
GPU-Accelerated Locally Injective Shape Deformation

RENJIE CHEN,Max Planck Institute for Informatics, Germany
OFIR WEBER, Bar-Ilan University, Israel

100 101 102 103Iteration

101

102

103

En
er

gy

Ours
Newton
Newton Eigen
LBFGS

10-1 100Running time (s)

101

102

103

En
er

gy

Ours/GPU
Ours/CPU
Newton
Newton Eigen
LBFGS

Fig. 1. Locally injective isometric deformation of Rex, a doubly-connected planar domain (left). Note the hole between the legs. Our harmonic subspace has
392 DOF. Our solver converges after 6 iterations to the result depicted, which is computed in 0.072s when implemented on the GPU, and 0.375s on the CPU.
We compare against an unmodified Newton solver which halts prematurely after 9 iterations at a high energy configuration due to a non-positive definite
Hessian. The Newton-Eigen solver performs a full eigen-factorization Hessian modification at each iteration. It converges after 32 iterations and takes 2.467s
which is ×34 times slower than our GPU solver. The L-BFGS solver performes 1, 818 iterations and is not competitive in terms of runtime.

We present a highly efficient planar meshless shape deformation algorithm.

Ourmethod is based on an unconstrainedminimization of isometric energies,

and is guaranteed to produce C∞ locally injective maps by operating within

a reduced dimensional subspace of harmonic maps. We extend the harmonic

subspace of [Chen and Weber 2015] to support multiply-connected domains,

and further provide a generalization of the bounded distortion theorem that

appeared in that paper. Our harmonic map, as well as the gradient and the

Hessian of our isometric energies possess closed-form expressions. A key

result is a simple-and-fast analytic modification of the Hessian of the energy

such that it is positive definite, which is crucial for the successful operation

of a Newton solver. The method is straightforward to implement and is

specifically designed to harness the processing power of modern graphics

hardware. Our modified Newton iterations are shown to be extremely ef-

fective, leading to fast convergence after a handful of iterations, while each

iteration is fast due to a combination of a number of factors, such as the

smoothness and the low dimensionality of the subspace, the closed-form

expressions for the differentials, and the avoidance of expensive strategies

to ensure positive definiteness. The entire pipeline is carried out on the GPU,

leading to deformations that are significantly faster to compute than the

state-of-the-art.

CCS Concepts: • Computing methodologies→ Computer graphics; Ani-
mation; Image manipulation; Shape analysis;

Additional Key Words and Phrases: injective maps, harmonic maps, shape

deformation, Newton method, GPU

This research was partially funded by the Israel Science Foundation (grants No. 1869/15

and 2102/15) and by the Max Planck Center for Visual Computing and Communication.

© 2017 Association for Computing Machinery.

This is the author’s version of the work. It is posted here for your personal use. Not for

redistribution. The definitive Version of Record was published in ACM Transactions on
Graphics, https://doi.org/10.1145/3130800.3130843.

ACM Reference Format:
Renjie Chen and Ofir Weber. 2017. GPU-Accelerated Locally Injective Shape

Deformation.ACMTrans. Graph. 36, 6, Article 214 (November 2017), 20 pages.

https://doi.org/10.1145/3130800.3130843

1 INTRODUCTION
Shape deformation is a classical problem in computer graphics and

animation that comes in a variety of forms and settings. Essential to

all variants is the requirement to compute a map between different

spaces with some desirable properties. Common choices include

maps between curved manifolds embedded in R3
, volumetric maps

between solid shapes in R3
, and mixed dimensional maps where,

for example, a curved 2-manifold embedded in R3
is mapped to

R2
(a parameterization). In this work we deal with the problem of

planar maps where both the source and target domains are subsets

of R2
. Due to its relative simplicity, this setting is the most funda-

mental one that serves as a bridge for all other developments and

generalizations, and as such it attracts a large amount of research

efforts since the early days of graphics. Depending on the precise

user requirements, even this simplified setting is challenging to deal

with.

Some requirements such as smoothness are easily achievable

while other, such as local injectivity or strict bound on the induced

metric distortion are hard (sometimes impossible) to guarantee. In

this work we consider an interactive deformation system that is

driven by user specified positional constraints. That is, the user

selects a small set of points in the source domain which is visualized

as a textured image, and interactively drags them around to new

positions. The goal is to be able to compute a map that adheres to

these positional constraints yet at the same time is visually plausible.

Plausibility is usually quantified by smoothness and the amount of

ACM Transactions on Graphics, Vol. 36, No. 6, Article 214. Publication date: November 2017.

https://doi.org/10.1145/3130800.3130843
https://doi.org/10.1145/3130800.3130843

214:2 • Renjie Chen and Ofir Weber

metric distortion, which can be either minimized on the average, or

bounded above by some user-defined amount. Moreover, the map

is expected to be locally injective, preventing degeneracies of the

image and local overlaps while allowing global ones. These require-

ments pose a great computational challenge since they usually lead

to a nonconvex optimization problem with many degrees of free-

dom for which finding an optimal solution (or even just a feasible

one) is often intractable. Recent advances in the computation of

locally injective and/or bounded distortion maps allow artists to

produce high quality results with greater than ever success rates

but the performance of current methods is still significantly worse

compared to simple linear methods [Weber et al. 2009].

We cast the deformation problem as a nonlinear nonconvex un-

constrained minimization problem that is performed in a reduced

deformable subspace of harmonic maps, and allow the user to pick

among a variety of smooth energies that measure isometric dis-

tortion. Harmonic functions have many appealing properties and

are widely used in computer graphics applications. In particular,

holomorphic and harmonic maps are utilized extensively in the

context of planar shape deformation and interpolation [Chen and

Weber 2015; Chien et al. 2016a; Hefetz et al. 2017; Levi and Weber

2016; Weber 2010, 2017; Weber et al. 2009, 2011; Weber and Gotsman

2010]. However, this entire line of work was restricted to simply-

connected domains (topological disks). Our first contribution in this

work is broadening the scope of previous research on harmonic

maps from simply-connected to multiply-connected domains (disks

with finite number of holes) such as those appearing in Figures 1,

3, 5. In particular, in Section 4 we extend the harmonic subspace

of the Bounded Distortion Harmonic Mappings (BDHM) method

[Chen and Weber 2015] to multiply-connected domains, as well as

generalize the bounded distortion theorem of BDHM (Section 4.1).

Furthermore, in Section 8 we provide a much tighter analysis of the

Lipschitz constants provided in BDHM, leading to more accurate

validation of the map and faster convergence.

We construct a custom-made Newton solver with unique features

to efficiently address the deformation problem. The quality of the

producedmaps is superior and comparable to the other methods that

operate within the harmonic subspace. However, our method is or-

ders of magnitude faster than existing techniques. Our optimization

is based on a second-order Newton approach which ensures that

the convergence rate is high. In general, a single Newton iteration

can be slow due to various reasons such as the need to approximate

the Hessian numerically using finite differences (when analytical

expressions are unavailable), as well as the need to modify the Hes-

sian such that it becomes positive definite (which is necessary to

ensure convergence to a local minimum).

Our novel solver overcomes these issues due to several unique

properties, such as having closed-form expressions for the map, and

its differentials, and an analytic modification scheme for the Hessian

to ensure its positive definiteness. Combining these benefits leads

to a Newton iteration that is considerably faster than a standard

Newton iteration. Together with the small number of iterations

that are typically required for convergence, the total running time

of our solver is significantly shorter compared to state-of-the-art

solvers. Moreover, every iteration of our solver is embarrassingly

parallelized and perfectly suites implementation on massively par-

allel graphics processing units due to the structure and regularity

of the problem. This allows for unprecedented performance.

2 PREVIOUS WORK
Linear blend skinning [Kavan et al. 2007] andmethods that are based

on barycentric coordinates [Hormann and Floater 2006; Lipman et al.

2007; Weber et al. 2009] use precomputed basis functions [Jacobson

et al. 2011] and formulate the deformation as a linear combination of

these basis functions with some coefficients that are automatically

deduced from the user input. For instance a control polygon/mesh

or rotations that are extracted from a skeletal structure. Despite

their inability to produce maps with good distortion control, these

methods are still highly popular due to their speed and in particular

their suitability for GPU implementation.

More geometric motivated linear approaches merely require solv-

ing a single linear system with variable right hand sides where the

left hand side matrix is fixed and can be factored in preprocessing

[Igarashi et al. 2005; Lipman et al. 2005; Weber et al. 2009, 2007; Za-

yer et al. 2005]. Under extreme deformations, artifacts arise which

lead to the introduction of more sophisticated nonlinear approaches.

BDHMInput Ours

Fig. 2. Comparison with BDHM using the same harmonic subspace. We set
user distortion bounds for BDHM: (k, σ1, σ2) = (0.8, 5, 0.3). The resulted
map is bounded distortion with bounds (0.50, 4.3, 0.31). Without explicit
distortion bounds, our method minimizes the symmetric Dirichlet energy
producing a map with bounds (0.32, 2.25, 0.43). Our GPU solver converges
after 8 iterations with total runtime of 0.0297s . In comparison, BDHM
requires 28 iterations of second order cone programming [ApS 2017], with
total runtime 3.71s which is ×125 slower.

Recently, a successful line of approaches have been designed to

specifically address quality concerns with a priority on producing

injective maps [Bright et al. 2017; Fu et al. 2015; Schüller et al. 2013;

Smith and Schaefer 2015] with bounded amount of distortion [Aiger-

man and Lipman 2013; Aigerman et al. 2014; Chen and Weber 2015;

Chien et al. 2016b; Kovalsky et al. 2015; Lipman 2012; Poranne and

Lipman 2014]. These are mostly based on interior point methods

and are relatively efficient, though they cannot perform deformation

with many degrees of freedom in real time rates and none of these

is directly suitable for a GPU implementation. Our method outper-

forms these by a large margin. For example, in Figure 2, we show

ACM Transactions on Graphics, Vol. 36, No. 6, Article 214. Publication date: November 2017.

GPU-Accelerated Locally Injective Shape Deformation • 214:3

a speedup of ×125 when comparing our GPU Newton solver with

the Mosek interior point solver that was used in [Chen and Weber

2015]. To the best of our knowledge, the only bounded distortion de-

formation method that utilizes the GPU is [Hefetz et al. 2017] which

projects maps to the bounded distortion space by using alternating

tangential projections (ATP). It is extremely fast and provably con-

verges to a bounded isometric-and-conformal distortion map with

any user-specified bounds, albeit ATP does not handle positional

constraints, nor minimize user-defined energies.

The Newton’s algorithm (see [Nocedal and Wright 2006] for a

comprehensive review) is an established method for the minimiza-

tion of smooth nonlinear objective functions, and is widely known

for its good convergence properties due to its second order nature.

Each Newton iteration is very effective in reducing the energy, and

typically a small amount of iterations is needed to reach low energy.

For the Newton iteration to produce a descent direction, the Hessian

of the energy must be positive definite and since the energies of

interest are nonconvex in general, several strategies for modifying

the Hessian to become positive definite have been developed (see

[Nocedal and Wright 2006, Chapter 3.4] for a concise overview).

The most straightforward approach is to compute the eigen–

factorization (also known as spectral decomposition) and to replace

all the negative eigenvalues with sufficiently small positive values.

The obtained modified Hessian is the closest (in Frobenius norm)

positive definite matrix to the unmodified one. We compare our

results with this method and show our superiority. Another com-

mon approach [Fu and Liu 2016] is to shift the spectrum by trying

iteratively to add a positive constant to the diagonal of the Hessian

until the Cholesky factorization succeeds (which is an indication

for positive definiteness). In practice though, such modifications are

expensive to compute.

A more affordable approach is to decompose the Hessian as a

sum of individual per-element matrices and to perform the modi-

fication on each element separately. The approximated Hessian is

then obtained by a summation of the modified per-element matri-

ces. In [Teran et al. 2005], each per-element tensor is encoded as

a 9×9 block diagonal matrix and in [Fu and Liu 2016], 4×4 or 9×9

matrices are constructed and modified numerically. This approach

is in general more efficient than a full Hessian modification but is

still time consuming due to the large number of required matrix

factorizations. Our approach is conceptually similar, however, due

to the infinite support of the harmonic basis functions, our per-

element Hessians are dense 4n×4n matrices (n is typically of order

of hundreds). Performing the factorization numerically is practically

impossible. A key contribution (Section 7) in our paper is that each

such 4n×4n factorization can be computed analytically. Furthermore,

we show that the number of elements (samples) needed in practice

to achieve good convergence rates can be relatively small, ensuring

that the assembly of the individual Hessian contributions does not

dominate the solver performance. The computation of the Hessian

modification (as well as all the other parts of our algorithm) is done

in parallel and is perfectly suitable for implementation on graphics

hardware (Appendix G) leading to an algorithm that is orders of

magnitude faster than state-of-the-art methods.

If the objective function is a nonlinear sum of squares, the Gauss-

Newton (GN) or the Levenberg-Marquardt (LM) algorithms can be

used. These use first order derivatives only, sidestepping the require-

ment to compute-and-modify the Hessian matrix. [Vaxman et al.

2015] uses LM to compute conformal deformations in 2-and-3 di-

mensions. Another class of first order methods which can be applied

to more general type of objectives are Quasi-Newton algorithms.

BFGS for example, incrementally approximate the Hessian based

on the gradients and the updates from previous iterations. L-BFGS

further avoids inverting the Hessian by directly approximating its

inverse from k recent iterations [Liu et al. 2017]. A single iteration

of L-BFGS is then more efficient than that of a second order method,

but the number of iterations is typically much larger. [Smith and

Schaefer 2015] used L-BFGS to optimize a particular choice of iso-

metric energy. We compare our solver for this particular energy

against L-BFGS, showing a dramatic reduction in the number of

iterations and increase in speed.

