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Fig. 1. A comparison of four state-of-the-art shape deformation methods. The listed execution times demonstrate the efficiency of our method compared to
the others. Our method guarantees local injectivity and smoothness by construction, and it exhibits low distortion. The PWL (Tri) method is surface-based
and is oblivious to the interior of the triangle mesh. As a result, it loses volume drastically at the center of the animal body. The PWL (Tet) method is only 3
times slower than ours. However, due to the use of a coarse tetrahedral mesh, the result is nonsmooth at the tail and foreleg. VHM is smooth, but is 19 times
slower than our method. Moreover, similarly to PWL (Tri), it loses volume and fails to be locally injective at the left hind leg. This is more obvious when
observed from another angle (shot from below) as shown in the zoom-ins (see also the accompanying video).

We present a highly efficient method for interactive volumetric meshless

shape deformation. Our method operates within a low dimensional sub-

space of shape-aware 𝐶∞ harmonic maps, and is the first method that is

guaranteed to produce a smooth locally injective deformation in 3D. Unlike

mesh-based methods in which local injectivity is enforced on tetrahedral

elements, our method enforces injectivity on a sparse set of domain samples.

The main difficulty is then to certify the map as locally injective throughout

the entire domain. This is done by utilizing the Lipschitz continuity property

of the harmonic basis functions. We show a surprising relation between the

Lipschitz constant of the smallest singular value of the map Jacobian and

the norm of the Hessian. We further carefully derive a Lipschitz constant

for the Hessian, and develop a sufficient condition for the injectivity cer-

tification. This is done by utilizing the special structure of the harmonic

basis functions combined with a novel regularization term that pushes the

Lipschitz constants further down. As a result, the injectivity analysis can be

performed on a relatively sparse set of samples. Combined with a parallel

GPU-based implementation, our method can produce superior deformations
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with unique quality guarantees at real-time rates which were possible only

in 2D so far.

CCS Concepts: • Computing methodologies → Computer graphics;
Animation.

Additional Key Words and Phrases: injective maps, harmonic maps, shape

deformation, Newton method, GPU

ACM Reference Format:
Wentao Liao, Renjie Chen, Yuchen Hua, Ligang Liu, and Ofir Weber. 2021.

Real-time Locally Injective Volumetric Deformation. ACM Trans. Graph. 40,
4, Article 74 (August 2021), 16 pages. https://doi.org/10.1145/3450626.3459794

1 INTRODUCTION
Shape deformation is central to computer graphics and geometry

processing, and is widely used in modeling and animation applica-

tions. Material based simulations are used when accurate physical

behavior is needed, producing hyper realistic animationswith strong

dynamic effects. These are popular in the cinema industry, where

pure realism is sought. However, its complex setup and heavy com-

putational burden make it infeasible for modeling and interactive

scenarios.

In the last two decades, the geometry processing community has

been striving to develop shape deformation methods which are

physically plausible (as opposed to physically accurate), yet fast

enough to be used in interactive applications. Our method belongs

to this line of work. The overarching approach is to define an en-

ergy functional that aggregates a local geometric distortion measure

throughout the deformation domain, and then augment it with a set

of constraints. Some constraints steer the deformation based on the

user guidance (e.g., positional constraints). Other constraints are
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used to ensure quality (e.g., smoothness, bounded distortion, injec-

tivity). This boils down to a variational problem which is discretized

and solved as a finite dimensional constrained optimization problem.

Such problems are typically nonlinear, nonconvex, and sometimes

nonsmooth, and developing an efficient-and-robust solver for them

is challenging.

