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The Delaunay triangulation of a planar point set is a fundamental construct in computa-
tional geometry. A simple algorithm to generate it is based on flips of diagonal edges in
convex quads. We characterize the effect of a single edge flip in a triangulation on the
geometric Laplacian of the triangulation, which leads to a simpler and shorter proof of a
theorem of Rippa that the Dirichlet energy of any piecewise-linear scalar function on a tri-
angulation obtains its minimum on the Delaunay triangulation. Using Rippa’s theorem, we
provide a spectral characterization of the Delaunay triangulation, namely that the spectrum
of the geometric Laplacian is minimized on this triangulation. This spectral theorem then
leads to a simpler proof of a theorem of Musin that the harmonic index also obtains its
minimum on the Delaunay triangulation.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

1.1. The Delaunay triangulation

The Delaunay triangulation of a set of points in the plane, and its dual – the Voronoi diagram – are probably one of
the most basic spatial structures in computational geometry. Their underlying theory has been extensively developed, and
a vast number of practical applications are based on them. The interested reader is referred to one of the many books and
surveys on the topic (e.g. Aurenhammer, 1991; Okabe et al., 1992) for more details.

The Delaunay triangulation has been shown to possess a number of optimality properties. On an intuitive level, the
triangles in this triangulation are the “fattest” possible. On a quantitative level, it maximizes the minimal angle in the
triangulation. A more geometric characterization is the “empty circle” property, namely, that any circle through three points
forming a Delaunay triangle does not contain any other points. Lawson (1972) showed that any convex quadrilateral formed
by two adjacent triangles which fail to satisfy the empty circle property may be corrected by “flipping” the diagonal edge
of the quadrilateral, common to the two triangles, to the opposite diagonal. This operation is called a Delaunay flip and the
resulting edge is called a Delaunay edge. Furthermore, Delaunay flipping will always converge to a Delaunay triangulation.
It is easy to see that the empty circle property implies that an (interior) edge of a triangulation is Delaunay if and only if
α + β � π , where α and β are the two unique angles opposite the edge in the triangulation. This is equivalent to each of
the conditions cotα + cot β � 0 or sin(α + β) � 0.
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1.2. Dirichlet energy

The Dirichlet energy of a scalar function f on a planar domain Ω is:

E D( f ) = 1

2

∫
Ω

|∇ f |2 dΩ

A triangulation T of a set of n points in the plane, having vertex set V and edge set E , and a set of scalar values
f = ( f1, . . . , fn)t on V , defines a piecewise-linear function over the triangulation in a natural way. Pinkall and Polthier
(1993) provided an explicit formula for the Dirichlet energy of this function as a sum over the triangles of T :

E D( f ) = 1

4

∑
(i, j,k)∈T

[
cotαi j( f i − f j)

2 + cotα jk( f j − fk)
2 + cotαki( fk − f i)

2] (1)

where αi j is the angle opposite the oriented edge (i, j). Rearranging the sum in (1) results in the same Dirichlet energy
expressed as a sum over the edges of T :

E D( f ) = 1

2

∑
(i, j)∈E

wij( f i − f j)
2

wij = 1

2
(cotαi j + cotα ji) (2)

For a boundary edge, only one cotangent is used in the definition of wij .
The quadratic energy (2) may be also written in matrix notation using the n × n geometric Laplacian matrix L (which is

the piecewise-linear approximation to the continuous Laplacian operator):

E D( f ) = 1

2
f t L f

where

Li j =

⎧⎪⎨
⎪⎩

0 j /∈ N(i)

−wij j ∈ N(i)∑
k∈N(i) wik j = i

and N(i) is the set of vertices neighboring to vertex i. Equivalently:

L = Bt D B

where B is the m × n incidence matrix of the triangulation:

Bev =
⎧⎨
⎩

0 e /∈ E

1 e ∈ E, v = l(e)

−1 e ∈ E, v = r(e)

e represents an edge, and v a vertex of the triangulation. l(e) and r(e) are the “left” and “right” vertices of the edge e in
some consistent orientation of the triangles. D is the m × m diagonal matrix D = diag(wii) and m is the number of edges
in the edge set E of the triangulation.