The Accelerated Quadratic Proxy (AQP) method is another no-

table first order method [Kovalsky et al. 2016] that can optimize

isometric-like energies. A main observation made by Kovalsky et

al. is that the Hessian of the particular deformation energy can be

approximated by the mesh Laplacian matrix which is the Hessian

of the quadratic Dirichlet energy. In contrast to a Newton iteration

which requires a full linear solve at each iteration, AQP merely re-

quires a backward and forward substitutions against the factor of the

fixed Laplacian matrix, leading to extremely fast iterations. In order

to reduce the number of iterations, which is typically much larger

than that of Newton’s, an acceleration technique was used. Albeit,

this advocates the use of hard positional constraints. Since finding

a locally injective map satisfying hard positional constraints is a no-

toriously hard problem, AQP only produces orientation preserving

maps which is a weaker requirement. To obtain an initialization,

AQP first computes an arbitrary map satisfying the positional con-

straints, and then projects it using the method of [Kovalsky et al.

2015] to the space of orientation preserving maps. While [Kovalsky

et al. 2015] is a relatively efficient and robust method, it does not

guarantee convergence and utilizing it as initialization extends the

overall computation time. The method of [Martin et al. 2013] takes

a signal processing viewpoint for mesh optimization where powers

of the Laplacian matrix are utilized.

Recently, Rabinovich et al. [2017] proposed Scalable Locally Injec-

tive Mappings (SLIM) for optimizing rotation-invariant mesh-based

energies via a modification of the local-global ARAP algorithm [Liu

et al. 2008]. Unlike AQP which uses a fixed Hessian approximation,

SLIM reweights a proxy energy iteratively in a way that aligns its

gradient with that of the true energy. While AQP and SLIM are more

general and are not restricted to planar maps, we demonstrate that

our solver is significantly faster, with much shorter per-iteration

time and dramatically smaller number of iterations. In contrast to

all the above mentioned mesh-based methods, which are based on

sparse linear algebra, our method operates within a reduced dimen-

sional subspace which is formulated in dense linear algebra terms.

While the sparse direct linear solvers utilized in these mesh-based

algorithms exploit multi-core CPU parallelism, existing implemen-

tations on graphics hardware (e.g. SuiteSparse, cuSolverSP) are still

immature.

ACM Transactions on Graphics, Vol. 36, No. 6, Article 214. Publication date: November 2017.

214:4 • Renjie Chen and Ofir Weber

3 BACKGROUND
For completeness we include a short introduction to some basic

concepts in optimization, complex analysis, and planar harmonic

maps. For further reading we refer to the comprehensive book by

Nocedal and Wright [2006] for optimization related topics, the book

byAhlfors for complex analysis related topics [1979], and the concise

book by Duren regarding harmonic planar maps [2004].

3.1 Newton’s Method
Given a scalar function E(x) of a vector variable x ∈ Rn , New-
ton’s method searches for a stationary point of E(x) by iteratively

approximating it using its second order Taylor expansion:

E(x) = E(xk + ∆x) ≈ E(xk) + ∆x
T∇E(xk) +

1

2

∆xT∇2E(xk)∆x ,

where ∆x = x − xk ∈ R
n
is the search direction, and ∇E ∈ Rn and

∇2E ∈ Rn×n denotes the gradient and the Hessian of E respectively.

This second order polynomial in ∆x has vanishing derivative when

the following linear system is satisfied:

∇2E(xk) ∆x = −∇E(xk). (1)

The direction ∆x decreases the energy only if the second order

polynomial is convex, or equivalently, the Hessian matrix ∇2E is

positive definite. Hence, when needed, the Hessian is modified. The

solution to the linear system produces the update for the current

iteration xk+1
= xk + ∆x . To ensure convergence (to a local mini-

mum) from an arbitrary starting point, a line search along the search

direction ∆x should be used to find a step size t , that satisfies the
Wolfe conditions [Nocedal and Wright 2006, Chapter 3.1].

3.2 Complex-valued Functions as Planar Maps
A real-valued function u(x ,y) : Ω → R, is harmonic if it satisfies

the Laplace equation uxx + uyy = 0. A planar harmonic map is a

map f : Ω → R2
where f = [u(x ,y),v(x ,y)], and the component

functions u and v are harmonic. When we identify R2
with the

complex plane C using complex notation z = x + iy, we can express

f as a complex-valued function f (z) = u(z)+ iv(z). Thus a complex-

valued harmonic function f : Ω ⊂ C→ C can be interpreted as a

harmonic planar map. A complex-valued function f = u + iv is said

to be holomorphic if it satisfies the Cauchy-Riemann equations. f (z)

is called anti-holomorphic if f (z) is holomorphic.

The Wirtinger derivatives of a complex-valued function are de-

fined as follows: fz := 1

2
(fx − ify) and fz̄ := 1

2
(fx + ify). Using the

Wirtinger derivatives, the Cauchy-Riemann equations are expressed

concisely as fz̄ ≡ 0. The Laplacian fxx + fyy is concisely expressed

as 4fz̄z , hence the condition for harmonicity (of Ref and Imf) is
simply fz̄z ≡ 0. It is then easy to see that the real and imaginary

components of a holomorphic function are harmonic. The same is

true for anti-holomorphic functions. The converse is not true since

fz̄z ≡ 0 does not imply fz̄ ≡ 0 nor fz ≡ 0.

TheWirtinger derivatives are useful for definingmany of the local

geometric distortion quantities of a C1
planar map. We have that

the local change in area is: det(Jf) = | fz |
2 − | fz̄ |

2
, where Jf is the

2×2 Jacobian matrix of the map. AC1
map f is locally injective and

orientation preserving at a neighborhood of a point z if det(Jf (z)) >
0, or alternatively if | fz (z)| > | fz̄ (z)|.

Isometric and conformal distortion measures are typically formu-

lated in terms of the singular values of Jf , 0 ≤ σ2 ≤ σ1:

σ1(z) = | fz | + | fz̄ | , σ2(z) =
��� | fz | − | fz̄ | ���. (2)

Note that for orientation preserving locally injective maps, the

expression on the right simplifies to σ2(z) = | fz | − | fz̄ | > 0. The

little dilatation k(z) = | fz̄ (z)| /| fz (z)| is a measure of conformal

distortion. We discuss isometric distortion measures in Section 6.

4 HARMONIC MAPS ON MULTIPLY-CONNECTED
DOMAINS

As mentioned in the Introduction, our work generalizes existing

techniques that are designed for simply-connected domains to

multiply-connected domains. We base our construction on the

following theorem which we prove in Appendix A.

Theorem 4.1 (Harmonic Decomposition). Let Ω be a multiply-
connected planar domain with N holes K1, . . . ,KN , and choose N
arbitrary points ρi in Ki . Then, any harmonic map f : Ω → C can
be represented as:

f (z) = Φ̃(z) + Ψ̃(z) +
N∑
i=1

ωi ln |z − ρi | , (3)

where Φ̃, Ψ̃ : Ω → C are holomorphic functions, and ω1, . . . ,ωN are
some complex coefficients.

The harmonic decomposition (3) is unique up to an additive com-

plex constant that can be chosen by setting e.g. Ψ̃(z0) = 0 for an

arbitrary point z0 ∈ Ω. Theorem 4.1 extends a similar result for

simply-connected domains for which the summation term in (3) is

missing (c.f. [Duren 2004] Section 1.2). While Φ̃(z)+ Ψ̃(z) is still har-
monic on multiply-connected domains, the additional summation

term is essential to represent certain harmonic maps and without it,

the representation is incomplete.

4.1 Locally Injective Harmonic Maps
The main theoretical result in [Chen andWeber 2015] is a boundary-

value characterization of the injectivity and the conformal-and-

isometric distortion of planar harmonic maps on simply-connected

domains. We generalize this result to the multiply-connected case

(see Appendix B for the proof):

Theorem 4.2 (Bounded Distortion). A planar harmonic map f :

Ω → C on a multiply-connected domain with exterior boundary curve
γ0 oriented counterclockwise and interior boundary curves γ1 · · ·γN
oriented clockwise, is locally injective with an upper bound k ∈ [0, 1)
on the conformal distortion, a lower bound σ2 > 0 on the small
singular value of the Jacobian, and an upper bound σ1 < ∞ on the
large singular value at every point z in Ω if and only if:∮

γ0

f ′z (w)

fz (w)
dw +

N∑
i=1

∮
γi

f ′z (w)

fz (w)
dw = 0, (4a)

0 ≤ k(w) ≤ k ∀w ∈ ∂Ω, (4b)

σ1(w) ≤ σ1 ∀w ∈ ∂Ω, (4c)

σ2 ≤ σ2(w) ∀w ∈ ∂Ω. (4d)

ACM Transactions on Graphics, Vol. 36, No. 6, Article 214. Publication date: November 2017.

GPU-Accelerated Locally Injective Shape Deformation • 214:5

Fig. 3. A knot. Left: doubly-connected domain Ω. Right: an image of a
map f : Ω → C. While f is locally injective, f and the identity are not
regular homotopic. Intuitively, one cannot “morph” the annulus on the left
to the one on the right continuously without breaking local injectivity. The
conditions of Theorem 4.2 on f hold. The integral (Equation (4a)) over the
exterior boundary is 2π i while the integral over the interior one is −2π i.

Intuitively, Theorem 4.2 states that in order to induce global dis-

tortion bounds, it is sufficient to bound the distortion of a harmonic

map on the boundary curves γi as long as (4a) holds. The boundary

integral condition (4a) is equivalent to the condition that fz is non-

vanishing throughout the domain. Namely that fz (z) , 0 (Appendix

B). In contrast to the simply-connected domain, the integral over

the exterior boundary γ0 may be nonzero. This gives rise to maps

which are not regular homotopic to the identity map but can still

be locally injective (see Figure 3).

As opposed to [Chen andWeber 2015], our deformation algorithm

does not explicitly impose user-defined bounds k,σ1,σ2 on the

distortion. Instead, we favor an overall lower average distortion. By
using energies that become infinite when the map degenerates at

a boundary point, a finite bound on distortion is naturally formed

on the boundary. Theorem 4.2 then assures that this bound is also

global. At each iteration, our algorithm certifies the map as locally

injective by verifying that (4a) holds, as well as the following:

| fz (w)| > | fz̄ (w)| ∀w ∈ ∂Ω. (5)

In Section 8 we explain how to enforce (4a) and (5) in practice.

5 DISCRETIZATION
We discretize Equation (3) to obtain a finite dimensional space of

harmonic maps. The holomorphic functions Φ̃ and Ψ̃ are discretized

by using the Cauchy complex barycentric coordinates [Weber et al.

2009] which are derived by approximating the boundary of the

domain using a polygonal shape. Let P̂ = {z1, z2, ..., zm }, zj ∈ C
be the vertices of a multiply-connected planar polygon (the cage).

The vertices of the cage are split into sets such that the first set

represents the exterior polygon oriented counterclockwise while

the following sets represent the interior polygons oriented clockwise

(see Figure 4).

z1

z2

A2

A1

z
v1

v2

B1 B7
B2

cage z3
z4

z5

z6
z7

z10

z11

z8z9

Fig. 4. Notations. The purple area is a doubly-connected domain Ω bounded
by a polygon P with 11 vertices. The solid black polygon is an outward offset
cage P̂ = γ0 ∪ γ1 with vertices zj (cyan) composed of exterior polygon γ0

oriented counterclockwise, and interior clockwise polygon γ1. The point z
(green) is in Ω or on ∂Ω. Aj = zj − zj−1, Bj (z) = zj − z , and [vi , vi+1] is a
small segment (orange) on P. The point ρ1 (red) is in γ1.

The holomorphic functions Φ̃ and Ψ̃ are represented as:

Φ̃(z) =
m∑
j=1

C̃j (z)φ j , Ψ̃(z) =
m∑
j=1

C̃j (z)ψj , (6)

where C̃j (z) is the jth holomorphic Cauchy barycentric coordi-

nate associated with vertex zj and φ j ,ψj are complex coefficients.

C̃j (z) possess a rather simple closed-form expression (see Appendix

D). Note that while Weber et al. [2009] assumed that P̂ is simply-

connected, their derivation can be extended to the case of multiple

boundary components due to the fact that Cauchy’s integral formula

still holds. This can be done by integrating the Cauchy kernel over

all the boundary components. Practically, representing holomorphic

functions on such a domain simply boils down to using additional

basis functions that correspond to vertices that lie on the interior

boundaries. We note, that the complex barycentric map induced by

the Cauchy coordinates on multiply-connected domains has a non-

empty null space of (complex) dimension 2N which corresponds to

a similarity transformation of the vertices of the interior boundary

polygons. To remove this ambiguity, we fix the first two complex

coefficients of each hole to zero.

We proceed by substituting the holomorphic functions Φ̃ and Ψ̃
in the harmonic decomposition (3) with the expressions from (6).

The additional term

∑N
i=1

ωi ln |z − ρi | in (3) is substituted with the

expression:

m+N∑
j=m+1

(φ j +ψj) ln
��z − ρ j−m �� , (7)

where φ j ,ψj are 2N additional complex coefficients. Note that split-

ting ωi into two variables creates some unnecessary redundancy,

nevertheless it greatly simplifies the exposition as well as the imple-

mentation. Later on, we will remove this redundancy by enforcing

a constraint φ j = ψj , j = m + 1, . . . ,m + N for each hole. Finally,

rearranging terms and denoting n =m + N leads to:

f (z) =
n∑
j=1

Cj (z)φ j +
n∑
j=1

Cj (z)ψj , (8)

Cj (z) =

{
C̃j (z) j = 1, . . . ,m

ln

��z − ρ j−m �� j =m + 1, . . . ,n.

ACM Transactions on Graphics, Vol. 36, No. 6, Article 214. Publication date: November 2017.

214:6 • Renjie Chen and Ofir Weber

Equation (8) is our closed-form expression for a finite dimensional

harmonic subspace with 2n complex variables {φ j ,ψj }
n
j=1

. The di-

mension of the (complex) null space is 4N + N + 1, where 4N is

due to the 2 complex DOF per hole for each of the two Cauchy

barycentric maps (as explained above), N is due to the redundancy

introduced by Equation (7) and the term 1 is due to the constant

DOF of the harmonic decomposition (3).