Poranne and Lipman [2014] were the first to bridge the gap be-

tween meshless and mesh-based methods in the context of local

injectivity in 2D. They bounded the distortion of a smooth planar

map, on a set of collocation points, and then established a global

distortion bound over the entire domain by estimating the maximal

change in the distortion as a function of the distance away from

the collocation points. This was achieved mathematically by using

the Lipschitz constants of their radial basis functions (RBFs). Later,

Chen and Weber [2015] suggested using shape-aware 2D harmonic

basis functions (as opposed to RBFs), dramatically improving the

deformation quality. They further derived the bounded distortion

harmonic mapping theorem [Chen and Weber 2015, Theorem 4],

which characterizes the maximal distortion of a planar harmonic

map solely based on its boundary behavior. This reduces the dimen-

sionality of the problem from two to one dimension. Hence, the

collocation points are placed on the 1D boundary curve of a planar

region rather than in its interior.

Chen and Weber [2017] further accelerated the deformation by

designing a custom-made solver, utilizing the parallel processing

power of a modern GPU. The robustness and real-time performance

of their method motivated us to generalize their planar harmonic

framework to the volumetric case. Nonetheless, the 3D case poses

several mathematical and algorithmic challenges:

(1) The deformation domain is one dimension higher.

(2) The lack of suitable analog for the bounded distortion theo-

rem of planar harmonic maps.

(3) The difficulty of deriving Lipschitz constants for the singular

values (of the Jacobian) of a 3D map (harmonic or not).

Challenge (3), which was first raised by [Poranne and Lipman

2014], prohibits a straightforward generalization to 3D. The reason

is that in 2D, the singular values of the 2×2 Jacobian have a simple

expression in terms of the Jacobian elements, while singular values

of a 3×3matrix are characterized as roots of high order polynomials,

for which no straightforward formula exist [Kovalsky et al. 2014].

Our key contribution in this paper is the development of Lipschitz

constants for the smallest (signed) singular value 𝜎3, which are

necessary for the generalization of [Poranne and Lipman 2014] to

3D, hence, overcoming Challenge (3). Positive 𝜎3 is equivalent to

a positive map orientation and positivity throughout the domain

allows us to certify the map as locally injective. The derivation of the

Lipschitz constant is done thanks to several crucial observations we

make in Sections 4 and 5. Remarkably, it turns out that it is possible

to compute quite tight Lipschitz constants for 𝜎3 without forming

its explicit expression. We do this by establishing a surprisingly

simple connection between the Lipschitz continuity of 𝜎3 and the

norm of the Hessian tensor of the map (Section 4).

In two-dimensions, the Radó-Kneser-Choquet theorem states

that a harmonic map of a topological disk that maps its boundary

homeomorphically to a unit disk (in fact to any convex shape) is a

diffeomorphism (hence bijective). It is unfortunate however, that in

3D, mapping a three-dimensional topological ball to a unit ball, fails

to be a bijection [Laugesen 1996]. Chen and Weber [2015] proved

that for locally injective harmonic maps, the maximal distortion is

attained on the boundary. This is done by showing that the largest

singular value, has a maximum principle, and the smallest singular

value has a minimum principle. The immediate theoretical question

that comes to mind is whether this holds in 3D as well. In Appen-

dix D, we prove that 𝜎1, the largest singular value is subharmonic,

hence, has a 3D analogous maximum principle. Nevertheless, we

failed to prove a minimum principle for 𝜎3, the smallest singular

value. [Laugesen 1996] does not shed a light on this question, and

we were unable to find an answer in the literature. Yet, after signifi-

cant investigation and experimentation, we were disappointed to

learn that the answer for 𝜎3 is negative, which leads to challenge (2).

Figure 2 illustrates a synthetic counterexample that we constructed.

Challenges (1) and (2) means that for volumetric harmonic maps,

the dimension of the domain on which injectivity should be en-

forced is full, i.e., 3 as opposed to 1 in the planar case, implying that

potentially, significantly more collocation points are required. To

alleviate that, we promote as sparse as possible sampling (albeit still

in 3 dimensions). This is done by 1) Encouraging smoothness 2) De-

riving as tight as possible Lipschitz constants 3) Using an adaptive

sampling strategy.

