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Given a 3-vertex-connected triangular planar graph and an embedding of its boundary
vertices, can the interior vertices be embedded to form a valid triangulation? We describe
an algorithm which decides this problem and produces such an embedding if it exists.
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1. Introduction

Given a 3-vertex-connected triangular planar graph and an embedding of its boundary vertices in the plane, can the
interior vertices be embedded to form a valid triangulation? If the boundary vertices are in convex position, Tutte’s cele-
brated spring-embedding theorem (Tutte, 1963) states that such an embedding is always possible, and may be constructed
by solving a linear system of equations for the coordinates of the interior vertices. This linear system is a discrete version
of the classical Laplace equation expressing the fact that each interior vertex is positioned at the centroid of its immediate
neighbors. Floater (1997) later generalized Tutte’s theorem to arbitrary convex combinations, namely that the weights used
to form the centroid may be arbitrary non-negative numbers summing to unity. This “convex combinations” method can
generate all possible triangulations with the given convex boundary.

Hong and Nagamochi (2006) showed that an embedding is still always possible if the boundary embedding forms a star-
shaped polygon. Their proof is constructive, but results in a rather complicated algorithm. For a general-shaped boundary, an
embedding may not always exist, as demonstrated by the simple input shown in Fig. 1: the graph has a single interior vertex
connected to all boundary vertices. Obviously, if the boundary is not embedded as a star-shaped polygon, this boundary
polygon will have no kernel, so the set of valid positions for the interior vertex will be empty.

In this paper we treat the general case. We provide a simple algorithm which will either compute a valid embedding if
it exists, or reject the input in case no valid embedding exists.

2. Preliminaries

Let T = (G, B, X) be a 2D triangulation with n vertices. G = 〈V , E〉 is the planar graph, B ⊆ V is the set of boundary
vertices of G , and X = {(x1, y1), . . . , (xn, yn)} is the geometry of the graph, namely, the coordinates of the vertices in V .

Since G is planar, there is a consistent orientation of all its triangles. Based on this orientation, given geometry X of the
vertices, a normal vector may be computed for each triangle.
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Fig. 1. An input for which no valid embedding exists: a non-star-shaped boundary with a single interior vertex.

Definition. T is valid if all the normals of the triangles of T point in the same direction along the z axis, otherwise T is
invalid.

Definition. The signed area of a triangle is defined to be positive if the triangle normal points in the positive z direction,
otherwise it is negative. The signed area of T , denoted A(T ), is the sum of the signed areas of the triangles of T . The
unsigned area of T , denoted U (T ), is the sum of the areas of the triangles of T , ignoring sign.

Fact 1. A(T ) is equal to the area of the boundary polygon of T .

Fact 2. For any triangulation T , U (T ) � A(T ). T is valid iff U (T ) = A(T ).

Denote by L0 the n × n matrix (combinatorial) graph Laplacian matrix of G . Tutte’s algorithm for embedding the interior
vertices subject to a convex boundary solves the linear system L∗

0 = b for the geometry X = (x, y). The matrix L∗
0 comes

from replacing the rows of L0 related to boundary vertices by the identity matrix. The vector b is derived from the boundary
embedding X(B) (X and b are n × 2 matrices).

Definition. A geometric Laplacian L(X) of G is a matrix, having the same structure as L0, which takes into account the
geometry of the triangulation X :

Li j(X) =
⎧⎨
⎩

−wij j ∈ VN(i)∑
k∈VN(i) j = i

0 othervise

where VN(i) is the set of vertices neighboring to vertex i, and wij are dependent on X (e.g. the Laplacian matrices defined
in Hormann and Floater, 2006, Pinkall and Polthier, 1993). In particular, L(X) is called the cotangent Laplacian if wij are the
so-called cotangent weights (Pinkall and Polthier, 1993), involving the two angles opposite the edge (i, j):

wij = 1

2
(cotαi j + cotα ji)

For a boundary edge, only one cotangent is involved in the definition of wij .
From now on L(X) will denote only the cotangent Laplacian. L(X) is known to be symmetric and positive semi-definite

(SPSD) (even though the wij may have mixed signs). This Laplacian is particularly appealing since the product L(X)X
vanishes at the interior vertices, namely, these vertices satisfy the Laplace equation subject to so-called Dirichlet boundary
conditions. This is sometimes called the reproduction property of the cotangent Laplacian, namely, the geometry of the
interior vertices can be recovered from the geometry of the boundary by solving the Laplace equation.