L is known to be symmetric and positive semi-definite (SPSD) (even though the wij have mixed signs). It is the geometric
analog of the combinatorial Laplacian commonly used in spectral graph theory (Biggs, 1993; Chung, 1997), where the
weights are taken to be wij = 1. The geometric Laplacian is particularly appealing since the products Lx and Ly for the
vectors of x and y coordinates of the triangulation vanish at the interior vertices, namely, they satisfy the Laplace equation or
are harmonic subject to so-called Dirichlet boundary conditions. Harmonicity means the coordinates strike a delicate weighted
balance, or, equivalently, minimize the Dirichlet energy subject to the boundary conditions. For this reason the weights wij
as defined in (2) may be used as barycentric coordinates in many mesh processing scenarios. It is also noteworthy that

A = xt Lx = yt Ly

where A is the area of the triangulation.
The spectrum of the combinatorial Laplacian has been shown to reflect many basic properties of its underlying graph. In

particular, the smallest eigenvalue of the combinatorial Laplacian is zero (with eigenvector (1, . . . ,1)t ), and the magnitude
of the second smallest eigenvalue is related to the “mixing” properties of the graph (Chung, 1997). Namely, a smaller
second eigenvalue indicates that a random walk on the graph will converge more rapidly to its stationary distribution. The
eigenvectors of the Laplacian have also been used for embedding and clustering applications (Hall, 1970; Koren, 2003). It
is interesting to note that, as opposed to the two coordinate vectors which satisfy Lx = Ly = 0 on interior vertices, the
eigenvector corresponding to the smallest non-zero eigenvalue is typically not harmonic on all vertices, yet manages to
attain a smaller Dirichlet energy than these coordinate vectors.
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Fig. 1. Delaunay edge flip in a convex quadrilateral. P2–P4 is a Delaunay edge.

2. Rippa’s theorem

Rippa (1990) proved the following important property of the Delaunay triangulation: The Delaunay triangulation min-
imizes (among all possible triangulations) the “roughness” of the Piecewise Linear Interpolating Surface (PLIS) resulting
from any fixed set of scalar function values associated with the points. This “roughness” of the PLIS is none other than
its Dirichlet energy. Rippa gave quite an elaborate proof, which was subsequently shortened by Powar (1992). Glickenstein
(2007) generalized the theorem to regular triangulations (of which the Delaunay triangulation is a special case), and again
provided a lengthy trigonometric proof. We now prove a Key Lemma which characterizes the effect of a Delaunay edge flip
on the geometric Laplacian matrix of a triangulation. This will lead to a much simpler proof of Rippa’s theorem.

Key Lemma. Let T1 be a non-Delaunay triangulation of a set of points and T2 the same triangulation after one Delaunay edge flip.
Let L1 and L2 be the geometric Laplacians of T1 and T2 respectively. Then �L = L1 − L2 is a symmetric positive semi-definite (SPSD)
matrix with unit rank.

Proof. Consider the convex quadrilateral P = (P1, P2, P3, P4), within which the Delaunay edge flip occurred, as in Fig. 1.
From (1) it is evident that the difference between the Dirichlet energies of T1 and T2 is due only to the contributions

of the four triangles related to P . Thus �L contains only a 4 × 4 non-zero sub-matrix determined by P , while all other
elements vanish. So we may focus our attention on P , and restrict T1 and T2 to two triangles each, as in Fig. 1. For any
scalar function f = ( f1, . . . , f4)

t defined on the 4 vertices of P , let E1 and E2 be the Dirichlet energies of the triangulations
T1 and T2, respectively. Thus �E = E1 − E2 = f t(�L) f , where �L is a 4 × 4 matrix.

We first observe that if no three of the four vertices of P are co-linear (i.e. none of the triangles are degenerate), then
for any f2, f3, f4, there always exists some f1, such that the four points (Pi .x, Pi .y, f i), 1 � i � 4, are co-planar in R3. For
this configuration obviously �E = 0 (since the edge flip does not change the planarity of the quad). Hence the co-rank of
�L is 3, and �L has unit rank. Thus, by simple linear algebra, there must exist a vector a = (a1,a2,a3,a4)

t and scalar b
such that �L = b(a · at). Note that a · at is always SPSD, so �L is SPSD iff b � 0 and also �L11 � 0 iff b � 0.