In Section 6.1, we introduce a novel smoothness energy term that

promotes slow changes of𝜎3 throughout the domain and encourages

the (optimal) Lipschitz constants to be small. We further provide a

novel reformulation for the Variational HarmonicMaps (VHM) [Ben-

Chen et al. 2009] in a differential manner (Section 5.1). This makes

the (derived) Lipschitz constants invariant to global affine transfor-

mations of the cage, making them tighter and closer to the optimal

Lipschitz constants. Finally, we devise an adaptive octree-based

sampling strategy to certify local injectivity (Section 7.2).

To meet the demand for real-time performance, we further per-

form a spectral dimensionality reduction of the deformation sub-

space (Section 6.2), and employ a dynamic weighting technique

(Section 7.3), which tends to keep the number of Newton iterations

low. Similarly to [Chen and Weber 2017], we implement the opti-

mization on a GPU. The combination of all the above, adds up to a

real-time system that can smoothly deform 3D shapes with superior

quality. Our method is not only the first that guarantees 3D local

injectivity in the smooth (meshless) setting, it is also significantly

faster than the alternatives, supporting real-time deformations of

complex 3D shapes.

2 PREVIOUS WORK
The literature on geometric shape deformation is voluminous and

each method has its own traits. Somemethods are suitable for planar

deformation only [Chen and Weber 2015, 2017; Chen et al. 2013;

Chien et al. 2016a; Igarashi et al. 2005; Levi and Weber 2016; Weber

et al. 2009; Weber and Gotsman 2010] while other can be applied in

3D as well. These 3D methods are further split into surface-based

methods [Levi and Gotsman 2015; Lipman et al. 2005; Sorkine and

Alexa 2007; Sumner and Popović 2004] or spatial (volumetric) meth-

ods [Ben-Chen et al. 2009; Huang et al. 2006; Lipman et al. 2008]. The
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Fig. 2. A local minimum for 𝜎3 of a bijective harmonic map in R3. (left) A
unit ball source domain. (middle) The image of the harmonic map. (right)
Color-coding of 𝜎3 in the ball’s interior. The minimum is attained at the
center. We provide the closed-form expression of this harmonic map in the
supplemental material.

former treats the surface as a two-dimensional thin shell embedded

in R3, ignoring its volume. These methods typically assume that

the input surface is represented as a manifold triangle mesh. On

the other hand, the advantage of the spatial methods is that they

are applied to a full dimensional subspace of R3. Hence, any object

embedded in this subspace, can be deformed regardless of its geo-

metric representation (e.g., general polygonal meshes, point clouds,

non-manifold inputs, etc.). Moreover, since the entire subspace is

deformed rather than its boundary, these methods tend to better

preserve volume.

Most spatial 3D methods discretize the interior of the shape using

a tetrahedral mesh [Aharon et al. 2019; Aigerman and Lipman 2013;

Chao et al. 2010; Kovalsky et al. 2014, 2015, 2016; Rabinovich et al.

2017; Smith et al. 2019]. The map is assumed to be continuous and

linear on each tetrahedron. Such a piecewise linear (PWL) subspace

is easy to construct, yet, the deformation is 𝐶0
, hence nonsmooth,

regardless of the amount of elements being used. Furthermore, the

execution times grow dramatically when fine tetrahedral meshes

are used as demonstrated in Figure 3.

Meshless methods on the other hand, avoid discretization of the

volume, and typically use basis functions which are smooth in the

interior of the domain [Adams et al. 2008; Floater et al. 2005; Huang

et al. 2006; Ju et al. 2005; Li et al. 2013; Sederberg and Parry 1986;

Thiery et al. 2014]. In particular, harmonic meshless methods use a

linear combination of predefined 𝐶∞ shape-aware harmonic basis

functions, resulting in a naturally looking smooth maps. In [Ben-

Chen et al. 2009; Lipman et al. 2008], the harmonic subspace is

constructed by using a triangle mesh that fully encapsulates the

deformation domain (the so-called cage) and integrating the funda-

mental solution of the Laplace equation on its elements. [Joshi et al.

2007] also uses harmonic basis functions, but discretizes using the

finite element method. In [Jacobson et al. 2011; Weber et al. 2012b]

biharmonic functions are used.

