parallelize, thus potentially speeding it up indef-
initely. For this we propose the Constrained Farthest Point

Optimization (CFPO) algorithm. We use both the traditional
one-dimensional power spectrum statistics and the minimal
distance quantities to measure the quality of the resulting
blue-noise distributions.

3.2. Constrained farthest point optimization

FPD’s are very desirable, but we would like to generate them
using only local properties. We say a point x ∈ X has the lo-
cal farthest point property relative to the set Y ⊂ X if it is the
point inside the convex hull of Y farthest from all points of
Y\{x}. Y is typically some small subset of X in the vicinity
of x, as illustrated in Fig. 1. Now, as Fig. 1 also shows, if a
point x is a local farthest point, it is not necessarily also a
global farthest point, and vice versa.

Figure 1: Global farthest point and local farthest point
properties in a set of (light and dark blue) points X: When
added to this set, the purple point has the global farthest
point property. When added to this set, the red point has the
local farthest point property relative to Y - the set of light
blue points.

Fortunately, it is possible to relate the two concepts by
adding an additional concept, the constraint region in which
x is allowed to be, to the definition of the local farthest point
property. With this, we can characterize a FPD locally:

A point set X is a FPD if and only if each point in the set
satisfies two local properties, namely, for each point x ∈ X ,
there exists a local neighborhood D such that:

1. S is fully covered by the disks centered at the points of X
in D (including x) having radius δ.

2. x is the farthest point of Y - the points in D (excluding x)
- constrained to lie inside S.

where S is D shrunk by δ.

Formally, we have the following theorem which provides
a purely local characterization of an FPD.

Local Characterization Theorem
Let X be a point set on the unit torus R, and C(z,r)
be the closed disk centered at z with radius r, then X
is a FPD with distance δ = δ(X) if and only if ∀x ∈
X ,∃D = D(x)⊆ R, such that

c© 2012 The Author(s)
c© 2012 The Eurographics Association and Blackwell Publishing Ltd.

R. Chen & C. Gotsman / Parallel Blue-noise Sampling by Constrained Farthest Point Optimization

Property 1 (Local covering property):⋃
z∈D∩X

C(z,δ)⊇ S

Property 2 (Local farthest point property): x is the
farthest point of Y (x) in S

where Y (x) = D∩ (X\{x}) is the subset of X\{x} in-
side D, S = S(x) = D(x)	 δ, and 	 is the erosion op-
erator.

The proof of the Local Characterization Theorem is given
in Appendix A. In the proof for the necessary condition, we
take D(x) to be Ĉ(x,2δ) - the open disk centered at x with ra-
dius 2d. However, it is easy to see that D may be taken to be
any region of the plane containing Ĉ(x,δ). See an example
in Fig. 2.

Figure 2: Local Characterization Theorem. Each (red) point
x in a FPD is a farthest point of a local point set Y (x) (the
points in D(x) - the interior of gray curve) constrained to
some region S(x) (the interior of the dark curve). The trans-
parent disks show the local covering property.

The Local Characterization Theorem gives a completely
local procedure to check whether a given point set is a FPD.
Note that both local properties are necessary to obtain a
FPD. Fig. 3 shows an example of a point set that satisfies
only the local farthest point property, thus is not a FPD.

It is possible to take advantage of the Local Characteriza-
tion Theorem to produce a FPD using a local version of the
algorithm described by Schlömer et al. [SHD11], i.e. given
an initial point set, we can improve it by repeatedly mov-
ing each point to a constrained local farthest point. So if and
when the algorithm converges, the point set will satisfy the
local farthest point property (property 2 of the theorem). To
show that the limit is also an FPD, we need to make sure
that this limit also satisfies the local covering property. We
take care of this by generating the initial point set properly,
as will be discussed in Section 3.5.

Applying the Local Characterization Theorem requires
the definition of the neighborhood D(x) and knowledge of
the distance δ(X). We address this by partitioning the point
set into cells of a uniform square grid, and define D(x) to be
the 3×3 set of grid cells centered at the grid cell containing

Figure 3: A point set satisfying only the local farthest point
property in the Local Characterization Theorem. Point x vio-
lates the local covering property. The point set is not a FPD,
as the purple point y can move to the red position and in-
crease δ(y) to δ(y′).

x (thus Y (x) is the subset of X contained in D(x), excluding
x itself).

The full CFPO algorithm can now be formulated as in
Algorithm 1.