Since the unsigned area U of any triangle with edge lengths a,b, c and corresponding angles α,β,γ , may be expressed
as:

U = 1

4

(
α2 cotα + b2 cotβ + c2 cot y

)
It is straightforward to see that the unsigned area of a triangulation may be expressed in terms of L(X), where X = (x, y)

is the geometry of T :

U (T ) = 1

2
tr

(
Xt L(X)X

) = 1

2

(
xt L(X)x + yt L(X)y

)
(1)

implying, by Fact 2:
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Algorithm Embed:

1. L0 ← combinatorial Laplacian of G. U0 ← 0. n ← 0.
2. Solve the Tutte system: Ln(I, I)Xn+1(I) + Ln(I, B)Xn+1(B) = 0 for Xn+1, where I is the set of

interior vertices, and B the set of boundary vertices.
3. Update the cotangent Laplacian: Ln+1 ← L(Xn+1).
4. Un+1 ← 1

2 tr(Xt
n+1 Ln+1 Xn+1).

5. If Un+1 = Un (up to a tolerance), output Xn+1 and stop.
6. Else n ← n + 1, Goto Step 2.

Fact 3. Let T = (G, B, X) be a triangulation for which a valid embedding exists subject to the given boundary embedding X(B). T is
valid iff its geometry X minimizes tr(Xt L(X)X).

Note that U (T ) is not a simple quadratic form in X since the matrix involved depends on X .

3. The embedding algorithm

In this section we describe our iterative embedding algorithm. We will prove its correctness by showing that the iteration
reduces U (T ) = 1

2 tr(Xt L(X)X) until it reaches A(T ), at which point the triangulation is valid, if such an embedding exists.
First we show that Algorithm Embed always reduces U (T ).

Theorem 1. For all n � 0, U (Tn+1) � U (Tn).

Proof. First, consider the piecewise linear mapping f : R2 → R2 defined on Tn = (G, R, Xn) by

f (Xn) = Xn+1

The Dirichlet energy of f can be written as follows,

E D( f ) = 1

2
tr

(
f t Ln f

) = 1

2
tr

(
Xt

n+1Ln Xn+1
)

With the following ordering of Xn+1 and Ln:

Xn+1 =
(

Xn+1(I)

Xn+1(B)

)
, Ln =

(
Ln(I, I) Ln(I, B)

Ln(I, B) Ln(B, B)

)

we can rewrite E D( f ) as

E D( f ) = 1

2
tr

(
Xt

n+1(I)Ln(I, I)Xn+1(I) + 2Xt
n+1(I)Ln(I, B)Xn+1(B) + Xt

n+1(B)Ln(B, B)Xn+1(B)
)

implying the following gradient for interior vertices:

∂ E D( f )

∂ Xi
= (

Ln(I, I)Xn+1(I) + Ln(I, B)Xn+1(B)
)

i ∀i ∈ I

Critical points of E D( f ) are obtained when all such gradients vanish. Since Ln is SPSD, Ln(I, I) is also SPSD, implying that
all critical points are minima, Xn+1 is the solution to the following (convex) quadratic program:

min
Y

E D(Y )

s.t. Y (B) = Xn(B)

Obviously, by (1):

U (Tn) = E D(id)

where id is the identity map on Tn . Thus

U (Tn) = E D(id) � E D( f ) (2)