Denote by �L11 the top left entry of �L. Direct computation of the Dirichlet energy leads to

2�L11 = cot δ1 − cotβ1 + cot δ2 − cotα1 + cotα + cot β (3)

using the notation α = α1 + α2 and β = β1 + β2.
Simple trigonometry shows that:

cosα + sinα cot δ1 = sin(δ1 + α)

sin δ1
= ‖P4 − P3‖

‖P4 − P1‖ = sinβ2/ sin(α2 + β2)

sinβ1/ sin(α1 + β1)
= sinβ2 sin(α1 + β1)

sinβ1 sin(α2 + β2)

cosβ + sinβ cot δ2 = sin(δ2 + β)

sin δ2
= ‖P2 − P3‖

‖P2 − P1‖ = sinα2/ sin(α2 + β2)

sinα1/ sin(α1 + β1)
= sinα2 sin(α1 + β1)

sinα1 sin(α2 + β2)

Leading to

cotα + cot δ1 = sinβ2 sin(α1 + β1)

sinβ1 sin(α2 + β2) sinα
(4)

cotβ + cot δ2 = sinα2 sin(α1 + β1)

sinα1 sin(α2 + β2) sinβ
(5)

Substituting (4) and (5) into (3) eliminates δ1 and δ2:

2�L11 = sinβ2 sin(α1 + β1)

sinβ1 sin(α2 + β2) sinα
+ sinα2 sin(α1 + β1)

sinα1 sin(α2 + β2) sinβ
− sin(α1 + β1)

sinα1 sinβ1
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= sin(α1 + β1)

sinβ1 sin(α2 + β2) sinα1

[
sinα1 sinβ2

sinα
+ sinβ1 sinα2

sinβ
− sin(α2 + β2)

]

Using the trigonometric identity:

sin x sin(y − z) − sin(x + z) sin y = − sin(x + y) sin z

and noting that any angle or sum of any two angles inside a triangle always has positive sine, we have

sign(�L11) = sign

[
sinα1 sinβ2

sinα
+ sinβ1 sinα2

sinβ
− sin(α2 + β2)

]

= sign

[
sinα1 sinβ2

sinα
+ sinα2 sinβ1 − sin(α2 + β2) sin β

sinβ

]

= sign

[
sinα1 sinβ2

sinα
+ − sin(α2 + β) sinβ2

sinβ

]

= sign
[
sinα1 sinβ − sinα sin(α2 + β)

]
= sign

[− sinα2 sin(α + β)
] = sign

[− sin(α + β)
]

Leading to

sign(b) = sign(�L11) = sign
[− sin(α + β)

]
Thus

T2 is Delaunay ⇔ α + β � π ⇔ b � 0 ⇔ �L is SPSD �
We are now in the position to provide a very simple proof of Rippa’s theorem.

Theorem. (See Rippa, 1990.) The Dirichlet energy of any piecewise-linear scalar function f on a triangulation obtains its minimum on
the Delaunay triangulation.

Proof. By Lawson’s result (Lawson, 1972), it suffices to prove that the Dirichlet energy of a triangulation never increases
following a Delaunay flip. Using the same notation as in the Key Lemma, where E1 and E2 are the Dirichlet energies of f
on T1 and T2, respectively:

Delaunay flip ⇔ �L is SPSD ⇔ �E = E1 − E2 = f t(�L) f � 0 ⇔ E1 � E2 �
3. The Delaunay spectral theorem

Since the geometric Laplacian L depends on the particular triangulation, it is natural to ask whether the Laplacian
associated with the Delaunay triangulation is special in any way. Note that the eigenvalue corresponding to an eigenvector
of the geometric Laplacian is the Dirichlet energy of that eigenvector when viewed as a function on the graph vertices.
Also note that the Delaunay triangulation is invariant to any similarity transformation in the plane, thus so is its Laplacian
(which is not surprising, since it is based exclusively on angles, which are preserved by similarities).

The following theorem characterizes the Delaunay triangulation in terms of the spectrum of its geometric Laplacian:

Delaunay spectral theorem. The spectrum of the geometric Laplacian obtains its minimum on a Delaunay triangulation. Namely
if {λ1 = 0, λ2, . . . , λn} and {μ1 = 0,μ2, . . . ,μn} are the sequences of non-decreasing eigenvalues of the geometric Laplacian of a
Delaunay triangulation and of any other triangulation of the same set of points, respectively, then λi � μi for i = 1, . . . ,n.