Algorithm 1: Algorithm CFPO
1 Initialize a point set X with n points
2 Partition the domain with a uniform square grid, and

store X in a bucket-like data structure G conforming to
the grid. Denote by G(x) the grid cell containing x.

3 foreach point x ∈ X do
4 Construct D(x) := the 3×3 block of grid cells

centered at G(x) and Y (x) := the local neighbor list
- all other points of X in D(x).

5 Define the constraint square S(x) = D(x)	δ

6 x← LocalCFPO(Y (x),S(x)) // see Section 3.4

7 Update G to reflect the new position of x.
8 if no point x moved (up to a tolerance) then
9 the algorithm has converged. return X

10 else
11 goto Step 3

In the following theorem, we show that δ(X) never de-
creases during algorithm CFPO, thus CFPO will always
converge to a point set having the local farthest point prop-
erty. Proof of the theorem appears in Appendix B.

Convergence Theorem
Let X be a planar point set with minimal distance
δ= δ(X). Partition the domain into a uniform grid G of
square cells of size L > δ. Denote by G(x) the cell con-
taining x. If we replace any point x ∈ X with another
point x′ inside or no further than L−δ away from G(x)
in both axis-aligned directions, such that the minimal
distance from x′ to all the other points inside the block

c© 2012 The Author(s)
c© 2012 The Eurographics Association and Blackwell Publishing Ltd.

R. Chen & C. Gotsman / Parallel Blue-noise Sampling by Constrained Farthest Point Optimization

of 3×3 cells centered at G(x) does not decrease, then
δ(X) does not decrease.

3.3. Parallel CFPO

The greatest advantage of providing a local characteriza-
tion of a FPD is that it paves the way to easy paralleliza-
tion. According to the Convergence Theorem, we should
choose the size of the local neighborhood S to be smaller
than 2(L− δ)+L = 3L− 2δ (L is the grid cell size). How-
ever, this size is dependent on δ(X), requiring keeping track
of this global quantity throughout the algorithm, which could
be difficult in a parallel implementation. Luckily, this can be
avoided due to the following theorem, whose proof appears
in Appendix C.

Parallelization Theorem
Let X be a set of n of points located on the unit torus.
Partition the domain into a uniform grid G of square
cells of size L. If L is such that L > ∆(n) and a sub-
set P of points of X are (sequentially) moved to new
positions while satisfying the conditions of the Con-
vergence Theorem taking δ = ∆(n), then δ(X) cannot
decrease as a result. If P is such that all points in P are
at least three cells distant from each other (in each of
the axis directions), then they can move to their new
positions in parallel without decreasing δ(X).

Thanks to this theorem, we can parallelize CFPO eas-
ily. Given n, G is taken to be the grid whose cell size is
L > ∆(n), and S(x) is taken to be the square of constant
size 3L−2∆(n). We then partition G into 9 = 3×3 disjoint
subsets of cells, each subset formed by taking every third
cell in each of the x- and y- directions (see Fig. 4), with the
appropriate shifts. Then we optimize the points in 9 sepa-
rate phases, where in each phase the points contained in any
of the 9 subsets may be optimized in parallel using CFPO.
Note that the bucket data structure conforming to the grid G
must be updated after each phase.

Figure 4: Partitioning the grid G into 9 = 3× 3 disjoint
color-coded subsets of cells.

3.4. Local constrained farthest point

The core of Algorithm CFPO is the local optimization for
each point, LocalCFPO(Y (x),S(x)), i.e. find the point in-
side the constraint square S(x) such that the minimal dis-
tance from it to Y (x) is maximized. This is essentially the
well-known largest empty circle problem [Tou83] and this
optimal point is either a vertex of the Voronoi diagram of
Y (x) (i.e. the circumcenter of some triangle in the Delau-
nay triangulation of Y (x)), or the intersection of an edge
of the Voronoi diagram of Y (x) with S(x), or some corner
of S(x). The complexity of finding the constrained farthest
point is O(m logm + k logm), where m is the size of Y (x)
and k is the number of intersections between S(x) and the
edges of the Voronoi diagram, based on the fact that it takes
O(m logm) time to compute the Voronoi diagram or its dual
- the Delaunay triangulation. Thanks to the simplicity of the
square constraints, we can easily compute the intersection
between the Voronoi edges and P, thus reduce the complex-
ity to O(m logm). To avoid the overhead of maintaining a
complex data structure, we use the giftwrapping algorithm
of Chand and Kapur [CK70] to compute the local Delau-
nay triangulation of Y (x). Although its complexity is O(m2),
as opposed to the O(m logm) complexity of the more mod-
ern algorithms, it has a very simple implementation which
makes it preferable when the size of the input point set m is
very small (our scenario). It is easy to see that for each De-
launay triangle of Y (x), we must check the following con-
ditions on its circumcircle CC: 1. The center of CC is con-
tained in S(x) or it encloses a circle C whose center is on the
boundary of S(x), 2. The radius of CC or C increases. Based
on these observations, we have the following algorithm:

Algorithm 2: Algorithm LocalCFPO(Y , S)

1 rmax←−1
2 Compute T : the Delaunay triangulation of Y
3 foreach triangle t ∈ T with vertices p1, p2, p3 do
4 (cc,cr) = center and radius of t’s circumcircle
5 if cc /∈ S then
6 c← intersect(dual(t),S)

// dual(t) is defined as the dual Voronoi edges of
t’s 3 edges. Among the corners of S and the
intersection points between dual(t) and S, use
the one closest to cc. (see inset figure)

7 cc← c
8 r← min

i=1,2,3
‖pi− c‖

9 if r < cr then
10 cr← r
11 else
12 cr← 0
13 if cr > rmax then
14 rmax← cr,c f p← cc
15 return c f p

c© 2012 The Author(s)
c© 2012 The Eurographics Association and Blackwell Publishing Ltd.

R. Chen & C. Gotsman / Parallel Blue-noise Sampling by Constrained Farthest Point Optimization

180 360 5400

0.5

1

1.5

2

180 360 5400

0.5

1

1.5

2

180 360 5400

0.5

1

1.5

2

180 360 5400

0.5

1

1.5

2

180 360 5400

0.5

1

1.5

2

180 360 5400

0.5

1

1.5

2

δ(X) = 0.011, δ̄(X) = 0.470 δ(X) = 0.004, δ̄(X) = 0.558 δ(X) = 0.052, δ̄(X) = 0.823 δ(X) = 0.566, δ̄(X) = 0.874 δ(X) = 0.650, δ̄(X) = 0.894 δ(X) = 0.899, δ̄(X) = 0.925

Random distribution Initial uniform distribution 1 iteration 2 iterations 3 iterations 20 iterations

Figure 5: Constrained farthest point optimization (CFPO) of a set of 4,096 points. The second row shows the evolution of the
spectrum of the point set, the red curve and the blue curve correspond to the radially averaged power spectra and anisotropy
respectively.

3.5. Point set initialization

It remains to show how to generate an initial point set for Al-
gorithm CFPO. The easiest way is simply randomly gener-
ate n points in the domain (the unit torus). However in prac-
tice, a randomly generated point set is always non-uniformly
distributed, some regions are overcrowded while some are
too sparse, as shown in Fig. 5. This is bad for a number of
reasons. First, it causes CFPO to converge slower, since a
large proportion of the points need to move a longer distance
from their initial positions to their final (limit) positions.
Second, it damages the load balance of parallel CFPO, since
some processors need to optimize many points inside their
cells while some processors are idle because of empty cells.
Last, but most importantly, this initial point set may lead the
algorithm to point distributions violating the local covering
property. To avoid all these problems, using the fact that the
points in a FPD are always uniformly distributed anyway,
we exploit the uniform grid cell partition G of the domain
for this purpose and randomly generate a very small number
of points in each cell. We achieve this by defining G to have
approximately m = 0.8n cells in total. One point is randomly
located within each cell. The remaining n−m points are ran-
domly located in n−m random cells of G. Thus every cell
contains either one or two points. Since L - the size of the
grid cell - is chosen to be slightly larger than ∆(n) (the upper
bound on δ(X), the local covering property will be satisfied
in the limit. Fig. 7 shows that this uniform random initial-
ization causes CFPO to converge to a FPD no slower than
FPO. Fig. 5 shows the evolution of the CFPO algorithm on
4,096 points.

To summarize, the Convergence Theorem guarantees that
CFPO converges to a limit. The Local Characterization The-
orem then guarantees that this limit is a FPD. The Paral-
lelization Theorem furthermore guarantees that the parallel
version of CFPO will also result in a FPD.