Second, following the definition of the Dirichlet energy, with ft denoting the restriction of f to triangle t:

E D( f ) = 1

2

∫
T

∣∣|∇ f |∣∣2 = 1

2

∑
t∈Tn

U (t)

[(
∂ ft

∂x

)2

+
(

∂ ft

∂ y

)2]
�

∑
t∈Tn

U (t)
∂ ft

∂x

∂ ft

∂ y
=

∑
t∈Tn+1

U (t) = U (Tn+1) (3)

Finally, combining (2) and (3) yields:

U (Tn) � E D( f ) � U (Tn+1) �
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Fig. 2. Notation for a single triangle in a triangulation.

Next we show that Algorithm Embed always converges to valid embeddings, if they do exist for the given connectivity
and boundary conditions.

Theorem 2. U (T ) has a unique minimal value (as a function of X), obtained at all valid embeddings.

Note that this is quite a strong statement. U (T ) has no local minima, rather multiple global minima.

Proof of Theorem 2. For any triangle t = (Xi, X j, Xk) as shown in Fig. 2, its unsigned area may be expressed as:

A(t) = 1

2
(Xi − Xk) × (X j − Xk)

Recall that X = (x, y). Hence the derivative of A(t) is:

∂ A(t)

∂xi
= 1

2
(1,0) × (X j − Xk) = 1

2
(y j − yk)

∂ A(t)

∂ yi
= 1

2
(0,1) × (X j − Xk) = 1

2
(x j − xk)

Combining the two equations yields,

∂ A(t)

∂ Xi
= 1

2
Rπ/2(Xk − X j)

where Rπ/2 is the operator representing counter-clockwise rotation by π/2 in the plane. Then for each vertex Xi in T ,
when A(t) �= 0:

∂U (T )

∂ Xi
=

∑
t∈TN(i)

∂U (T )

∂ Xi
=

∑
t∈TN(i)

∂ sgn(A(t))A(t)

∂ Xi
=

∑
t∈TN(i)

sgn
(

A(t)
)∂ A(t)

∂ Xi

=
∑

t∈TN(i)

sgn
(

A(t)
)1

2
Rπ/2(Xt,k − Xt, j)

= 1

2
Rπ/2

[ ∑
t∈TN(i)

sgn
(

A(t)
)
(Xt,k − Xt, j)

]
(4)

where TN(i) is the set of triangles incident on vertex i, and

sgn
(

A(t)
) =

{
1, if t is valid
−1, if t is invalid

The geometric meaning of the vector
∑

t∈TN(i) sgn(A(t))(Xt,k − Xt, j) in (4) is the weighted sum of the edge vectors around
the 1-ring of the vertex xi . When the triangle t associated with an edge is invalid, the weight associated with that edge,
sgn(A(t)), is negative. See Fig. 3.

For an arbitrary interior vertex Xi with a valid 1-ring, we obviously have

∂U

∂ Xi
= 1

2
Rπ/2

[ ∑
t∈TN(i)

(Xt,k − Xt, j)

]
= 1

2
Rπ/2[0] = 0

while for an invalid 1-ring in general position, the signed sum of edge vectors
∑

t∈TN(i) sgn(A(t))(xt,k − xt, j) cannot be zero.
This implies that only valid embedding have vanishing gradients on all the interior vertices. Thus there are no minima of
U (T ) except when X is a valid embedding (and for these cases, U (T ) = A(T )). �
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Fig. 3. Weights of edge vectors of a 1-ring in valid and invalid triangulations. Left: valid 1-ring; Right: invalid 1-ring.

Theorems 1 and 2 imply the correctness of Algorithm Embed:

Theorem 3. Algorithm Embed will converge to a valid embedding of T , if it exists.

An immediate question is what will happen if no valid embedding exists for the given boundary embedding? We have
already proven that Algorithm Embed will not converge to any invalid embedding, and because the cotangent Laplacian is
not well-defined for a degenerate triangle, it will collapse due to numerical error. This can be detected and failure reported.