We proceed by constructing simple formulas for the Wirtinger

derivatives of our harmonic map. Luckily, just like the map itself,

it can be expressed in closed-form. By linearity of the Wirtinger

operators, the fact that the derivative of the Cauchy coordinates

with respect to z is 0, and assuming that φ j = ψj ,∀j =m + 1, . . . ,n
we have:

fz (z) =
n∑
j=1

D j (z)φ j , fz̄ (z) =
n∑
j=1

D j (z)ψj , (9)

D j (z) =

{
D̃ j (z) j = 1, . . . ,m

1

z−ρ j−m j =m + 1, . . . ,n.

The derivatives of the Cauchy barycentric coordinates D̃ j (z) (Ap-

pendix D) are holomorphic and so is
1

z−ρ j−m , hence it is clear that

fz and fz̄ are both holomorphic (though not necessarily integrable).

6 ISOMETRIC ENERGIES
The main approach in interactive shape deformation is to design

and minimize a distortion energy that aggregates a differential

quantity that strives to keep the map as-isometric-as-possible. Such

differential quantities are minimized when the map is locally iso-

metric. However, since a perfect isometry cannot be obtained in

general in the presence of positional constraints, the particular defi-

nition of proximity to isometry greatly affects the end result. It is a

common practice to measure distortion at a point z as a function
E(z) = E(σ1(z),σ2(z)) of the two singular values of the Jacobian ma-

trix Jf (z). Such a function is invariant to rigid motions of both the

source and the target domains [Rabinovich et al. 2017]. E(z) should
be minimized (at a single point z) if σ1(z) = σ2(z) = 1. Energies

that minimize conformal distortion are also popular. Our harmonic

subspace contains many pure (with zero distortion) conformal maps,

hence, if desired, we can simply restrict the subspace by eliminating

theψj variables and use any of our isometric energies to regularize

the result (Figure 5).

A popular choice in graphics is the as-rigid-as-possible (ARAP)

energy [Igarashi et al. 2005; Liu et al. 2008; Sorkine and Alexa 2007]

which defines local proximity to isometry via ∥ J −R∥2F , where ∥ · ∥F
denotes the Frobenius norm, and R denotes the closest rotation to

J . It can be expressed as EARAP = (σ1 − 1)2 + (σ2 − 1)2. The main

limitation of ARAP is that it favors shrinkage over expansion, and

in particular it stays finite even if the map is degenerated (σ2(z) = 0).

Hence, ARAP tends to attract the map to a configuration which is

not locally injective. Our solver and derivation are applicable to

EARAP, albeit ARAP is arguably a poor choice of energy if local

injectivity is sought after.

Appropriate choices of isometric energy for designing locally in-

jective maps become infinite when the map collapses locally, which

serves as a natural barrier term. Since our optimization depends on

Input AMIPS Conformal

Fig. 5. Harmonic deformations of a triply-connected domain. The domain
on the left has N = 2 holes in it. The result in the middle minimizes the
Advanced MIPS energy, while the one on the right is a pure conformal map
with least isometric distortion.

high order derivatives, we focus on energies which are smooth in

our variables φ j ,ψj . To this end, we express the distortion measure

at z as a smooth function of | fz |
2
and | fz̄ |

2
. Since | fz |

2
and | fz̄ |

2

are quadratic functions in φ j ,ψj , the composition is also smooth.

The symmetric Dirichlet isometric energy Eiso =
1

2
|J |2F +

1

2
|J−1 |2F

has been successfully used in [Kovalsky et al. 2016; Rabinovich et al.

2017; Schreiner et al. 2004; Smith and Schaefer 2015] for mesh pa-

rameterization. It can be expressed in terms of the singular values:

Eiso(σ1,σ2) =
1

2

(
σ 2

1
+ σ−2

1
+ σ 2

2
+ σ−2

2

)
(10a)

=
σ 2

1
+ σ 2

2

2

(
1 +

1

σ 2

1
σ 2

2

)
. (10b)

Recall that for an orientation preserving locally injective planar

map f , we have σ1 = | fz | + | fz̄ | and σ2 = | fz | − | fz̄ |. We get:

σ 2

1
+ σ 2

2

2

= | fz |
2 + | fz̄ |

2 , σ1σ2 = | fz |
2 − | fz̄ |

2 , (11)

where the left term is the Dirichlet energy and the right term is

det(J). Substituting into Equation (10b) gives:

Eiso(| fz |
2 , | fz̄ |

2) =
(
| fz |

2 + | fz̄ |
2

) ©­­«1 +
1(

| fz |
2 − | fz̄ |

2

)
2

ª®®¬ ,
which is clearly smooth in | fz |

2
and | fz̄ |

2
since | fz |

2 , | fz̄ |
2
.

In Table 1, we list several possible choices for such smooth iso-

metric energies. These include the exponential symmetric Dirichlet

isometric energy: Eexp = exp(s · Eiso) [Rabinovich et al. 2017]. The

motivation to use Eexp is to penalize more drastically high values of

the distortion measure. As demonstrated in Figure 6, this allows the

user to trade-off low average versus low maximal distortion. Finally,

we include the Advanced MIPS energy [Fu et al. 2015] which pro-

vides user-controlled balance between area preservation and angle

preservation.

We define the isometric distortion of a planar harmonic map f
as a boundary integral over the pointwise distortion quantity E(w):

E
f =

∮
∂Ω

E(w)ds . (12)

ACM Transactions on Graphics, Vol. 36, No. 6, Article 214. Publication date: November 2017.

GPU-Accelerated Locally Injective Shape Deformation • 214:7

Table 1. Smooth isometric energies. First column: isometric measure in terms of the singular values. Second column: isometric measure in terms of |fz |2 , |fz̄ |2

which are denoted x, y for clarity. It is straightforward to see that these expressions are smooth in x, y wherever x , y , which is always the case for our
locally injective maps. Third column: the parameters that are needed for instantiating the gradient (17) and the Hessian (18) expressions. Forth column: The
four eigenvalues of K (not necessarily sorted). Potentially negative ones are highlighted.

E(σ1,σ2) E(x ,y) = E(| fz |
2 , | fz̄ |

2) (α1,α2, β1, β2, β3)
T

Eigenvalues

Eiso
1

2

(
σ 2

1
+ σ 2

2
+ σ−2

1
+ σ−2

2

)
E

iso
= (x + y)

(
1 + 1

(x−y)2

) ©­­­­­­­«

α iso

1
= 1 − (x + 3y)(x − y)−3

α iso

2
= 1 + (3x + y)(x − y)−3

β iso

1
= 2(x + 5y)(x − y)−4

β iso

2
= 2(5x + y)(x − y)−4

β iso

3
= −6(x + y)(x − y)−4

ª®®®®®®®¬
2α1, 2α2, λ3, λ4

Eexp exp

(
s
2

(
σ 2

1
+ σ 2

2
+ σ−2

1
+ σ−2

2

))
exp

(
s (x + y)

(
1 + 1

(x−y)2

))
s Eexp

©­­­­­­­«

α iso

1

α iso

2

β iso

1
+ s (α iso

1
)2

β iso

2
+ s (α iso

2
)2

β iso

3
+ sα iso

1
α iso

2

ª®®®®®®®¬
2α1, 2α2, λ3, λ4

EAMIPS exp

(
s

(σ
1

σ
2

+
σ

2

σ
1

)
+

(
σ

1
σ

2
+ σ−1

1
σ−1

2

))
exp

(
2s (x+y)+1

x−y + x − y
) ©­­­­­­­­«

(
1 − (4sy + 1)(x − y)−2

)
E

AMIPS(
−1 + (4sx + 1)(x − y)−2

)
E

AMIPS

α 2

1
E
−1

AMIPS
+ 2(4sy + 1)(x − y)−3

E
AMIPS

α 2

2
E
−1

AMIPS
+ 2(4sx + 1)(x − y)−3

E
AMIPS

α
1
α

2
E
−1

AMIPS
− (4sx + 4sy + 2)(x − y)−3

E
AMIPS

ª®®®®®®®®¬
2α1, 2α2,λ3,λ4

0 50 100 150 200

Eiso Eexp

Fig. 6. Comparison of Eiso (left) and Eexp (right). A straight bar shape is
deformed into an extreme pose. Exponentiating the Eiso distortion mea-
sure reduces the maximal distortion (red color) but increases the average
distortion. Both color maps show Eiso.

We use the superscript f throughout the paper to denote the bound-

ary integrated distortion and omit it to denote the pointwise quantity.

We also experimented with an area integral instead of the boundary

one, but did not notice any benefit. Theorem 4.2 ensures that for any

bound on E(w) along the boundary, a global upper bound on σ1(z),
and a global lower bound on σ2(z) exist. Hence, a global bound on

E(z) is naturally formed.

The gradient and the Hessian of the overall isometric energy are:

∇E
f =

∮
∂Ω
∇E(w)ds (13)

∇2
E
f =

∮
∂Ω
∇2

E(w)ds . (14)

The gradient and the Hessian of our energy measures have relatively

simple closed-form expressions. A complete derivation is given in

Appendix E. Let D = (D1,D2, . . . ,Dn) ∈ C
1×n

be a complex row

vector, where D j is defined as in (9). We use bold symbols to denote

real vectors and matrices. Define the real matrix D (note the bold

symbol) as:

D =

[
Re (D) −Im (D)
Im (D) Re (D)

]
∈ R2×2n . (15)

We express the complex Wirtinger derivatives as 2×1 real vectors:

fz =

[
Re (fz)
Im (fz)

]
, fz̄ =


Re

(
fz̄

)
Im

(
fz̄

) ∈ R2×1. (16)

The gradient of E with respect to the 4n real variables is:

∇E(z) = 2

[
α1DT fz
α2DT fz̄

]
∈ R4n×1, (17)

where α1,α2 are real parameters which depend on the particular

choice of energy. Table 1 provides the parameters needed to instanti-

ate some particular energies (out of many possible). The expression

for the 4n×4n Hessian of E(z) at a single point is:

∇2
E(z) =

[
DT

0

0 DT

]
︸ ︷︷ ︸

4n×4

K︸︷︷︸
4×4

[
D 0

0 D

]
︸ ︷︷ ︸

4×4n

∈ R4n×4n , (18)

where K is the a 4×4 real matrix:

K =

[
2α1I + 4β1 fz f Tz 4β3 fz fz̄

T

4β3 fz̄ f
T
z 2α2I + 4β2 fz̄ fz̄

T

]
∈ R4×4. (19)

The parameters β1, β2, β3 are also energy dependent (see Table 1).

6.1 Positional Constraints
The point-to-point (P2P) metaphor is an intuitive drag-and-drop

user-interface that best fits interactive deformation tasks. The user

of our system can add or remove (by clicking) positional constraints

at any time during interaction. Dragging the P2P handles signals the

application to invoke the optimization and to render the updated

result. We incorporate the P2P constraints as soft constraints as was

ACM Transactions on Graphics, Vol. 36, No. 6, Article 214. Publication date: November 2017.

214:8 • Renjie Chen and Ofir Weber

advocated by [Chen and Weber 2015; Poranne and Lipman 2014;

Rabinovich et al. 2017]. We define the P2P energy:

E
f
p2p
=

1

2

|P |∑
i=1

| f (pi) − qi |
2,

where pi ∈ P ⊂ Ω is the position of the ith handle in the source

domain, and qi ∈ C is its target desired position. The gradient and

the Hessian of E
f
p2p

are derived in Appendix F. The full energy of

our unconstrained minimization problem is:

E
f
Def
= E

f + λE
f
p2p
, (20)

where λ is a user-defined weight that balances the two terms.

7 POSITIVE DEFINITE HESSIAN
The Hessian of E

f
p2p

is positive semi-definite (PSD). However, the

Hessian of E
f
is, in general, not PSD, and neither is the Hessian of

E
f
Def

(Equation (20)). Our key observation here is that the closest

(in Frobenius norm) PSD matrix to the Hessian ∇2
E(z) ∈ R4n×4n

at

a single point z, can be expressed in closed-form. With that at hand

we substitute Equation (14) with:

∇2
E
f + =

∮
∂Ω
∇2

E
+(w)ds, (21)

where ∇2
E
+(w) is the closest PSD matrix to ∇2

E(w). Since, the in-
tegral (or sum) of PSD matrices is PSD (due to the convex cone

structure of the PSD set), it is clear that the modified Hessian of

the isometric energy (21) is guaranteed to be PSD. In Appendix I,

we further show that the dimension of the null space of (21) in

the case of Eiso and Eexp is 2 or 3. Therefore with 2 or more posi-

tional constraints, ∇2
E
f +

is nonsingular. We refer to the variant of

Newton’s method that computes the closest PSD matrix to ∇2
E
f

as Newton-Eigen and stress that our modified Newton iterations

are dramatically faster to compute. Moreover, throughout extensive

experiments, we observe that our local modification leads to itera-

tions which are more effective, where less iterations are required for
convergence (Figures 1, 10, 11).

7.1 Hessian Modification
Our goal is to compute the eigen-factorization of the local Hessian

matrix ∇2
E. On the one hand, doing it numerically is impractical,

whereas on the other hand, analytic eigen-factorization of a 4n×4n
matrix is challenging to derive. Our first observation is that each

of the nontrivial eigenvectors (with nonzero eigenvalue) of ∇2
E

can be expressed as a product of B =
[
D 0

0 D

]
and a corresponding

eigenvector of K (Equation (19)). This is due to the fact that B has 4

rows that are orthogonal to each other (easy to verify by comput-

ing the inner product of each pair) and all the rows have the same

norm. Furthermore, the eigenvalues of K and ∇2
E are the same up

to a positive scale. Hence, we have reduced our problem to that of

analytically computing the eigenvalues of a 4×4 matrix. This is still

challenging as these are the roots of a 4
th

order polynomial. De-

note the (unsorted) eigenvalues of K as (λ1, λ2, λ3, λ4). Our second

observation is that λ1 = 2α1 and λ2 = 2α2. To see why 2α1 is an

eigenvalue, subtract 2α1 from the diagonal of K . The first two rows

of K − 2α1I are:

fz︸︷︷︸
2×1

[
4β1 f Tz 4β3 fz̄

T
]

︸ ︷︷ ︸
1×4

, (22)

where we can see that the 1×4 row vector on the right hand side of

(22) is multiplied by two scalars (the elements of fz), hence, these
two rows are linearly dependent, meaning that the matrixK−2α1I is
singular and 2α1 is a root of the characteristic polynomial. Showing

that 2α2 is an eigenvalue can be done similarly. Knowing that 2α1

and 2α2 are two eigenvalues of K , we can compute the other two

eigenvalues by directly solving the quartic characteristic equation.