4. Experimental Results

In this section, we demonstrate the efficiency of our CFPO
algorithm and the quality of its results. We compare CFPO
with FPO [SHD11], brute-force dart throwing (DT), bound-
ary sampling (BS) - a dart throwing variant proposed by
Dunbar and Humphreys [DH06], CCDT [XLGG11] and
CCVT [BSD09], whose C++ implementations were kindly
provided by the respective authors. Our experiments were
run on a PC with an Intel i7-i2720QM @ 2.2GHz 4-core
CPU with 8GB RAM and an NVIDIA Quadro 2000M GPU.

As guaranteed by our theorems, the CFPO algorithm
eventually converges to point sets with the same excellent
blue noise properties (FPD), exactly as the FPO algorithm
does. Fig. 6 shows a comparison of the standard spectral
measures - power spectrum, radially averaged power spec-
trum and anisotropy - and the relative minimum distance
measures δ(X) and δ̄(X) averaged over ten sets of 4,096
points each. From the results, we can see that FPO and
CFPO produce the best blue-noise distributions among all
algorithms as their power spectrum have residual peak de-
caying slower than all the other algorithms, and BS also
produces blue-noise distribution with more structured power
spectra than brute-force dart throwing. The point distribu-
tions produced by CCDT and CCVT are inferior to DT
as the residual peaks in their power spectrum decays much
faster than that of DT. Note that in Step 5 of Algorithm
CFPO, we can take the containing grid cell as the constraint
squares, so that Step 7 can be skipped and the number of
phases in parallel CFPO can be reduced to 4, thereby reduc-
ing the complexity of the algorithm. Since this simplification
violates the conditions of the Local Characterization Theo-
rem, the resulting point set is not guaranteed to be a FPD,
but the last row of Fig. 6 shows that the result of simplified
CFPO still possesses good blue noise properties except for
a small peak in the anisotropy at a low frequency.

c© 2012 The Author(s)
c© 2012 The Eurographics Association and Blackwell Publishing Ltd.

R. Chen & C. Gotsman / Parallel Blue-noise Sampling by Constrained Farthest Point Optimization

Point distribution Power spectra Radially averaged power spectra Anisotropy

180 360 5400

0.5

1

1.5

2

180 360 540

-10

-5

0

5

10

δ(X) = 0.666, δ̄(X) = 0.818 DT

180 360 5400

0.5

1

1.5

2

180 360 540

-10

-5

0

5

10

δ(X) = 0.799, δ̄(X) = 0.863 BS

180 360 5400

0.5

1

1.5

2

180 360 540

-10

-5

0

5

10

δ(X) = 0.655, δ̄(X) = 0.844 CCDT

180 360 5400

0.5

1

1.5

2

180 360 540

-10

-5

0

5

10

δ(X) = 0.710, δ̄(X) = 0.854 CCVT

180 360 5400

0.5

1

1.5

2

180 360 540

-10

-5

0

5

10

δ(X) = 0.925, δ̄(X) = 0.934 FPO

180 360 5400

0.5

1

1.5

2

180 360 540

-10

-5

0

5

10

δ(X) = 0.928, δ̄(X) = 0.931 CFPO

180 360 5400

0.5

1

1.5

2

180 360 540

-10

-5

0

5

10

δ(X) = 0.924, δ̄(X) = 0.930 simplified CFPO

Figure 6: Spectral analysis point distributions generated with different algorithms. The graphs were averaged over 10 sets of
4,096 points.

c© 2012 The Author(s)
c© 2012 The Eurographics Association and Blackwell Publishing Ltd.

R. Chen & C. Gotsman / Parallel Blue-noise Sampling by Constrained Farthest Point Optimization

We now discuss the relative minimum distance measures
proposed by Schlömer et al [SHD11]. Like their LFPO al-
gorithm, our CFPO algorithm moves points only locally,
therefore the relative global minimum distance δ(X) in-
creases slower than in FPO in the first few iterations. How-
ever, due to the uniform initialization, CFPO achieves the
same δ(X) as FPO soon after this. And using the same con-
vergence criteria for both algorithms, CFPO requires more
or less the same number of iterations as FPO, albeit with
a 8× increase in speed. Fig. 7 shows the convergence of
CFPO compared to that of CCDT, FPO and LFPO. The
results are visually indistinguishable from FPO, as shown
in Fig. 6. In practice both CFPO and FPO converge to a
rigid FPD - where each point is a unique farthest point from
the remaining point set, although the Local Characterization
Theorem does not guarantee this rigidity property. It is easy
to see that a rigid FPD is also a maximal Poisson-disk sam-
ple [EDP∗11,EMP∗12] with radius δ(X), however the latter
possess blue noise spectra of quality similar to dart throw-
ing, which is far inferior to FPD. It is interesting to note that
after very few, e.g. 2 or 3 iterations, CFPO produces dis-
tributions with very similar power spectrum to that of dart
throwing. Fig. 5 shows the evolution of the power spectrum
of the point set when CFPO is running.