Proof. Let T and T D be a non-Delaunay triangulation and a Delaunay triangulation of the same set of points respectively,
and L and LD the geometric Laplacians of T and T D , respectively. By Rippa’s theorem, for any function f defined on the
point set, f t L f � f t LD f , therefore �L = L − LD is SPSD. The spectral theorem follows immediately by Weyl’s inequality
from matrix perturbation theory (Wilkinson, 1965). �
Corollary. If the set of points is not in general position, resulting in many Delaunay triangulations, all these have identical spectra. This
follows from the Delaunay spectral theorem.
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3.1. Musin’s theorem

The Delaunay spectral theorem allows us to obtain an alternative proof of another related theorem. Musin (1997) studied
a number of alternative optimality properties of the Delaunay triangulation. Among others, he defined the harmonic index of
a triangulation:

H(T ) =
∑
t∈T

a2
t + b2

t + c2
t

At

where t is a triangle in the triangulation T with edge lengths at , bt , ct , and area At . A small harmonic index means the
triangle is “fatter”.

Theorem. (See Musin, 1997.) The harmonic index obtains its minimum on the Delaunay triangulation.

Proof. Following Bobenko and Springborn (2007), elementary trigonometry shows that the harmonic index is equivalent to:

H(T ) = 4
∑

(i, j,k)∈T

(cotαi j + cotα jk + cotαki)

This implies:

H(T ) = 4 · trace(L) = 4
n∑

i=1

λi(L)

where λi(L) are the eigenvalues of the geometric Laplacian of T . Applying the Delaunay spectral theorem completes the
proof. �
4. Discussion

We have examined the spectral characteristics of the Delaunay triangulation using its geometric Laplacian matrix, and
proved what seems to be quite a fundamental theorem: The spectrum of this matrix is minimal among all triangulations.
Experimental results show that the combinatorial Laplacian does not have this property. Right now the Delaunay spectral
theorem seems to be mostly of theoretical interest, and it would be intriguing to discover whether it has any algorithmic
applications.

The spectral theorem leads to alternative proofs of existing theorems. In particular the trace of the Laplacian has a
geometric interpretation as the harmonic index of the triangulation, related to its isoperimetric quantities. It would be
interesting to see if there is any geometric interpretation of other functions of the spectrum. A strong candidate would be the
second eigenvalue, i.e. the smallest non-zero eigenvalue, which, for unweighted graphs, Fiedler (1975) called the “algebraic
connectivity”. Numerical experiments have shown that if the vertices of the triangulation are distributed uniformly in the
plane, then the ratio between the second and third eigenvalues of the geometric Laplacian reflects the “aspect ratio” of the
triangulation, namely the ratio between the lengths of the two principal directions of the convex region of the plane that
it occupies (the second eigenvalue corresponds to the shorter axis). Geometric interpretations of the Laplacian eigenvectors
would also be interesting. The eigenvectors corresponding to the second and third eigenvalues, when used as embedding
coordinates, produce a new “drawing” of the triangulation which is similar to the original and “normalized” to be axis-
aligned.

There is an interesting analogy between graphs equipped with positive edge weights, random walks on graphs (i.e.
Markov chains) and resistor networks (Doyle and Snell, 1984). In these scenarios, the edge weights may be considered the
transition probabilities or “conductances” of the edges (namely, the edge “resistances” are 1/wij). This value describes how
easy it is for a random walker or electrical current to traverse the edge. It has been shown that the weighted Laplacian may
be used to characterize the properties of the resulting circuits. In the random walk scenario we may define the “commute
time” between any two vertices – the expected time it takes a random walker to travel from the first vertex to the second,
and back. It is a weighted average of the traversal times of all possible paths between the two vertices. The equivalent for
an electrical circuit is the effective resistance between the two vertices. The sum of the effective resistances between all
pairs of vertices may be shown to be (Klein and Randic, 1993):

R(L) = trace(L+) =
n∑

i=2

1

λi

where L+ is the Moore–Penrose pseudo-inverse of L. This is the so-called total resistance or Kirchhoff index of the weighted
graph. The Delaunay spectral theorem implies that the Delaunay triangulation has the maximal total resistance among all
triangulations (although the presence of negative weights in non-Delaunay triangulations damages this analogy somewhat).

Future work will extend this study to the case of mappings between two planar triangulations.
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