The derivation is long but straightforward, hence omitted. We get

these expressions:

λ3,4 = s1 ±

√
s2

2
+ 16β2

3
| fz |

2 | fz̄ |
2, (23)

where s1,2 = α1 + 2β1 | fz |
2 ±

(
α2 + 2β2 | fz̄ |

2

)
.

The corresponding four eigenvectors are:(
Im(fz), −Re(fz), 0, 0

)(
0, 0, Im(fz̄), −Re(fz̄)

)(
Re(fz), Im(fz), t1Re(fz̄), t1Im(fz̄)

)(
Re(fz), Im(fz), t2Re(fz̄), t2Im(fz̄)

) (24)

where:

t1,2 =
λ3,4 − 2α1 − 4β1 | fz |

2

4β3 | fz̄ |
2

.

The signs of these eigenvalues depend on the particular choice of

isometric energy, therefore in the most general case, the 4 eigenval-

ues are evaluated and negative ones are substituted with 0 to obtain

the modified Hessian. For particular energy choices, it is possible

to simplify matter even more. For the first two energies listed in

Table 1, we have that only λ1 = 2α1 can be (at times) negative. This

allows us to directly express the modified matrix. For example, for

Eiso, it turns out that λ3, λ4 have quite simple expressions:

λ3 = 4(1 + 3(| fz | + | fz̄ |)
−4), λ4 = 4(1 + 3(| fz | − | fz̄ |)

−4).

The spectrum is then sorted as follows: 2α1 ≤ λ3 ≤ 2α2 ≤ λ4. With

this information at hand, the modification is done by checking for

the sign of α1, and if it is negative, we substitute K in (18) with:

K+ =


(

2α1

|fz |2
+ 4β1)fz f Tz 4β3 fz fz̄

T

4β3 fz̄ f
T
z 2α2I + 4β2 fz̄ fz̄

T

 . (25)

8 LOCALLY INJECTIVE CERTIFICATION
To ensure that the map is locally injective at each iteration, we

need to verify that Conditions (4a) and (5) hold (Section 4.1), and

backtrack during line search otherwise. As (5) involves infinite

number of inequalities: | fz (w)| > | fz̄ (w)| ∀w ∈ ∂Ω, we use a

simpler sufficient condition based on a finite number of conditions

following the approach of [Chen and Weber 2015] which utilizes

the fact that the Wirtinger derivatives are Lipschitz continuous.

Condition (5) can be enforced on the entire boundary by enforcing it

(individually) on many small boundary segments. For each segment

ACM Transactions on Graphics, Vol. 36, No. 6, Article 214. Publication date: November 2017.

GPU-Accelerated Locally Injective Shape Deformation • 214:9

[vi ,vi+1] (see Figure 4 for notations), we compute lower and upper

bounds for | fz | and | fz̄ | respectively as follows:

| fz |min B
| fz (vi)| + | fz (vi+1)|

2

−
Lfz l

2

≤ min

w ∈[vi ,vi+1]
| fz (w)|,

| fz̄ |max B
| fz̄ (vi)| + | fz̄ (vi+1)|

2

+
Lfz̄ l

2

≥ max

w ∈[vi ,vi+1]
| fz̄ (w)|.

Lfz and Lfz̄ are the corresponding Lipschitz constants on the seg-

ment, and l = |vi −vi+1 |. Condition (5) is then substituted with:

| fz (vi)| − | fz̄ (vi)| + | fz (vi+1)| − | fz̄ (vi+1)| ≥ (Lfz̄ + Lfz)l , (26)

or more concisely:

σ2(vi) + σ2(vi+1) ≥ (Lfz̄ + Lfz)l . (27)

It is crucial that the sufficient condition above is as tight as possible,

as otherwise the Newton step size may become too small and will

stop the Newton iterations prematurely. Note that the condition

becomes tighter as the Lipschitz constants and/or the length of the

segment l decrease. Since denser sampling requires more computa-

tions, it is advised to obtain as small as possible Lipschitz constants.

In Appendix H, we derive the following Lipschitz constants that

can be used on multiply-connected domains. More importantly,

our newly-derived constants are significantly smaller than those of

BDHM.

Lfz =
| f ′z (vi)| + | f

′
z (vi+1)|

2

+
l

2

©­«
m∑
j=1

Lj |sj − sj+1 | +

n∑
j=m+1

Lhj |φ j |
ª®¬

Lfz̄ =
| f ′z̄ (vi)| + | f

′
z̄ (vi+1)|

2

+
l

2

©­«
m∑
j=1

Lj |tj − tj+1 | +

n∑
j=m+1

Lhj |ψj |
ª®¬

where Lj =
1

2πd2(zj)
, Lhj =

2

d3(ρ j−m)
, d(z) is the distance from a

point z to the segment, sj =
φ j−φ j−1

zj−zj−1

, and tj =
ψj−ψj−1

zj−zj−1

. In Figure

7 we compare the Lipschitz constants obtained with our formulas

against that of BDHM and show that they are significantly smaller

and lead to faster convergence and increased robustness.

0 100 200 300 400 500 600
0

5

10

15

20

25

L (3.64)
L (0.54)

Iteration

102

106

En
er

gy

0
10 20

102

104

10 20

BDHM

ours

Fig. 7. Left: Comparison of the Lipschitz constants of fz on 529 bound-
ary segments. LBDHM is the approach taken in [Chen and Weber 2015],
while Lours is our improved constants. Our constants are smaller on all the
segments with an average (number in parentheses above) which is ×6.74

smaller. Right: Comparison of convergence behavior of our solver using
BDHM constants (black) vs. ours (red). See how the iterations of the Raptor
and Horse deformations stop immaturely when LBDHM is used.

We now turn to Condition (4a) requiring that the boundary in-

tegral (or equivalently the number of zeros of fz) is 0. Theorem

11 in [Chen and Weber 2015] provides a sufficient (but not neces-

sary) condition that implies (4a), albeit their proof assumes that the

domain is simply-connected. We show a much stronger result by

deriving a new condition which is applicable to multiply-connected

domains, and is both necessary and sufficient as long as (27) holds.

The following theorem is proved in Appendix C.

Theorem 8.1. Let д(z) be an L-Lipschitz continuous holomorphic
function in a neighborhood of a simple open curve with length l and
two endpoints vi ,vi+1 ∈ C such that:

|д(vi)| + |д(vi+1)| > Ll , (28)

then: ∫ vi+1

vi

д′(z)

д(z)
dz = ln

����д(vi+1)

д(vi)

���� + i Arg

д(vi+1)

д(vi)
, (29)

where Arg is the principle branch of the complex argument function.

Theorem 8.1 is applicable to our fz along any line segment

[vi ,vi+1] since our algorithm always verifies that (27) holds (which

implies (28)). Consequently we have the following corollary.

Corollary 8.2. Under the assumption that (27) holds, fz does not
vanish inside the multiply-connected polygon P if and only if:

N∑
j=0

∑
i

Arg

fz (v
j
i+1
)

fz (v
j
i)
= 0, (30)

where the first summation is over the polygonal loops, and the second
one is over the segments in each loop.

Proof. It follows immediately from Cauchy’s argument principle

and (29) that:

2π iN =

∮
∂Ω

f ′z (w)

fz (w)
dw =

N∑
j=0

∑
i

(
ln

����� fz (v ji+1
)

fz (v
j
i)

����� + iArg

fz (v
j
i+1
)

fz (v
j
i)

)
,

whereN is the number of zeros of fz . The ln | · | terms cancel since

lnx/y = lnx − lny and all the boundary polygons are closed. �

To conclude, we first verify that (27) holds on all the boundary

segments and if so, we simply compute the sum in (30). If it is zero,

the map is guaranteed to be locally injective everywhere.

9 IMPLEMENTATION
Algorithm 1 provides a pseudocode for our solver. The algorithm

can be dramatically accelerated by exploiting parallelism. Most of

the steps require only basic dense linear algebra operations and

are straightforward to implement. Unlike sparse linear algebra op-

erations, our method greatly benefits when these operations are

performed on the GPU. In this section, we point out some of the

practical aspects of the implementation. Furthermore, Appendix G

contains elaborated description of our GPU implementation. In order

to promote reproducibility and to encourage further development

of GPU-based solvers, we provide a publicly available reference

implementation (http://github.com/renjiec/GLID).

ACM Transactions on Graphics, Vol. 36, No. 6, Article 214. Publication date: November 2017.

http://github.com/renjiec/GLID

214:10 • Renjie Chen and Ofir Weber

Algorithm 1Modified Newton Solver

Input: (φ,ψ) ◃ initialization - locally injective map

pi ∈ P ⊂ Ω, qi ∈ C ◃ P2P constraints

Output: (φ,ψ) ◃ new locally injective map

1: DoPreprocessing() ◃ Appendix G

2: loop ◃ Newton iterations

3: E
f
Def
← E

f + λE
f
p2p

◃ evaluate energy

4: д← ∇E
f + λ∇E

f
p2p

◃ evaluate gradients (G.7),(G.9)

5: H ← ∇2
E
f + + λ∇2

E
f
p2p

◃ modified Hessian (G.10)

6: (H ,д) ← EliminateVariables(H ,д) ◃ Section 5

7: Hd = −д, where d =

[
dφ
dψ

]
◃ solve (1) using Cholesky

8: (φ,ψ, t) ← LineSearch(E
f
Def
,d,д,φ,ψ) ◃ backtracking

9: if t ∥d ∥ ≤ ϵ then ◃ solver converged

10: return (φ,ψ)
11: end if
12: end loop

13: procedure LineSearch(Ef
Def
,d,д,φ,ψ) ◃ Appendix G

14: t ← 1

15: repeat
16: (ftz , fz̄

t
) ← ComputeWirtinger() ◃ Equation (G.11)

17: if E
f
Def
(ftz , fz̄

t
) < E

f
Def
+ c t(dTд) then ◃ c ∈ (0, 1)

18: if (27) and (30) hold then ◃ locally injective

19: return (φ + tdφ ,ψ + tdψ , t)
20: end if
21: end if
22: t ← t/2
23: untilMaxNumSteps

24: end procedure

9.1 Isometric energy, gradient and Hessian evaluation
While the map and its differentials possess closed-form expressions,

we are unable to solve the contour integrals that arise in Equations

(12),(13),(14) analytically, and resort to numerical integration. Let

G = {w1,w2, ...,w |G |} ⊂ ∂Ω be a set of uniformly distributed

samples. We apply the trapezoidal rule to (12) which due to the

uniform sampling boils down to a simple sum:

E
f ≈

1

|G|

|G |∑
i=1

E(wi). (31)

The gradient of E
f
is approximated in the same fashion:

∇E
f ≈

1

|G|

|G |∑
i=1

∇E(wi), (32)

however, it turns out that for the integral approximation of the

Hessian, much coarser approximation can be used with negligible

influence on the number of Newton iterations (see Figure 8). Hence,

we use an additional setH of samples which is a subset of G but

100 101 102 103

Iteration
104

105

106

107

En
er

gy

 100 samples
 200 samples
 400 samples
 500 samples
50000 samples

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Running time (s)

104

105

106

107

En
er

gy 100 samples
 200 samples
 400 samples
 500 samples
50000 samples

Fig. 8. Hessian approximation. We show the effect of changing the number
of Hessian samples |H | on our algorithm when applied to the depicted
deformation of the deer. We observed similar behavior for other models
and deformations. With 200 samples or less, we see an increase in the
number of iterations needed for convergence (left plot). However, with 400

samples, the convergence rate is identical to that of 50, 000 (note the three
overlapping curves). On the right plot we see that with 50, 000 samples,
the algorithm becomes 3 times slower due to the longer time it takes to
assemble the Hessian, yet, 400 samples are sufficient, in which case the
algorithm converges after 30ms .

contains significantly less samples. The Hessian is approximated:

∇2
E
f ≈

1

|H |

|H |∑
i=1

∇2
E
+(wi), (33)

where ∇2
E
+(wi) is the analytic modification of the pointwise Hes-

sian. We note on a theoretical level, that for any number |H | (as

small as it may be), the Newton step produces a descent direction

since the matrix ∇2
E
f
in (33) is guaranteed to be PSD (strict posi-

tive definiteness can be ensured by adding ϵ to the diagonal). In the

extreme case thatH is an empty set, the algorithm degrades to gra-

dient descent. We observed that in practice, choosing |H | = 0.1 |G|

does not degrade the effectiveness of the Newton iterations and

provides a good balance between the time it takes to perform the

numerical integration and the other steps of the algorithm. We use

this setting in all the results. Moreover, since in practice |H | is much

larger than the dimension of our subspace, it is not necessary to add

ϵ to the diagonal (Appendix I).

9.2 Line Search
To ensure convergence to a local minimum from an arbitrary start-

ing point we use simple backtracking [Nocedal and Wright 2006,

Algorithm 3.1] to find a step size that sufficiently decreases the

energy (Algorithm 1, Line 17) and in addition ensures that the new

map will be locally injective using the strategy of Section 8 (Algo-

rithm 1, Line 18). This requires evaluations of the energy and the

Wirtinger derivatives at different step sizes. Appendix G describes

how to compute it efficiently.