Fig. 8 shows the runtime of CFPO in different configu-
rations, compared to CCDT, FPO and LFPO. It is evident
that CFPO has linear complexity, which can be derived di-
rectly from the fact that the complexity of the constrained
farthest point optimization for each point is a constant in-
dependent of the size of the entire point set. The graph also
shows that LFPO actually runs a little slower than FPO, and
CFPO runs 8× times faster than FPO.

0 5 10 15 20 25 30 35
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of iterations

δ(
X

)

CCDT
FPO
LFPO
CFPO

Figure 7: Convergence of different blue noise sampling al-
gorithms, averaged over 10 sets of 4,096 points.

We parallelized the CFPO algorithm on a multi-core CPU
using OpenMP [OPE11]. An atomic directive is used to
build and update the uniform grid data structure for parti-
tioning the point set. Among all the threads, only the point
set X and the grid data structure G is shared. Fig. 8 shows the
runtime of CFPO using 1 and 4 cores, and Fig. 9 shows the
speedup on a different machine containing two Intel Xeon
E5420@2.5 GHz 4-core CPUs, for point sets of different

1.024 2.048 3.072 4.096 5.12 6.144 7.168 8.192 9.216 10.24

x 10
5

0

5

10

15

20

25

30

35

Number of points

Se
co

nd
s

FPO
LFPO
CFPO with 1 core
CFPO with 4 cores
CFPO with GPU
CCDT

Figure 8: Runtime of different sampling algorithms.

1 2 3 4 5 6 7 8
1

2

3

4

5

6

7

8

Number of CPU cores

Sp
ee

du
p

0.1M points
0.5M points
 1M points
 5M points

Figure 9: Speedup of parallel CFPO using multi-core CPU.

sizes. As can be seen, parallel CFPO gives an almost per-
fect speedup over the sequential version.

Since the CFPO algorithm is extremely simple, we im-
plemented a parallel version also on the GPU using CUDA
[NVI11]. Fig. 8 shows that parallel CFPO on our GPU runs
75× faster than FPO. Each iteration of parallel CFPO on
our NVIDIA Quadro 2000M GPU takes 0.39 seconds for
1M points, while Wei [Wei08] reports 0.25 seconds for the
parallel dart-throwing algorithm on the NVIDIA Geforce
8800 GTX and Ebeida et al. [EMP∗12] report 1.0 second
for the parallel maximal Poisson-disk sampling algorithm
on the NVIDIA GTX 460. Note that it takes tens of itera-
tions for CFPO to converge to FPD. However, both paral-
lel dart-throwing [Wei08] and parallel maximal Poisson-disk
sampling [EMP∗12] produce results with similar quality to
that of brute-force dart throwing, which are far inferior to
CFPO. In situations where speed is critical or a more flat
high frequency in the power spectrum, like that produced by
dart throwing, is preferred, we can stop CFPO after very few
(2 or 3) iterations. In this configuration, CFPO is 3-5 times
slower than parallel dart throwing [Wei08], and is close to
parallel maximal Poisson-disk sampling [EMP∗12] .

Like FPO, there are some stable but regular configura-
tions for CFPO, such as the square grid and regular hexago-
nal grid. In these configurations, each point is a farthest point

c© 2012 The Author(s)
c© 2012 The Eurographics Association and Blackwell Publishing Ltd.

R. Chen & C. Gotsman / Parallel Blue-noise Sampling by Constrained Farthest Point Optimization

from the remaining points. However, since FPO and CFPO
start from an essentially random initial distribution and use a
similar optimization scheme for the objective function δ(X),
where each time δ(X) is maximized by optimizing two vari-
ables (the coordinates of the active point) while keeping all
the other variables (the remaining points) fixed, FPO and
CFPO in practice always converge to irregular local maxi-
mums of δ(X).