4. Relation to standard optimization methods

Since our embedding algorithm minimizes the unsigned area of the triangulation, the informed reader may ask why a
standard non-linear optimization procedure is not used, in particular, the Newton method. In this section, we compare our
algorithm with the Newton method, which requires knowledge of the Jacobian and Hessian of the cost function. We will
show that our algorithm is actually a “generalized” Newton method, which approximates the Hessian of the unsigned area
by linearizing its Jacobian.

By the gradient property proved in Appendix A, the Jacobian J of U (T ) satisfies J = ∂U
∂ X = L X . Given the Hessian H and

the Jacobian J , the standard Newton method solves the linear system HδX = − J to update X with X + δX . Recall that the
cotangent Laplacian L is actually a function of X . But if we fix L, treating it as a constant and approximate the Hessian
linearly by:

H = ∂ J

∂ X
= ∂(L X)

∂ X
≈ L

then the linear system which arises in the Newton method becomes:

HδX = − J ⇔ Ln(Xn+1 − Xn) = −Ln Xn ⇔ Ln Xn+1 = 0

which is exactly step (2) of our iterative Algorithm Embed.
Because of the gradient property, we have an accurate expression for the Jacobian of the unsigned area. Thus the classical

gradient descent method may also be used to minimize the unsigned area. However, this requires a step size, and estimating
a good value for this may be difficult.

5. Experimental results

To demonstrate the effectiveness of the embedding algorithm, we show its output on two triangulations whose bound-
aries are significantly non-convex, as illustrated in Fig. 4.

Another experiment shows the embeddings generated when the boundary embedding of a valid triangulation is modified,
as illustrated in Fig. 5.

5.1. The weighted Laplacian

As evident in Figs. 4 and 5, the resulting valid embeddings may be quite ugly, containing “skinny” triangles. It is possible
to alleviate this by using a modified Laplacian, which we call a “weighted Laplacian”. The non-zero entries of this Laplacian
are defined as:

wij = |Aij| cotαi j + |A ji| cotα ji

where Aij and A ji are the signed areas of the triangles adjacent to edge (i, j), respectively. Since using the common cotan-
gent Laplacian in the embedding algorithm minimizes the sum of unsigned areas of the triangulation, it is easy to see that
the analogous cost function based on the weighted Laplacian minimizes the sum of squares of the areas of the triangles,
namely E = ∑

t A2
t . Since A(T ) = ∑

t At is constant, minimizing E is equivalent to minimizing the variance of the triangle
areas. This has the effect of equalizing the areas of the triangles, thus “fattening” them. See some results in Fig. 6.
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Fig. 4. Embedding with a non-convex boundary. Left: initial invalid embedding (generated using Tutte’s method). Right: final valid embedding generated by
our embedding algorithm.

Fig. 5. Modifying the boundary and re-embedding the interior vertices. Left: original triangulation. Right: valid triangulation after changing boundary
significantly.

The problem with the weighted Laplacian is that it is not guaranteed to always reduce the original unweighted cost
function during the iteration. Thus the triangulation achieving a global minimum might actually be invalid. See Fig. 7 for a
simple example. So it is best to use this method as a post process to improve the quality of a valid embedding (stopping
before the embedding becomes invalid).

5.2. Numerical issues

The non-zero entries of the cotangent Laplacian may not be well-defined when some of the angles are zero. Since the
embedding algorithm may produce some degenerate triangles, especially when no valid embedding exists, this problem
may arise during the run. Even if no degenerate triangle occurs, some triangles may become quite skinny, so that the
computation of the Laplacian becomes unstable and numerical error can cause the algorithm to diverge.

One way to avoid this numerical issue is to modify the “zero angle” entry of the Laplacian to force it to be well-defined.
It turns out that simply setting this offending entry of the Laplacian to zero alleviates the problem. This modification keeps
the energy continuous and prevents the algorithm from behaving badly. To measure the degeneracy of a triangle, one could
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Fig. 6. Embeddings obtained using different Laplacians. Left: cotangent Laplacian. Right: weighted Laplacian. Note how the weighted Laplacian prevents
“skinny” triangles.