10 RESULTS
We use the following default parameters for all our experiments

unless stated otherwise. The number of samples is |G| = 10
4
, and

|H | = 0.1 |G|. The two energy terms E
f
and E

f
p2p

are balanced

using λ = 10
5
. When comparing to mesh-based methods, a mesh

with 10, 000 vertices is used. User prescribed P2P target positions

qi are visualized as cyan disks. The images of the P2P under the

map f (pi) are visualized as smaller black dots. A black dot which is

centered inside a cyan disk indicates P2P satisfaction. Our machine

ACM Transactions on Graphics, Vol. 36, No. 6, Article 214. Publication date: November 2017.

GPU-Accelerated Locally Injective Shape Deformation • 214:11

316 500 590 896 DOF
0

2

4

6

8

R
un

ni
ng

 ti
m

e
(m

s)

Gradient
Hessian
Linear Solve
Line Search

Fig. 9. Algorithm Balance. We show how the runtime of our GPU-based
modified-Newton solver is spread across the 4 main stages that compose a
single iteration. Each group of bins corresponds to a different model with
variable amount of degrees of freedom (variables). For all models we use
|G | = 10, 000, |H | = 1, 000.

runs Windows 10 with Intel Xeon (6 cores) CPU E5-2643 v4 3.40Ghz,

32GB, and has an NVIDIA TitanX graphics card.

In Figure 9 we demonstrate that our solver is well balanced with

respect to the four different stages that compose a single Newton

iteration: gradient evaluation, Hessian modification-and-assembly,

Cholesky linear solve, and line search. Table 2 compares the runtime

inmilliseconds of a single iteration of various algorithmsminimizing

the symmetric Dirichlet energy. Among all methods, AQP iterations

are the fastest (followed by our GPU iterations), albeit we observe

that AQP requires significantly larger number of iterations com-

pared to our GPU/CPU Newton solver. Moreover, the initialization

required for AQP (see Section 2) further slows down the runtime

(right most column). For comparisons with AQP we run 5 iterations

of ARAP local/global [Liu et al. 2008] followed by the projection

method of [Kovalsky et al. 2015] as was suggested in [Kovalsky et al.

2016].

Throughout our experiments, we consistently observe that the

convergence rate of our algorithm is significantly better than that

of the first-order methods (L-BFGS, SLIM, AQP) which we attribute

to its second-order nature. Furthermore, the convergence rate is al-

ways better even when compared against the Newton-Eigen method

which employs a full eigen-factorization [Nocedal and Wright 2006,

Equation 3.40] of the Hessian at each iteration, followed by a trun-

cation of negative eigenvalues to 1e−10. This is demonstrated in

Figure 1 (6 vs. 32 iters), Figure 10 (15 vs. 35 iters), Figure 11 (8 vs.

11 iters) suggesting that our Hessian modification is not only faster

to compute but also more effective in reducing the energy. Both

the eigen-factorization and the solution to the linear system are

computed using [cuSOLVER 2017].

The full potential of our deformation algorithm is leveraged when

the algorithm runs on graphics hardware, yet our CPU parallel

Matlab version (which is approximately 5 times slower on average)

is still much faster than the alternatives we compare to. In Figure

10 we show a visual comparison of our algorithm against state-of-

the-art methods. For each method we include small images of the

maps obtained at intermediate stages of the algorithm to show that

for the competing methods, many iterations are needed to get to

Table 2. Comparison of runtime (ms) of a single iteration. SLIM and AQP
use amesh with 10, 000 vertices, while the other listed solvers operate within
our harmonic subspace with the specified DOF.

 DOF Ours/GPU Ours/CPU
Newton
Eigen LBFGS SLIM

AQP /
Initialization

deer 364 8.87 38.8 49.6 54.4 58.3 7.84 1239.7
archery 596 15.31 71.2 95.1 88.3 59.4 9.27 1266.3
giraffe 624 14.05 58.1 86.8 54.9 56.4 8.27 1182.9

rex 392 11.7 61.6 77.6 49.5 57.2 8.52 1141.0
racoon 320 7.25 34.4 39.9 68.1 53.7 9.01 904.6
raptor 416 10.18 45.2 56.5 82.3 55.1 8.64 883.4

a state where the progress is not visually apparent. Our method is

between ×25 to ×58 faster than these competing methods.

We observe that qualitatively, the results obtained with the mesh-

based methods tend to concentrate the distortion near the positional

constraints. Refining the mesh does not seem to alleviate this issue

completely while it increases the computation times even further.

We experimentally find that a mesh resolution of 10
4
vertices pro-

vides a reasonable balance between quality and speed and use it

to evaluate AQP and SLIM. Our algorithm on the other hand is

rather indifferent to the mesh resolution and using a mesh with 10
5

vertices, leads to extremely smooth results with no degradation in

speed.

Another comparison is given in Figure 11. Our algorithm fully

converges in 0.081s (8 iterations) while AQP and SLIM take 2.51s
and 9.36s respectively. For the comparisons, we initialize all methods

with the identity map which is quite far from the final configuration

that is determined by the P2P. In an actual interactive session, the

solver utilizes the previous deformation for initialization. Conver-

gence is obtained almost instantly, consequently our algorithm runs

in realtime rates.

Figure 7 shows the improvement of our newly-derived Lipschitz

constants compared to that of BDHM. These greatly contribute to

the success of the algorithm as they ensure that the locally injective

validation (line search) has minimal interference, allowing larger

Newton steps to be taken.

The appendix contains an additional compilation of high reso-

lution images of deformation results that are obtained with our

algorithm. Some of these deformations are intentionally radical and

are used to stress test the method and to demonstrate robustness.

Our algorithm quickly converges on these extreme deformations

and certifies the maps as locally injective. We also include an ac-

companying video with our paper. Watching it greatly assists in

appreciating how fast the algorithm is.

11 SUMMARY AND DISCUSSION
We construct a new finite dimensional subspace of harmonic maps

for multiply-connected domains and extend the bounded distortion

theorem of [Chen andWeber 2015] to this setting. The harmonic sub-

space is utilized to devise a novel deformation method with superior

performance by casting the locally injective mapping problem as a

boundary value problem, minimizing an isometric energy of choice.

Within this low dimensional subspace, the induced map and its

differentials are C∞ functions and can be expressed in closed-form,

ACM Transactions on Graphics, Vol. 36, No. 6, Article 214. Publication date: November 2017.

214:12 • Renjie Chen and Ofir Weber

5 1510

5 1510 30 35

5 1510

O
ur

s
N

ew
to

n
N

ew
to

n
Ei

ge
n

SL
IM

A
Q

P

5 1510 50 120

0 200100 400

100 101 102

Iteration

101

102

103

104

En
er

gy

0 0.5 1 1.5 2 2.5 3
Running time (s)

Ours/GPU
Ours/CPU
Newton
Newton Eigen

0 20 40 60 80 100
4.72

4.722

4.724

4.726

4.728

4.73

0 2 4 6
4.72

4.722

4.724

4.726

4.728

4.73

100 101 102

Iteration
10-2

10-1

100

101

102

En
er

gy

0 0.5 1 1.5 2 2.5 3

Running time (s)

AQP
SLIM

0 100 200 300 400
0.0178

0.018

0.0182

0.0184

0.0186

0 2 4 6
0.0178

0.018

0.0182

0.0184

0.0186

Input

0.11s GPU
1.18s CPU

1.12s

2.85s

4.32s

6.58s

Fig. 10. Visual comparison of the progress of different solvers minimizing
E
f
iso
+ λ E

f
p2p

. The top three rows use the harmonic subspace, while AQP
and SLIM are general mesh-based methods. The total number of iterations
needed for each method as well as the total runtime is reported on the
right of each row. The graphs depict the decrease in energy as a function of
iteration and as a function of time, separating harmonic from mesh-based
methods as they are scaled differently. The “jump” of 0.9s in AQP’s graph
(first iteration) is due to the initialization. Note that due to the large weight
λ, the energy at the first few iterations is very large and E

f
p2p

obscures the

behavior of E
f
iso
. The zoom-in graphs show how the energy decreases more

clearly. Our method converges in 15 iterations. Newton’s method halts after
15 iterations due to non-positive definite Hessian. Newton-Eigen performs
35 iterations and is ×25 slower than our GPU solver. AQP and SLIM require
400 and 120 iterations and are ×39 and ×58 slower respectively.

leading to simple, efficient and very accurate evaluation. Moreover,

we provide a closed-form recipe for a positive definite modification

of the Hessian of these isometric energies that leads to effective-

and-efficient Newton iterations. Finally, our algorithm is specifically

designed for efficient implementation on modern parallel graphics

hardware architectures.

11.1 Limitations and Future Work
The main limitation of our method, which at the same time is also

the reason for its superior quality and speed, is its dependence on

the reduced dimensional subspace we operate within. Depending

on the application, one might desire to produce maps which are not

harmonic or not even smooth. Another limitation which is shared

by all other methods is the fact that while our method is extremely

robust and seems to converge to maps with very low distortion,

global optimality is not guaranteed since the underlying energy is

nonconvex. Furthermore, we cannot guarantee that the positional

constraints will always be satisfied.

An interesting avenue for future research would be to continue

using the harmonic subspace but in a mesh-based setting. While we

argue that for the planar deformation setting, theC∞ basis functions

are the most suitable ones, using meshes will allow us to generalize

the algorithm to curved manifolds which are the representation

of choice for many geometry processing applications, such as sur-

face parameterization, and remeshing. A first step in that direction

would be to generalize Theorem 4.2 to smooth curved manifolds, and

then to develop a discrete counterpart bounded distortion theorem

[Bright et al. 2017].

ACKNOWLEDGMENTS
We thank Edward Chien for illuminating discussions on the integra-

bility of the Wirtinger derivatives on multiply-connected domains

and for writing the proof of Theorems 4.1, 4.2, to Markus Steinberger

for helpingwith the GPU implementation, and to Eden FedidaHefetz

for proofreading.

REFERENCES
Ahlfors L.V. 1979. Complex analysis: an introduction to the theory of analytic functions

of one complex variable. McGraw-Hill.

Aigerman Noam and Lipman Yaron. 2013. Injective and bounded distortion mappings

in 3D. ACM Transactions on Graphics 32, 4 (2013), 106.
Aigerman Noam, Poranne Roi, and Lipman Yaron. 2014. Lifted bijections for low

distortion surface mappings. ACM Transactions on Graphics 33, 4 (2014), 69.
ApS MOSEK. 2017. The MOSEK optimization software. http://www.mosek.com/

Axler Sheldon. 1986. Harmonic functions from a complex analysis viewpoint. The
American mathematical monthly 93, 4 (1986), 246–258.

Bright Alon, Chien Edward, and Weber Ofir. 2017. Harmonic Global Parametrization

with Rational Holonomy. ACM Transactions on Graphics 36, 4, Article 89 (2017).
Chen Renjie and Weber Ofir. 2015. Bounded distortion harmonic mappings in the plane.

ACM Transactions on Graphics 34, 4, Article 73 (2015).
Chien Edward, Chen Renjie, and Weber Ofir. 2016a. Bounded Distortion Harmonic

Shape Interpolation. ACM Transactions on Graphics 35, 4, Article 105 (2016).
Chien Edward, Levi Zohar, and Weber Ofir. 2016b. Bounded distortion parametrization

in the space of metrics. ACM Transactions on Graphics 35, 6, Article 215 (2016).
cuBLAS. 2017. CUDA Basic Linear Algebra Subroutines. http://developer.nvidia.com/

cublas. (2017). Accessed: 13-May-2017.

cuSOLVER. 2017. CUDA Linear Solvers Library. http://developer.nvidia.com/cusolver.

(2017). Accessed: 13-May-2017.

Duren Peter. 2004. Harmonic mappings in the plane. Cambridge University Press.

Fu Xiao-Ming and Liu Yang. 2016. Computing inversion-free mappings by simplex

assembly. ACM Transactions on Graphics 35, 6 (2016), 216.
Fu Xiao-Ming, Liu Yang, and Guo Baining. 2015. Computing locally injective mappings

by advanced MIPS. ACM Transactions on Graphics 34, 4 (2015), 71.
Hefetz Eden Fedida, Chien Edward, and Weber Ofir. 2017. Fast Planar Harmonic

Deformations with Alternating Tangential Projections. Computer Graphics Forum
36, 5 (2017), 175–188. Proceedings of Symposium on Geometry Processing 2017.

Hormann Kai and Floater Michael S. 2006. Mean value coordinates for arbitrary planar

polygons. ACM Transactions on Graphics 25, 4 (2006), 1424–1441.
Igarashi Takeo, Moscovich Tomer, and Hughes John F. 2005. As-rigid-as-possible shape

manipulation. ACM Transactions on Graphics 24, 3 (2005), 1134–1141.
Jacobson Alec, Baran Ilya, Popović Jovan, and Sorkine Olga. 2011. Bounded biharmonic

weights for real-time deformation. ACM Transactions on Graphics 30, 4, Article 78
(2011).

Kavan Ladislav, Collins Steven, Žára Jiří, and O’Sullivan Carol. 2007. Skinning with

dual quaternions. In Proceedings of the 2007 symposium on Interactive 3D graphics
and games. ACM, 39–46.

Kovalsky Shahar Z., Aigerman Noam, Basri Ronen, and Lipman Yaron. 2015. Large-

scale bounded distortion mappings. ACM Transactions on Graphics 34, 6, Article 191
(2015).

Kovalsky Shahar Z., Galun Meirav, and Lipman Yaron. 2016. Accelerated Quadratic

Proxy for Geometric Optimization. ACM Transactions on Graphics 35, 4, Article 134
(2016).

ACM Transactions on Graphics, Vol. 36, No. 6, Article 214. Publication date: November 2017.

http://www.mosek.com/
http://developer.nvidia.com/cublas
http://developer.nvidia.com/cublas
http://developer.nvidia.com/cusolver

GPU-Accelerated Locally Injective Shape Deformation • 214:13

AQP/SLIM

100 102Iteration

101

102

103

104

En
er

gy

100 101
7.68

7.7

7.72

7.74

10-1 100Running time (s)

Ours/GPU
Ours/CPU
Newton Eigen
LBFGS

0 0.5 1 1.5 2
7.68

7.7

7.72

7.74

100 102Iteration
10-2

10-1

100

101

102

100 101 102

0.06

0.065

0.07

10-1 100Running time (s)

AQP
SLIM

0 0.5 1 1.5 2

0.06

0.065

0.07

OursInput

Fig. 11. Raptor. Our solver converges after 8 iterations (0.081s on GPU, 0.31s on CPU) to the depicted map. The Newton-Eigen solver converges to the same
result after 11 iterations which took 0.4s due to the longer iteration time. The first-order methods required many more iterations to converge. L-BFGS needs
as many as 1, 612 iterations to converge to the same result. AQP and SLIM converge to the result depicted on the right after 188 and 170 iterations respectively.
Note how the distortion is concentrated around the P2P in this result.