5. Conclusion

Sampling plays a fundamental role in many computer graph-
ics applications. In this paper, we proposed a very simple,
yet efficient, method for generating point distributions with
excellent blue noise spectra. The method is based on con-
strained farthest point optimization, where each point is iter-
atively moved to the constrained local farthest point. This is
shown to be equivalent to an algorithm which does exactly
the same, but globally, thus is optimal. The locality allows
for very easy parallelization.

The main limitation of the FPD framework is that it is
restricted to uniform point densities. Therefore neither FPO
nor our CFPO algorithms can be directly extended to non-
uniform point distributions.

Future work includes generalization to higher dimensions
and to non-Euclidean metric spaces such as manifold sur-
faces.

6. Acknowledgements

This research project was financially supported by the state
of Lower-Saxony and the Volkswagen Foundation, Han-
nover, Germany. R. Chen is partially supported by the Ali
Kaufmann postdoctoral fellowship at the Technion.

References

[BSD09] BALZER M., SCHLÖMER T., DEUSSEN O.: Capacity-
constrained point distributions: a variant of Lloyd’s method.
ACM Trans. Graph. 28 (July 2009), 86:1–86:8. 2, 6

[CK70] CHAND D. R., KAPUR S. S.: An algorithm for convex
polytopes. J. ACM 17, 1 (Jan. 1970), 78–86. 5

[Coo86] COOK R. L.: Stochastic sampling in computer graphics.
ACM Trans. Graph. 5 (Jan. 1986), 51–72. 2

[DH06] DUNBAR D., HUMPHREYS G.: A spatial data structure
for fast Poisson-disk sample generation. ACM Trans. Graph. 25,
3 (July 2006), 503–508. 6

[EDP∗11] EBEIDA M. S., DAVIDSON A. A., PATNEY A.,
KNUPP P. M., MITCHELL S. A., OWENS J. D.: Efficient max-
imal Poisson-disk sampling. ACM Trans. Graph. 30, 4 (Aug.
2011), 49:1–49:12. 2, 8

[EMP∗12] EBEIDA M. S., MITCHELL S. A., PATNEY A.,
DAVIDSON A., OWENS J. D.: A simple algorithm for maxi-
mal Poisson-disk sampling in high dimensions. Comput. Graph.
Forum 31, 2 (May 2012). 2, 8

[LD06] LAGAE A., DUTRĹĘ P.: An alternative for Wang tiles:
colored edges versus colored corners. ACM Trans. Graph. 25, 4
(2006), 1442–1459. 2

[LD08] LAGAE A., DUTRĹĘ P.: A comparison of methods for
generating Poisson disk distributions. Comput. Graph. Forum
27, 1 (2008), 114–129. 2

[Llo82] LLOYD S. P.: Least squares quantization in PCM. IEEE
Trans. on Inf. Theory 28, 2 (1982), 129–136. 2

[LNW∗10] LI H., NEHAB D., WEI L.-Y., SANDER P. V., FU
C.-W.: Fast capacity constrained Voronoi tessellation. In Proc.
Symp. on Interactive 3D Graphics and Games (2010), I3D ’10,
ACM, pp. 13:1–13:1. 2

[MF92] MCCOOL M., FIUME E.: Hierarchical Poisson disk sam-
pling distributions. In Proc. Graphics interface (1992), pp. 94–
105. 2

[NVI11] NVIDIA CORPORATION: CUDA Programming Guide
4.0. 2011. 8

[OPE11] OPENMP ARB: OpenMP API Specifiications for Par-
allel Programming. 2011. 8

[SCM00] SHADE J., COHEN M. F., MITCHELL D. P.: Tiling
layered depth images. pp. 231–242. 2

[SD95] SU P., DRYSDALE R. L. S.: A comparison of sequen-
tial Delaunay triangulation algorithms. In Proc. Symp. Computa-
tional Geometry (1995), SCG ’95, ACM, pp. 61–70. 3

[SHD11] SCHLÖMER T., HECK D., DEUSSEN O.: Farthest-
point optimized point sets with maximized minimum distance.
In Proc. SIGGRAPH Symp. High Performance Graphics (2011),
HPG ’11, ACM, pp. 135–142. 1, 2, 3, 4, 6, 8, 11

[Tou83] TOUSSAINT G.: Computing largest empty circles with
location constraints. Int. J. Comput. Inf. Sci. 12, 5 (1983), 347–
358. 5

[Uli87] ULICHNEY R.: Digital halftoning. MIT Press, 1987. 1

[Wei08] WEI L.-Y.: Parallel Poisson disk sampling. ACM Trans.
Graph. 27 (August 2008), 20:1–20:9. 2, 8