Fig. 7. Minimizing the variance of the areas of a one-ring of triangles may produce an invalid embedding.

compare its three edge lengths. One of them equal or close to the sum of another two would indicate degeneracy. This is a
simpler test than examining the angles of the triangle.

5.3. Recognizing no valid embedding

The embedding algorithm can also determine whether a valid embedding exists at all. Since our algorithm can only
converge to a valid embedding, if it does not exist, the energy does not always decrease due to previous numerical issues
and its value becomes unstable. At this point the iteration may be aborted and the input rejected.

6. Conclusion and future work

This paper presents an algorithm for computing a valid embedding of a triangulated 3-connected planar graph given an
embedding of its boundary, if it exists. We provide an improved version of the algorithm (using a “weighted Laplacian”) to
improve the quality of the resulting triangulation, although it is not always guaranteed to work for all boundary embeddings.

Our embedding algorithm is very similar to that proposed by Pinkall and Polthier (1993) for minimizing the surface
area of a three-dimensional triangle mesh. This was recently generalized by dos Santos Crissaff (2009) to a variety of other
“geometric” energies, which enable a variety of effects.

An important problem in computational geometry is generating so-called compatible triangulations of two planar regions
bounded by different polygons, given a correspondence between their boundary vertices (Surazhsky and Gotsman, 2001,
2004). Usually, interior (so-called Steiner vertices) must be generated to support the triangulation, and the typical objective
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is to minimize their number. One way to solve this problem, based on our embedding algorithm, is to randomly generate
a triangulation of one polygon with a small number of Steiner vertices, and then try to embed the same triangle graph
structure with the second boundary polygon. A probabilistic algorithm could try this until success.

Future work might focus on extensions to three dimensions, given a tetrahedral graph. This is complicated by the fact
that even Tutte’s theorem does not hold for a convex boundary embedding in the three-dimensional case (Colin de Verdière
et al., 2001, Floater and Pham-Trong, 2006). It is also difficult to prove that an embedding algorithm analogous to the
one described here (using the analogous geometric Laplacian (Wang et al., 2004)) will always reduce the unsigned volume
during iteration.
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Appendix A

Lemma 1 (The gradient property). The gradient of U (T ) is equal to L X, namely: ∂U (T )
∂ Xi

= (L X)i , for any vertex position Xi in T .

Proof. According to the definition of the cotangent Laplacian,

(L X)i = 1

2

∑
j∈VN(i)

(cotαi j + cotα ji)(Xi − X j)

=
∑

j∈TN(i)

1

4

(
(Xi − Xt,k) · (Xt, j − Xt,k)

|A(t)| (Xi − Xt, j) + −(Xt, j − Xt,k) · (Xi − Xt, j)

|A(t)| (Xi − Xt,k)

)

Using the vector triple product identity:

(X · Z)Y − (X · Y )Z = X × (Y × Z)

we simplify this to:

(L X)i =
∑

j∈TN(i)

(Xt, j − Xt,k) × [(Xi − Xt,k) × (Xi − Xt, j)]
4|A(t)|

The fact that, for 2D vectors, X × (Y × Z) = −Rπ/2[(Y × Z)z X] (V z is the z component of vector V ) and the z component
of (Xi − Xt,k) × (Xi − Xt, j) is no other than 2A(t), further simplifies to:

=
∑

t∈TN(i)

2A(t)Rπ/2(Xt,k − Xt, j)

4|A(t)|

= 1

2

∑
t∈TN(i)

sgn
(

A(t)
)

Rπ/2(Xt,k − Xt, j)

Combined with (4) in the proof of Theorem 2, one easily obtains ∂U (T )
∂xi

= (L · X)i . �
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