Levi Zohar and Weber Ofir. 2016. On the convexity and feasibility of the bounded

distortion harmonic mapping problem. ACM Transactions on Graphics 35, 4, Article
106 (2016).

Lipman Yaron. 2012. Bounded distortion mapping spaces for triangular meshes. ACM
Transactions on Graphics 31, 4 (2012), 108.

Lipman Yaron, Kopf Johannes, Cohen-Or Daniel, and Levin David. 2007. GPU-assisted

positive mean value coordinates for mesh deformations. In Symposium on geometry
processing, Vol. 257. 117–123.

Lipman Yaron, Sorkine Olga, Levin David, and Cohen-Or Daniel. 2005. Linear rotation-

invariant coordinates for meshes. ACM Transactions on Graphics 24, 3 (2005), 479–
487.

Liu Ligang, Zhang Lei, Xu Yin, Gotsman Craig, and Gortler Steven J. 2008. A local/global

approach to mesh parameterization. Computer Graphics Forum 27, 5 (2008), 1495–

1504.

Liu Tiantian, Bouaziz Sofien, and Kavan Ladislav. 2017. Quasi-Newton Methods for

Real-Time Simulation of Hyperelastic Materials. ACM Transactions on Graphics 36,
3 (2017), 23.

Martin Tobias, Joshi Pushkar, Bergou Miklós, and Carr Nathan. 2013. Efficient Non-

linear Optimization via Multi-scale Gradient Filtering. Computer Graphics Forum
32, 6 (2013), 89–100.

Nocedal Jorge and Wright Stephen. 2006. Numerical Optimization. Springer New York.

Poranne Roi and Lipman Yaron. 2014. Provably good planar mappings. ACM Transac-
tions on Graphics 33, 4 (2014), 76.

Rabinovich Michael, Poranne Roi, Panozzo Daniele, and Sorkine-Hornung Olga. 2017.

Scalable Locally Injective Mappings. ACM Transactions on Graphics 36, 2, Article 16
(2017).

Schreiner John, Asirvatham Arul, Praun Emil, and Hoppe Hugues. 2004. Inter-surface

mapping. ACM Transactions on Graphics 23, 3 (2004), 870–877.
Schüller Christian, Kavan Ladislav, Panozzo Daniele, and Sorkine-Hornung Olga. 2013.

Locally injective mappings. Computer Graphics Forum 32, 5 (2013), 125–135.

Smith Jason and Schaefer Scott. 2015. Bijective Parameterization with Free Boundaries.

ACM Transactions on Graphics 34, 4, Article 70 (2015).
Sorkine Olga and Alexa Marc. 2007. As-rigid-as-possible Surface Modeling. In Proceed-

ings of the Symposium on Geometry Processing. Eurographics, Switzerland, 109–116.
Teran Joseph, Sifakis Eftychios, Irving Geoffrey, and Fedkiw Ronald. 2005. Robust

quasistatic finite elements and flesh simulation. In Proceedings of the 2005 ACM
SIGGRAPH/Eurographics symposium on Computer Animation. ACM, 181–190.

Vaxman Amir, Müller Christian, and Weber Ofir. 2015. Conformal mesh deformations

with Möbius transformations. ACM Transactions on Graphics 34, 4, Article 55 (2015).
Weber Ofir. 2010. Hybrid Methods for Interactive Shape Manipulation. Ph.D. Dissertation.

Technion - Israel Institute of Technology.

Weber Ofir. 2017. Planar Shape Deformation. In Generalized Barycentric Coordinates in
Computer Graphics and Computational Mechanics, Kai Hormann and N. Sukumar

(Eds.). CRC Press, Boca Raton, FL, Chapter 7, 28.

Weber Ofir, Ben-Chen Mirela, and Gotsman Craig. 2009. Complex Barycentric Coordi-

nates with Applications to Planar Shape Deformation. Computer Graphics Forum
28, 2 (2009), 587–597.

Weber Ofir, Ben-Chen Mirela, Gotsman Craig, and Hormann Kai. 2011. A complex

view of barycentric mappings. Computer Graphics Forum 30, 5 (2011), 1533–1542.

Weber Ofir and Gotsman Craig. 2010. Controllable conformal maps for shape deforma-

tion and interpolation. ACM Transactions on Graphics 29, 4, Article 78 (2010).
Weber Ofir, Sorkine Olga, Lipman Yaron, and Gotsman Craig. 2007. Context-Aware

Skeletal Shape Deformation. Computer Graphics Forum 26, 3 (2007), 265–274.

Zayer Rhaleb, Rössl Christian, Karni Zachi, and Seidel Hans-Peter. 2005. Harmonic

guidance for surface deformation. Computer Graphics Forum 24, 3 (2005), 601–609.

APPENDIX

A PROOF OF THEOREM 4.1
We first state the following theorem by Axler [1986]:

Theorem A.1 (Logarithmic Conjugation Theorem). Let Ω be
a multiply-connected planar domain with N holes K1, . . . ,KN , and
choose N arbitrary points ρi in Ki . Then, any real-valued harmonic
function u : Ω → R can be represented as:

u(z) = Re (д(z)) +
N∑
i=1

xi ln |z − ρi | , (A.1)

where д is holomorphic in Ω, and x1, . . . ,xN are real coefficients.

Proof. Since Re (f) and Im (f) are harmonic in Ω, Theorem A.1

states that there exist holomorphic functions д1,д2 and some real

constants xi ,yi such that:

Re (f (z)) = Re (д1(z)) +
N∑
j=1

xi ln |z − ρi | ,

Im (f (z)) = Re (д2(z)) +
N∑
j=1

yi ln |z − ρi | .

Simple algebraic manipulation gives us:

f (z) = Re (д1(z)) + iRe (д2(z)) +
N∑
j=1

(xi + iyi) ln |z − ρi |

=
д1(z) + iд2(z)

2

+
д1(z) − iд2(z)

2

+

N∑
j=1

(xi + iyi) ln |z − ρi | ,

allowing us to set:

Φ̃ = (д1 + iд2)/2, Ψ̃ = (д1 − iд2)/2, ωi = xi + iyi . �

ACM Transactions on Graphics, Vol. 36, No. 6, Article 214. Publication date: November 2017.

214:14 • Renjie Chen and Ofir Weber

Supplementary Material
GPU-Accelerated Locally Injective Shape Deformation
ADDITIONAL APPENDICES

B PROOF OF THEOREM 4.2
Proof. Recall the decomposition of Theorem 4.1:

f (z) = Φ̃(z) + Ψ̃(z) +
N∑
i=1

ωi ln |z − ρi | .

Direct computation of the Wirtinger derivatives and some manipu-

lation leads to:

fz = Φ̃′ +
1

2

N∑
i=1

ωi
z − ρi

, fz̄ = Ψ̃′ +
1

2

N∑
i=1

ωi
z − ρi

, (B.1)

where the (·)′ notation is the standard complex derivative of holo-

morphic functions. It is clear from (B.1) that, similarly to the simply-

connected case, the Wirtinger derivatives of a harmonic map on a

multiply-connected domain are holomorphic and anti-holomorphic

respectively. Nevertheless, as opposed to the simply-connected case,

fz and fz̄ do not posses an anti-derivative in general. Knowing that

fz is holomorphic, we can apply the argument principle:∮
∂Ω

f ′z (w)

fz (w)
dw =

∮
γ0

f ′z (w)

fz (w)
dw +

N∑
j=1

∮
γi

f ′z (w)

fz (w)
dw = 2π iN , (B.2)

where N denotes the number of zeros of fz in Ω. Hence, Equation
(4a) is equivalent to the condition N = 0 meaning that fz , 0. The

rest of the proof is identical to the proof provided in [Chen and

Weber 2015, Theorem 4] for simply-connected domains where the

subharmonicity of | fz | and | fz̄ | is again leveraged. �

C PROOF OF PROPOSITION 8.1
We start by proving a lemma that will be used to prove the theorem.

Lemma C.1. Assuming the conditions of Theorem 8.1 hold, the
change in the argument of д(z) between the two endpoints of the curve
is bounded by π :

|argд(vi+1) − argд(vi)| < π , (C.1)

where arg is a continuous branch of the argument function.

Proof. Equation (28) ensures that д does not vanish along the

curve, hence, a continuous branch of the argument function arg(д(z))
exists. We define the constant t̃ ∈ (0, 1) as follows:

t̃ =
|д(vi)|

|д(vi)| + |д(vi+1)|
.

Since (1− t̃) and t̃ are positive, and |д(vi)| + |д(vi+1)| > Ll , we have:

t̃
(
|д(vi)| + |д(vi+1)|

)
> t̃ L l (C.2)

(1 − t̃)
(
|д(vi)| + |д(vi+1)|

)
> (1 − t̃)Ll . (C.3)

Substituting t̃ in (C.2) and (C.3) leads to:

|д(vi)| > t̃Ll , (C.4)

|д(vi+1)| > (1 − t̃)Ll . (C.5)

Assume t ∈ [0, t̃] and definev(t) to be a point on the curve such that

the arc length between the starting point vi and v(t) is t ·l . Since д
is L-Lipschitz we have:

|д(vi) − д(v(t))| ≤ tLl . (C.6)

Dividing both sides of (C.6) by |д(vi)|:����1 − д(v(t))д(vi)

���� ≤ tLl

|д(vi)|
≤

t̃Ll

|д(vi)|
<
|д(vi)|

|д(vi)|
= 1, (C.7)

where the last inequality is due to (C.4). The geometric interpretation

of (C.7) is that the complex number д(v(t))/д(vi) lies strictly inside

a unit disk centered at 1 + 0i. Denote the difference between the

arguments of д(v(t)) and д(vi) as ∆θ (t):

∆θ (t) = argд(v(t)) − argд(vi).

For any t ∈ [0, t̃], ∆θ (t) must belong to one of these ranges:

. . . ,

[
−

5π

2

,−
3π

2

]
,
[
−
π

2

,
π

2

]
,

[
3π

2

,
5π

2

]
, . . .

Furthermore, ∆θ (t) is continuous in t , and since ∆θ (0) = 0 is in[
− π

2
, π

2

]
, we must have that − π

2
< ∆θ (t̃) < π

2
.

On the other hand, we can assume t ∈ [t̃ , 1]. Since д is Lipschitz:

|д(vi+1) − д(v(t))| ≤ (1 − t)Ll .

Dividing by |д(vi+1)|:����1 − д(v(t))

д(vi+1)

���� ≤ (1 − t)Ll|д(vi+1)|
≤
(1 − t̃)Ll

|д(vi+1)|
<
|д(vi+1)|

|д(vi+1)|
= 1,

where the last inequality is due to (C.5). Using the same geometric

reasoning as before, we have:

−
π

2

< argд(vi+1) − argд(v(t̃)) <
π

2

.

Finally, since the change in argument between vi to v(t̃) is smaller

than π/2, and so is the change betweenv(t̃) tovi+1, the total change

in the argument of д between the endpoints is bounded by π . �

Equipped with Lemma C.1 we now prove the theorem.

Proof. A continuous branch of complex log is defined as:

logд(z) = logд(vi) +

∫ z

vi

д′(w)

д(w)
dw . (C.8)

Substituting z = vi+1, and rearranging we get:∫ vi+1

vi

д′(w)

д(w)
dw = logд(vi+1) − logд(vi)

= ln

����д(vi+1)

д(vi)

���� + i (argд(vi+1) − argд(vi))

= ln

����д(vi+1)

д(vi)

���� + iArg

д(vi+1)

д(vi)
,

where Arg is the principal branch of arg, and the last equality is due

to Lemma C.1. �

ACM Transactions on Graphics, Vol. 36, No. 6, Article 214. Publication date: November 2017.

GPU-Accelerated Locally Injective Shape Deformation • 214:15

D EXPRESSIONS FOR CAUCHY COORDINATES
The expressions for the Cauchy coordinates and its first and second

derivatives are taken from appendices B, C, D in [Weber 2010]. Using

the notations from Figure 4, the jth Cauchy coordinate is:

C̃j (z) =
1

2π i

(
Bj+1(z)

Aj+1

Log

Bj+1(z)

Bj (z)
−
Bj−1(z)

Aj
Log

Bj (z)

Bj−1(z)

)
. (D.1)

The first complex derivative of the jth Cauchy coordinate is:

D̃ j (z) = C̃
′
j (z) =

1

2π i

(
1

Aj+1

Log

Bj (z)

Bj+1(z)
+

1

Aj
Log

Bj (z)

Bj−1(z)

)
. (D.2)

The second complex derivative of the jth Cauchy coordinate is:

D̃ ′j (z) = C̃
′′
j (z) =

1

2π i

(
zj+1 − zj−1

Bj−1(z)Bj (z)Bj+1(z)

)
(D.3)

=
1

2π i

(
1

Bj−1(z)Bj (z)
−

1

Bj (z)Bj+1(z)

)
. (D.4)

E FIRST AND SECOND ORDER DIFFERENTIALS OF THE
SMOOTH ISOMETRIC ENERGIES

In the following, we will derive the gradient and the Hessian w.r.t

the free variables for the energy E(| fz |
2 , | fz̄ |

2) of the harmonic map

at a given point z ∈ Ω. For brevity, we drop the argument z in the

derivation below. Throughout the paper we use bold symbols to

denote real vectors and real matrices.