[XLGG11] XU Y., LIU L., GOTSMAN C., GORTLER S. J.:
Capacity-constrained Delaunay triangulation for point distribu-
tions. Comput. Graph. 35 (June 2011), 510–516. 2, 6

Appendix A

Local Characterization Theorem. Let X be a point set on
the unit torus R, and C(z,r) be the closed disk centered at z
with radius r, then X is a FPD with distance δ = δ(X) if and
only if ∀x ∈ X ,∃D = D(x)⊆ R, such that

Property 1 (Local covering property):⋃
z∈D∩X

C(z,δ)⊇ S

Property 2 (Local farthest point property): x is the farthest
point of Y (x) in S

where Y (x) = D∩ (X\{x}) is the subset of X\{x} inside D,
S = S(x) = D(x)	δ, and 	 is the erosion operator.

Proof. Let d(·) be the distance function between two point
sets.

The "only if" direction:

c© 2012 The Author(s)
c© 2012 The Eurographics Association and Blackwell Publishing Ltd.

R. Chen & C. Gotsman / Parallel Blue-noise Sampling by Constrained Farthest Point Optimization

First we prove the global covering property of a FPD.

R =
⋃

x∈X
C(x,δ)

where R is the domain, i.e. the unit torus.

If ∃p ∈ R such that p /∈
⋃

x∈X C(x,δ), then ∀x ∈ X ,
p /∈ C(x,δ) ⇒ ‖p− x‖ > δ ⇒ d(p,X) > δ. Then for any
y ∈ X , such that d(y,X\{y}) = δ, we have d(y,X\{y}) =
δ < d(p,X) ≤ d(p,X\{y}). Thus y does not have the far-
thest point property in X , contradicting the fact that X is a
FPD.

To prove properties 1 and 2, we define D = D(x) to be
Ĉ(x,2δ), the open disk centered at x with radius 2δ. Now
∀p ∈ S, we have

p /∈C(y,δ),∀y ∈ X ∩ (R\D)
p ∈ R =

⋃
y∈X C(y,δ)

}
⇒ p ∈

⋃
y∈X∩D

C(y,δ)

This proves property 1.

If X is a FPD then ∀p ∈ C(x,δ) ⊆ R,d(p,X\{x}) ≤
d(x,X\{x}), and equality holds when p = x.

For any p∈ S such that ‖p− x‖> δ, according to property
1, d(p,Y (x))≤ δ.

⇒∀p ∈ S,d(p,Y (x))

≤max{ max
p∈S,p−x>δ

d(p,Y (x)), max
p∈S,p−x≤δ

d(p,Y (x))}

≤max{δ, max
p∈C(x,δ)

d(p,Y (x))} ≤ d(x,X\{x})

and equality holds when p = x.

By definition, x ∈ D is the farthest point of Y (x) among
all points of S.

The "if" direction:

Now we assume properties 1 and 2, and prove that X is an
FPD.

First we prove that property 1 implies the global covering
property:

R =
⋃

x∈X
S(x)

Assume ∃q ∈ R such that q /∈
⋃

x∈X S(x)

Let x ∈ X such that d(q,X) = ‖q− x‖, and let p ∈ qx∩
C(x,δ+ ε), where ε > 0. Then on the one hand, using prop-
erty 1,

d(p,Y (x))≤ δ

⇒∃y ∈ Y (x),‖p− y‖ ≤ δ

⇒‖q− y‖ ≤ ‖q− p‖+‖p− y‖
≤ ‖q− x‖− (δ+ ε)+δ = ‖q− x‖− ε < ‖q− x‖

On the other hand, since y ∈ Y (x) ⊆ X , then ‖q− x‖ =
d(q,X)≤ ‖q− y‖, which is a contradiction.