E.1 Gradient of the Isometric Energy
Let φ = (φ1,φ2, . . . ,φn)

T ∈ Cn×1
andψ = (ψ1,ψ2, . . . ,ψn)

T ∈ Cn×1

be complex column vectors containing our variables. We convert

the complex expressions into real as follows:

φ =

[
Re (φ)
Im (φ)

]
∈ R2n×1 ψ =

[
Re (ψ)
Im (ψ)

]
∈ R2n×1. (E.1)

By using the multivariable chain rule, and the fact that fz̄ is inde-
pendent of φ, and fz is independent ofψ, the gradient of E with

respect to the 4n variables φ,ψ is:

∇E =

[
∇φE

∇ψE

]
=

[
α1∇φ | fz |

2 +✘✘✘✘✘
α2∇φ | fz̄ |

2

α2∇ψ | fz̄ |
2 +✘✘✘✘✘

α1∇ψ | fz |
2

]
∈ R4n×1

(E.2)

where α1,α2 are real scalars:

α1 =
dE

d | fz |
2
∈ R, α2 =

dE

d | fz̄ |
2
∈ R. (E.3)

Table 1 contains the expressions for α1,α2 for various isometric

energies.

LetD = (D1,D2, . . . ,Dn) ∈ C
1×n

be a complex row vector, where

D j is defined in (9). By defining the matrix D (note the bold symbol

to denote a real matrix):

D =

[
Re (D) −Im (D)
Im (D) Re (D)

]
∈ R2×2n , (E.4)

we can express the Wirtinger derivatives as real vectors using a

matrix-vector multiplication:

fz = Dφ =

[
Re (fz)
Im (fz)

]
∈ R2×1

fz̄ = Dψ =


Re

(
fz̄

)
Im

(
fz̄

) ∈ R2×1

(E.5)

We get:

∇φ | fz |
2 = ∇φ ∥ fz ∥

2 = ∇φ ∥Dφ∥
2 = ∇φ

(
φT(DTD)φ

)
= 2(DTD)φ = 2DT fz , (E.6)

where |·| denotes the modulus of a complex number while ∥·∥ de-

notes the Euclidean vector norm. Similarly we have:

∇ψ | fz̄ |
2 = ∇ψ

fz̄

2

= ∇ψ ∥Dψ∥
2 = ∇ψ

(
ψT(DTD)ψ

)
= 2(DTD)ψ = 2DT fz̄ .

By substituting into Equation (E.2), the expression for the gradient

of E with respect to the 4n real variables is:

∇E = 2

[
α1DT fz
α2DT fz̄

]
︸ ︷︷ ︸

4n×1

=

[
DT

0

0 DT

]
︸ ︷︷ ︸

4n×4

[
2α1 fz
2α2 fz̄

]
︸ ︷︷ ︸

4×1

. (E.7)

E.2 Hessian of the Isometric Energy
The Hessian of E can be expressed as a block matrix:

∇2
E =

[
∇2

φ2
E ∇2

φψE

∇2

ψφE ∇2

ψ2
E

]
∈ R4n×4n

(E.8)

Let us first define the following real scalars:

β1 =
dα1

d | fz |
2
, β2 =

dα2

d | fz̄ |
2
, β3 =

dα1

d | fz̄ |
2
=

dα2

d | fz |
2
. (E.9)

Table 1 contains the expressions for β1, β2, β3 for various isometric

energies. The upper left block of the Hessian is:

∇2

φ2
E = ∇φ (∇φE) = ∇φ (2α1D

T fz) = ∇φ (2α1D
TDφ)

By using the product rule we get:

= ∇φ (D
TDφ)(2α1) + ∇φ (2α1)

(
φTDTD

)
= 2DTDα1 + 2∇φ (α1)

(
φTDTD

)
Applying the multivariable chain rule to ∇φ (α1) above:

= 2α1D
TD +2

(
dα1

d | fz |
2
∇φ (| fz |

2)+
✘✘✘✘✘✘✘dα1

d | fz̄ |
2
∇φ (| fz̄ |

2)

)
φTDTD

Using the definition of β1 from (E.9), the definition of ∇φ (| fz |
2)

from (E.6), and the definition of fz from (E.5) we get:

= 2α1D
TD + 2

(
β12DT fz

)
f Tz D

= DT
(
2α1I + 4β1 fz f

T
z

)
D,

ACM Transactions on Graphics, Vol. 36, No. 6, Article 214. Publication date: November 2017.

214:16 • Renjie Chen and Ofir Weber

where I is the 2×2 identity matrix. The other three blocks of the

Hessian can be derived similarly:

∇2

ψ2
E = DT

(
2α2I + 4β2 fz̄ fz̄

T)
D

∇2

φψE = DT
(
4β3 fz fz̄

T)
D = (∇2

ψφE)T

Finally, the Hessian of E is:

∇2
E = (E.10)[
DT

0

0 DT

]
︸ ︷︷ ︸

4n×4

[
2α1I + 4β1 fz f Tz 4β3 fz fz̄

T

4β3 fz̄ f
T
z 2α2I + 4β2 fz̄ fz̄

T

]
︸ ︷︷ ︸

4×4

[
D 0

0 D

]
︸ ︷︷ ︸

4×4n

F GRADIENT AND HESSIAN OF THE P2P ENERGY
The P2P energy at a single handle can be expressed using complex

numbers:

Ep2p(pi) =
1

2

| f (pi) − qi |
2 =

1

2

|C(pi)φ +C(pi)ψ − qi |
2, (F.1)

whereC(pi) = (C1(pi),C2(pi), . . . ,Cn (pi)) ∈ C
1×n

is a complex row

vector, where Cj is defined in (8), and φ,ψ ∈ Cn×1
. The complete

energy is given by the sum:

E
f
p2p
=

|P |∑
i=1

Ep2p(pi). (F.2)

Equation (F.1) can be expressed using real numbers:

Ep2p(pi) =
1

2

Q(pi) [φψ]
−

[
Re(qi)
Im(qi)

]

2

,

whereQ(pi) is a real matrix defined as:[
Re (C(pi)) −Im (C(pi)) Re (C(pi)) −Im (C(pi))
Im (C(pi)) Re (C(pi)) −Im (C(pi)) −Re (C(pi))

]
∈ R2×4n

Ep2p(pi) is a quadratic form with constant PSD Hessian matrix:

∇2
Ep2p(pi) = Q

T(pi)Q(pi) ∈ R4n×4n
(F.3)

The gradient of the quadratic form is:

∇Ep2p(pi) = Q
T(pi)Q(pi)

[
φ
ψ

]
−QT(pi)

[
Re (qi)
Im (qi)

]
. (F.4)

In order to sum the gradients and the Hessians over all the P2P

handles P, we construct a matrix Q by stackingQ(pi):

Q =


Q(p1)

Q(p2)

...

Q(p |P |)


∈ R2 |P |×4n . (F.5)

Finally, the full Hessian and full gradient are given by:

∇2
E
f
p2p
= QTQ, (F.6)

∇E
f
p2p
= QT

(
Q

[
φ
ψ

]
− q

)
, (F.7)

where q is a real column vector stacking the target positions:

q=
[
Re (q1), Im (q1), . . . ,Re

(
q |P |

)
, Im

(
q |P |

)]T
∈R2|P |×1

(F.8)

G GPU IMPLEMENTATION
Wedesigned our GPU implementation in away that utilizes standard

libraries as much as possible. The implementation mostly involves

only dense linear algebra operations, while the parts that require

coding of a specialized kernel are relatively simple, embarrassingly

parallel operations. We have utilized the cuBLAS [cuBLAS 2017],

and cuSolverDN [cuSOLVER 2017] (BLAS and LAPACK implemen-

tations) dense linear algebra libraries that are freely distributed

with NVIDIA’s CUDA toolkit with double precision accuracy. This

not only simplifies the implementation, but also ensures that the

code will be optimized for different GPU architectures and will run

smoothly on any NVIDIA device. Moreover, as graphics hardware

constantly evolves and these libraries get optimized further, the

speed of such implementation is expected to automatically improve

over time.

Matrix and vector notations
The Wirtinger derivatives at a single point can be expressed con-

cisely in vector form:

fz (z) = D(z)φ, fz̄ = D(z)ψ , (G.1)

where D(z) = (D1(z),D2(z), . . . ,Dn (z)) ∈ C
1×n

is a complex row

vector, while φ = (φ1,φ2, . . . ,φn)
T
and ψ = (ψ1,ψ2, . . . ,ψn)

T
are

complex column vectors.

We will need to evaluate the complex-valued function f and

its differentials at a large collection of points inside the domain.

It would be convenient to express these in matrix notations. For

example, assume that we want to evaluate the map f on a set of

pointsV ∈ Ω for the sake of visualization.

We define the complex matrix C(V) ∈ C|V|×n . The ith row of C

corresponds to the point vi ∈ V such that Ci, j = Cj (vi). Similarly,

we use the complex matrix D(V) ∈ C|V|×n such that Di, j = D j (vi).
Using these notations, we can evaluate the map f at the points of

the setV by computing the matrix product:[
Φ Ψ

]︸ ︷︷ ︸
|V |×2

= C(V)
[
φ ψ

]︸ ︷︷ ︸
n×2

, (G.2)

followed by the computation of the vector sum Φ + Ψ. Similarly,

one can evaluate the Wirtinger derivatives on the setV with the

product: [
fz fz̄

]︸ ︷︷ ︸
|V|×2

= D(V)
[
φ ψ

]︸ ︷︷ ︸
n×2

. (G.3)

Preprocessing
In preprocessing, we triangulate the polygon P with a dense trian-

gulation whose vertices form the setV . The triangulation is used

for visualization purposes only. We simply use hardware texture

mapping to render the final deformed image. The rendering can be

performed efficiently on the GPU with extremely high mesh-and-

texture resolutions without affecting the runtime of the solver. We

compute and store on the device’s memory the following matrices:

C(V) ∈ C|V|×n C(P) ∈ C|P |×n ,

D(G) ∈ C|G|×n D(H) ∈ C|H|×n ,
(G.4)

ACM Transactions on Graphics, Vol. 36, No. 6, Article 214. Publication date: November 2017.

GPU-Accelerated Locally Injective Shape Deformation • 214:17

whereV contains the vertices of the triangulation used for texture

mapping, P is the set of positional constraints, G is a dense set of

samples lying on the polygon P which is used for energy and gradi-

ent evaluation, andH is a subset of G used to evaluate the Hessian

of the energy. Once the complex matrix D(H) is constructed, we

convert it to real form D ∈ R2|H|×2n
(note the bold symbol to denote

a real matrix) as follows:

D =



Re (D1) −Im (D1)

Im (D1) Re (D1)

Re (D2) −Im (D2)

Im (D2) Re (D2)

...
...

Re

(
D|H|

)
−Im

(
D|H|

)
Im

(
D|H|

)
Re

(
D|H|

)


∈ R2|H|×2n , (G.5)

where the subscripts indicates row numbers such that Di is the i
th

row of the complex matrix D. We also store another closely related

matrix with the same size which we denote as
ˆD and is obtained

from D by swapping each two pair of rows. That is, the 1
st

row is

swapped with the 2
nd

one, the 3
rd

with the 4
th

and so on.

Next we compute in parallel a matrix with the coefficients Li, j =
1

2πd2

i (zj)
and Lhi, j =

2

d3

i (ρ j−m)
(Section 8). These will be used in run-

time to compute the Lipschitz constants of theWirtinger derivatives.

Unlike the Lipschitz constants, these depend only on the cage P̂

and the set G, hence, can be precomputed. A simple formula for the

distancedi (p) from a pointp to the ith segment is given in Appendix

C of [Chen and Weber 2015].

The last step of the preprocessing computes the matrix Q (see

Equation (F.5) in Appendix F) and ∇2
E
f
p2p
= QTQ, which is a con-

stant matrix since E
f
p2p

is a quadratic form, hence can be computed

and stored once.

Next, we describe the computations that are needed to be car-

ried out on each Newton iteration. The evaluation of the map f ,
its Wirtinger derivatives, energy, and gradient are computed using

a matrix-matrix multiplication, where the right term in the prod-

uct is a “thin” matrix (having many rows but very small number

of columns). Such operation is known to be bandwidth limited,

meaning that the computation time is dominated by the memory

bandwidth of the GPU device. Hence, when performing the product

we should strive to minimize the amount of access to the global

memory of the device. To this end, we perform the computation

using complex numbers and convert the result back to real numbers

when necessary. During runtime, we first evaluate the Wirtinger

derivatives at the samples of G using the product:[
fz fz̄

]︸ ︷︷ ︸
|G |×2

= D(G)
[
φ ψ

]︸ ︷︷ ︸
n×2

. (G.6)

Gradient
Next, the following is being computed in a single dedicated kernel

that accepts the matrix [fz fz̄] as input. Each thread handles a row of

[fz fz̄] (which contains only two complex numbers). We compute the

two real scalars | fz |
2
and | fz̄ |

2
, and use it to compute the real scalars

α1,α2 using (E.3). Finally, the kernel multiplies α1,α2 element-wise

by the corresponding matrix entries, and store the result as a matrix

[α1fz α2fz̄] ∈ R
|G|×2

. We note that these are embarrassingly parallel

operations, which are straightforward to implement in a kernel,

where no synchronization is needed and the memory access pattern

is perfectly regular.

The next step computes the following complex matrix-matrix

product: [
gφ gψ

]︸ ︷︷ ︸
n×2

=
2

|G|
D
H(G) [α1fz α2fz̄]︸ ︷︷ ︸

|G|×2

, (G.7)

where (·)H is the conjugate transpose (hermit) operator.We compute

the multiplication in (G.7) by invoking the gemm cuBLAS procedure.

Based on the summation in (32) and the expression for the pointwise

gradient (E.7), it is easy to verify that the (real-valued) expression

of the gradient of the energy is given by:

∇E
f =


Re(gφ)

Im(gφ)

Re(gψ)

−Im(gψ)

 ∈ R4n×1. (G.8)

The gradient of the P2P energy also needs to be computed (see

Appendix F for the derivation):

∇E
f
p2p
= QT

(
Q

[
φ
ψ

]
− q

)
. (G.9)

Note thatQ ∈ R2|P |×4n
was already computed in preprocessing, and

the vector q ∈ R2|P |×1
contains the target P2P positions (Equation

(F.8) in Appendix F).