Now ∀x ∈ X , the global covering property implies

∀p /∈ S(x), p ∈
⋃

y∈X\{x} S(y)

⇒∃y ∈ X\{x}, p ∈ S(y)
property1
=====⇒ d(p,Y (y))≤ δ

⇒ d(p,X\{x})≤ d(p,Y (y))≤ δ

∀p∈ S(x),

{
‖p− x‖> δ

property1
=====⇒ d(p,Y (x))≤ δ

‖p− x‖ ≤ δ
property2
=====⇒ d(p,Y (x))≤ d(x,Y (x))

and d(x,Y (x))≥ d(x,X\{x})≥ δ, therefore,

d(p,X\{x})≤max

max

p∈S(x),‖p−x‖>δ

d(p,Y (x))

max
p∈S(x),‖p−x‖≤δ

d(p,Y (x))

≤max{δ,d(x,Y (x))}= d(x,Y (x))

Thus ∀p ∈ R,

d(p,X\{x})≤max
{

maxp /∈S(x) d(p,X\{x})
maxp∈S(x) d(p,X\{x})

≤max{δ,d(x,Y (x)}= d(x,Y (x))

equality holds when p = x, so x is the farthest point of
X\{x}, implying that X is a FPD.

Appendix B

Convergence Theorem. Let X be a planar point set with
minimal distance δ = δ(X). Partition the domain into a uni-
form grid G of square cells of size L > δ. Denote by G(x) the
cell containing x. If we replace any point x ∈ X with another
point x′ inside or no further than L− δ away from G(x) in
both axis-aligned directions, such that the minimal distance
from x′ to all the other points inside the block of 3×3 cells
centered at G(x) does not decrease, then δ(X) does not de-
crease.

Proof. Let Y ⊂ X be the subset of the points, excluding x,
contained in the 3×3 cells centered g = G(x). As shown in
Fig. 10, we are given that{ ∣∣x′−g

∣∣
x ≤ L−δ∣∣x′−g
∣∣
y ≤ L−δ

and

d(x′,Y)≥ d(x,Y)

where the distance between a point and a cell is defined
to be 0 if the cell contains the point, otherwise the dis-
tance from the point to the cell boundary, and |·|x and |·|y
denote distance in x and y directions, respectively. Then
∀p ∈ X\{Y ∪{x}},∣∣x′− p

∣∣≥min{
∣∣x′− p

∣∣
x ,
∣∣x′− p

∣∣
y} ≥ L− (L−δ) = δ

therefore

d(x′,X\{x}) = min{d(x′,Y),d(x′,X\(Y ∪{x}))}
≥min{d(x,Y),δ}= δ

c© 2012 The Author(s)
c© 2012 The Eurographics Association and Blackwell Publishing Ltd.

R. Chen & C. Gotsman / Parallel Blue-noise Sampling by Constrained Farthest Point Optimization

Figure 10: Proof of Convergence Theorem.

Let X ′ be the new point set after x′ replaces x, and δ
′ =

δ(X ′). Then,

δ
′ = min

p,q∈X′,p 6=q
|p−q|

= min{ min
p,q∈X′\{x′},p 6=q

|p−q| , min
p∈X′\{x′}

∣∣x′− p
∣∣}

= min{ min
p,q∈X\{x},p 6=q

|p−q| , min
p∈X\{x}

∣∣x′− p
∣∣}

≥min{δ,δ}= δ

Appendix C

Parallelization Theorem. Let X be a set of n of points lo-
cated on the unit torus. Partition the domain into a uniform
grid G of square cells of size L. If L is such that L > ∆(n)
and a subset P of points of X are (sequentially) moved to
new positions while satisfying the conditions of the Conver-
gence Theorem taking δ = ∆(n), then δ(X) cannot decrease
as a result. If P is such that all points in P are at least three
cells distant from each other (in each of the axis directions),
then they can move to their new positions in parallel without
increasing δ(X).

Proof. It is well known [SHD11] that for any point set X
containing n points, δ = δ(X)< ∆(n) = ∆. Thus choosing L
such that L > ∆ and using a strip of width L−∆ instead of
L−δ around the cell guarantees that L> δ and

∣∣x′−g
∣∣≤ L−

δ, no matter what δ is in practice. So applying this reasoning
to each point replacement in turn inductively implies that δ

cannot decrease.

For the parallel movement case, since
max{

∣∣x′−g
∣∣
x ,
∣∣x′−g

∣∣
y} ≤ L − δ ≤ L, each point is

constrained to move inside the 3×3 neighboring cells only.
If we consider the subsets of points contained in 3× 3
neighborhoods centered at cells which are three cells distant
from each other (e.g. the monochromatic cells in Fig. 4),
then these subsets are all disjoint and each point in their
union maintains the same neighborhood set Y despite the
movement of any other point in the union. This allows all
such points to move to new positions in parallel without
affecting each other.

c© 2012 The Author(s)
c© 2012 The Eurographics Association and Blackwell Publishing Ltd.