Hessian
We turn into the computation of the Hessian which is the most in-

volved part of the implementation. First, we compute in a dedicated

kernel the 4×4 matrixK+i that corresponds to the ith sample inH as

described in Section 7. We compute the real scalars α1,α2, β1, β2, β3

(Table 1). Then, based on the energy type, we check for negative

eigenvalues and decide whether to compute Ki (Equation (19)) or

its modified version K+i . In the case of Eiso, the matrix K+i can be

computed directly using (25). Otherwise, (23) and (24) are used. The

entries of all these 4×4 matrices are stored in a matrix K ∈ R16×|H |

where in each column we stack the 16 values of the corresponding

matrix K+i .
Unlike the computation of the gradient, which is bandwidth lim-

ited, the assembly of the Hessian is a ALU-bound operation, meaning

that its runtime is governed by the amount of processing units (and

their clock speed) rather than the speed of the global memory. This

means that we can expect greater speedup compared to a CPU im-

plementation. Yet, the amount of arithmetic operations involved is

vast. Our strategy to use coarser sampling (Equation (33)) greatly

reduces the Hessian assembly time. We now describe an efficient

way to implement (33).

The assembly of the Hessian is done separately on each of its four

2n×2n blocks (Equation (E.8)). Belowwe explain how to compute the

∇2

φ2
E
f
block. The blocks for ∇2

ψ2
E
f
and ∇2

φψE
f
can be computed

analogously. These three blocks are copied into the corresponding

ACM Transactions on Graphics, Vol. 36, No. 6, Article 214. Publication date: November 2017.

214:18 • Renjie Chen and Ofir Weber

position in the 4n×4n full Hessian matrix. Due to symmetry, there

is no need to explicitly compute ∇2

ψφE
f
as it is given by ∇2

φψE
f T

.

Let

(ai bi
ci di

)
be the 2×2 upper-left block of the matrix K+i . Note

that K (computed earlier) contains the corresponding values for all

samples in its rows. The entries of ∇2

φ2
E
f
can be computed using

the following formula:

∇2

φ2
E
f =

1

|H |
DT

[
RD + B ˆD

]
, (G.10)

where R ∈ R2|H|×2|H|
is a diagonal matrix with diagonal entries

(a1,d1,a2,d2, . . . ,a |H|,d |H|) and B ∈ R
2|H|×2|H|

is a diagonal matrix

with diagonal entries (b1, c1,b2, c2, . . . ,b |H|, c |H|). The advantage of
performing the computation in such a way is the ability to use

the highly-optimized cuBLAS library [cuBLAS 2017]. The products

RD and B ˆD in (G.10) are computed using a diagonal matrix-matrix

multiplication procedure dgmm followed by a matrix summation

(geam) which result in a matrixM = RD + B ˆD. Finally, the result is

obtained through a matrix-matrix product DTM using gemm. This
product dominates the runtime of (G.10).

Then, the gradient and the Hessian of E
f
p2p

are added to those

of E
f
(with the appropriate user-defined weight λ) to form the

gradient and the Hessian of the full energy E
f
(Equation (20)). We

then eliminate the 10N + 2 redundant real variables that correspond

to the dimension of the null space of the harmonic subspace as

explained in Section 5. This is done by removing the corresponding

rows and columns from the gradient and the Hessian. After that, the

Newton step is computed. We use the freely available cuSolverDN

library [cuSOLVER 2017] to solve the linear system (1) using the

dense GPU-accelerated direct Cholesky factorization.

Line search
The solution of the linear system provides the search direction for

the Newton iteration. However, we do not take this step immediately.

To ensure convergence to a local minimum which corresponds to a

locally injective map, a backtracking line search is performed. This

requires multiple evaluations of the energy and the local injectivity

validation at various step sizes, starting from t = 1 and dividing it

by 2 at each step until the resulted map is accepted. For a map to

be accepted, we verify first that the energy sufficiently decreases

(Algorithm 1, Line 17) and only then perform the local injectivity

validation (Algorithm 1, Line 18). Both steps require evaluation of

the Wirtinger derivatives f tz and fz̄
t
at all samples, which varies

depending on t . In general, evaluating these boils down to the same

matrix product we used in (G.6) for the computation of the gradient.

Evaluating it many times can easily become the algorithm’s bottle-

neck. Luckily, since the derivatives are linear in the variables, we

can achieve this with a single matrix product. The derivatives for

step t are given by:[
ftz fz̄

t
]
= D

[
φt ψ t] = D [

φk + t∆φk ψk + t∆ψk
]

= D
[
φk ψk

]
+ tD

[
∆φk ∆ψk

]
,

(G.11)

where φk ,ψk are the current state of the (complex) variables and[
∆φk ∆ψk

]
is the Newton search direction. Note that the term

on the left was already computed in (G.6). Hence, we only need to

compute the product D [∆φk ∆ψk] once, and for each step t , (G.11)
boils down to a scalar-matrix multiplication followed by a (thin)

matrix summation. Both operations are very efficient. The energy is

then evaluated in a dedicated kernel that accepts the matrix

[
ftz fz̄

t]
as input. Each thread handles a row that contains two complex

numbers: f tz , fz̄
t
, evaluate two real scalars:

��f tz ��2, | fz̄ t |2, and use it

to compute the scalar E using Table 1. Finally, the kernel performs

a parallel reduction summation step to obtain E
f
(Equation (31)).

In order to avoid CPU-GPU communication overhead, we carried

out this step on the GPU by using the dynamic parallelism feature

which allows kernels to invoke other kernels, therefore allows the

GPU to execute the line search autonomously.

We terminate the iterations when t ∥[∆φk ∆ψk]∥ is smaller than

ϵ = 1e−12 (Algorithm 1, Line 9) and observe that the algorithm

always converges. In contrast, for some inputs, the SLIM and AQP

methods struggle to converge tomachine precision error even after a

thousand iterations. For fairness of comparison, we run all methods

till we couldn’t spot a change in the rendered image and report this

number of iterations instead. Upon termination, the map itself is

evaluated. This is done as explained in Appendix G (below Equation

(G.2)). Since this product is also performed on the GPU, the result

can be used by the GPU directly for rendering, avoiding expensive

CPU-GPU transfer times.

H DERIVATION OF TIGHT LIPSCHITZ CONSTANTS
The idea behind our tighter constants is to first compute Lf ′z and

then use it to compute Lfz as an upper bound on

��f ′z ��:

f ′z

∞ ≤ | f ′z (vi)| + | f ′z (vi+1)|

2

+
Lf ′z l

2

= Lfz . (H.1)

In order to get Lf ′z ≥

f ′′z

∞
, we start by expressing f ′z based on

Equation (9) and the formula for the second derivative of the Cauchy

coordinates (Equation (D.4)):

f ′z (z) =
m∑
j=1

1

2π i

(
1

Bj−1Bj
−

1

BjBj+1

)
φ j −

n∑
j=m+1

φ j

(z − ρ j−m)2

=
1

2π i

m∑
j=1

(
φ j − φ j−1

Bj−1Bj

)
−

n∑
j=m+1

φ j

(z − ρ j−m)2

=
1

2π i

m∑
j=1

φ j − φ j−1

zj − zj−1

(
1

Bj
−

1

Bj−1

)
−

n∑
j=m+1

φ j

(z − ρ j−m)2

=
1

2π i

m∑
j=1

sj

(
1

Bj
−

1

Bj−1

)
−

n∑
j=m+1

φ j

(z − ρ j−m)2

=
1

2π i

m∑
j=1

sj − sj+1

Bj
−

n∑
j=m+1

φ j

(z − ρ j−m)2
,

where sj =
φ j−φ j−1

zj−zj−1

. Next, we differentiate f ′z (z) with respect to z:

f ′′z (z) =
1

2π i

m∑
j=1

sj − sj+1

B2

j (z)
+

n∑
j=m+1

2φ j

(z − ρ j−m)3
.

ACM Transactions on Graphics, Vol. 36, No. 6, Article 214. Publication date: November 2017.

GPU-Accelerated Locally Injective Shape Deformation • 214:19

We then compute an upper bound:

f ′′z

∞
≤

1

2π

m∑
j=1

|sj − sj+1 |

d2(zj)
+

n∑
j=m+1

2|φ j |

d3(ρ j−m)
= Lf ′z

or more compactly:

Lf ′z =
m∑
j=1

Lj |sj − sj+1 | +

n∑
j=m+1

Lhj |φ j |,

where Lj =
1

2πd2(zj)
and Lhj =

2

d3(ρ j−m)
can be computed in prepro-

cessing. Finally, we can substitute the above expression in (H.1):

Lfz =
| f ′z (vi)| + | f

′
z (vi+1)|

2

+
l

2

©­«
m∑
j=1

Lj |sj − sj+1 | +

n∑
j=m+1

Lhj |φ j |
ª®¬ .

I THE NULL SPACE OF THE MODIFIED HESSIAN
Let f (z) be a harmonic map parameterized by φ̃ and

˜ψ , f (z) =

C(z)φ̃ +C(z) ˜ψ . Denote by H (z) = ∇2
E
+
iso
(z), the modified Hessian

of the Symmetric Dirichlet isometric energy of f at a single point z.
The Hessian of the total isometric energy is:

H f =

∮
∂Ω

H (w)ds ∈ R4n×4n .

Proposition I.1. For any vectorv =
[
φ
ψ

]
∈ R4n×1 in the kernel of

H f , there exists s ∈ R such that ∀w ∈ ∂Ω,
D(w)

[
φ − sφ̃i ψ

]
= 0,

where the vectors φ,ψ are related to φ,ψ via Equation (E.1).

Proof. By definition, H f v =
∮
∂Ω

H (w)v ds = 0.

With a slight abuse of notations, in the following we will use the

real vectors φ,ψ and the complex vectors φ,ψ interchangeably.

Since H (w) is PSD, we have:

H f v = 0⇒ vTH f v = 0⇒ ∀w ∈ ∂Ω, vTH (w)v = 0.

Recall that H (w) = BTK+(w)B where B =
[
D (w) 0

0 D (w)

]
∈ R4×4n

.

Denote u(w) = Bv =

[
D(w)φ
D(w)ψ

]
∈ R4×1

, then:

vTH (w)v = vTBTK+(w)Bv = uTK+(w)u = 0⇒ K+(w)u = 0.

Note that there are two possibilities for K(w):

(1) K(w) is positive definite, henceK+(w) is also positive definite
and has an empty null space, therefore:

u(w) = 0 ⇒ D(w)φ = 0, D(w)ψ = 0.

(2) K(w) is not positive definite, then by construction, K+(w)
has a one dimensional null space spanned by:

u = (−Im (fz) ,Re (fz) , 0, 0).(
−Im (fz) ,Re (fz)

)
is simply the complex number fz i in vec-

tor form. Therefore:

u ∥ v ⇒

{
D(w)φ = s(w)fz (w)i

D(w)ψ = 0

where s(w) ∈ R. Notice that for simplicity, we write these

two equalities in complex numbers.

In either case, the following holds,

D(w)φ = s(w)fz (w)i, (I.1)

D(w)ψ = 0, (I.2)

where s(w) ∈ R and s(w) = 0 if K(w) is positive definite. Note that
D(z)φ is a holomorphic function in z, as a consequence, s(z) is also
holomorphic and hence must be constant, s(z) ≡ s . Then Equation

(I.1) implies that D(w)(φ − sφ̃i) = 0. Together with Equation (I.2),

we have the following characterization for φ andψ ,

D(w)
[
φ − sφ̃i ψ

]
= 0.

�

Ignoring the redundancies in the harmonic map representation

(see Section 5), D(∂Ω) has a null space that includes only the con-

stant vectors, which corresponds to the constant map f (z) = a + bi.

Therefore, the null space of H f
is spanned by φ = ψ = ®1, φ = ψ = ®i,

and additionally φ = φ̃i,ψ = ®0 in the case that K+(w) is singular for
every w ∈ ∂Ω, hence the co-rank of H f

is either 2 or 3. A simple

example of map with singular K+(w),∀w ∈ ∂Ω is the rigid motion:

| fz | = 1, fz̄ = 0.

Note that similar analysis is applicable to the exponential sym-

metric Dirichlet energy Eexp.

ACM Transactions on Graphics, Vol. 36, No. 6, Article 214. Publication date: November 2017.

214:20 • Renjie Chen and Ofir Weber

Fig. 12. Additional results minimizing E
f
iso

rendered at high-resolution. Some of these deformations are intentionally radical and are used to stress test the
method and to demonstrate robustness. Our algorithm quickly converges on these extreme deformations and certifies the maps as locally injective.

ACM Transactions on Graphics, Vol. 36, No. 6, Article 214. Publication date: November 2017.

	Abstract
	1 Introduction
	2 Previous Work
	3 Background
	3.1 Newton's Method
	3.2 Complex-valued Functions as Planar Maps

	4 Harmonic Maps on Multiply-Connected Domains
	4.1 Locally Injective Harmonic Maps

	5 Discretization
	6 Isometric Energies
	6.1 Positional Constraints

	7 Positive Definite Hessian
	7.1 Hessian Modification

	8 Locally Injective Certification
	9 Implementation
	9.1 Isometric energy, gradient and Hessian evaluation
	9.2 Line Search

	10 Results
	11 Summary and Discussion
	11.1 Limitations and Future Work

	Acknowledgments
	References
	A Proof of Theorem 4.1
	B Proof of Theorem 4.2
	C Proof of Proposition 8.1
	D Expressions for Cauchy Coordinates
	E First and Second Order Differentials of the Smooth Isometric Energies
	E.1 Gradient of the Isometric Energy
	E.2 Hessian of the Isometric Energy

	F Gradient and Hessian of the P2P Energy
	G GPU Implementation
	H Derivation of Tight Lipschitz constants
	I The Null space of the modified Hessian