One of the most desirable properties of a shape deformation

algorithm is its ability to guarantee that the map is injective (local

injectivity is typically sufficient). Nonetheless, such a constraint

is highly nonconvex. A plethora of methods emerged in the last

decade to handle the local injectivity requirement using various

techniques [Chen and Weber 2015, 2017; Chen et al. 2013; Chien

et al. 2016a,b; Levi and Weber 2016; Lipman 2012; Schüller et al.

2013; Smith and Schaefer 2015; Weber and Gotsman 2010; Weber

et al. 2012a]. In 3D, the research on local injectivity was focused so

far solely on (nonsmooth) mesh-based techniques. Local injectivity

is obtained either by forcing an orientation preserving (non-flip)

constraint on a per tetrahedron basis [Aigerman and Lipman 2013;

Kovalsky et al. 2014, 2015] or by using the interior point method

[Fu et al. 2015; Rabinovich et al. 2017; Smith et al. 2019] in which

a barrier function goes to infinity when a tetrahedron collapses.

Hence, the orientation of the tetrahedra is preserved.

To the best of our knowledge, our meshless method is the first

method that produces smooth (𝐶∞) 3D maps that are guaranteed to

be locally injective. Ensuring the injectivity and/or bounding the

distortion of a meshless map is difficult since there is an infinite

number of points on which the (nonconvex) constraints should hold.

3 BACKGROUND

3.1 Problem Statement
We describe a handle-based deformation framework that deforms a

closed domain Ω ⊂ R3 with a smooth (at least𝐶2
) map 𝑓 : Ω → R3.

The map is obtained as the solution to the general constrained

minimization problem:

min

𝑓
𝐸
dis
+ 𝜆𝐸P2P, (1a)

s.t. 𝜎3 (𝑝) > 0, ∀𝑝 ∈ Ω, (1b)

where 𝜎3 (𝑝) is the smallest signed singular value of the 3×3 Jacobian
of 𝑓 . 𝐸

dis
measures the overall map distortion, and 𝐸P2P is a soft

positional constraints term. The condition 𝜎3 (𝑝) > 0 is equivalent

to det(𝐽 (𝑝)) > 0 and implies that the orientation of the map at 𝑝 is

preserved. The map 𝑓 is locally injective if and only if Condition (1b)

holds.

We use the popular symmetric Dirichlet (SD) isometric measure

[Smith and Schaefer 2015]: 𝐸iso =
∑
3

𝑖=1 (𝜎
2

𝑖
+ 𝜎−2

𝑖
), where 𝜎𝑖 is the

𝑖th singular value. The overall distortion is defined by integrating

the pointwise isometric measure 𝐸iso over the domain Ω:

𝐸
dis

=

∫
Ω
𝐸iso (𝑝)𝑑𝑉 . (2)

The advantage of using 𝐸iso is that it becomes infinite if 𝜎3 (𝑝) = 0

for some 𝑝 ∈ Ω, hence, in practice, a proper line search can be used

to ensure Condition (1b) rather than explicitly enforcing it in the

optimization. We solve the simpler unconstrained minimization

with a projected Newton solver [Smith et al. 2019] which is needed

due to the fact that the energy is nonconvex and its Hessian is not

necessarily positive definite.

3.2 Harmonic Basis Functions
Due to their smoothness, low dimensionality, and shape-awareness,

harmonic maps have been shown to be an excellent choice for shape

deformation [Ben-Chen et al. 2009; Chen and Weber 2015, 2017;

Chien et al. 2016a; Joshi et al. 2007; Lipman et al. 2008]. Here we

briefly review the 3D harmonic subspace construction of [Ben-Chen

et al. 2009].

A smooth function ℎ(𝑥,𝑦, 𝑧) : Ω → R is called harmonic if it

satisfies the Laplace’s equation:

Δℎ =
𝜕2ℎ

𝜕𝑥2
+ 𝜕

2ℎ

𝜕𝑦2
+ 𝜕

2ℎ

𝜕𝑧2
= 0,
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Input Low resolution PWL (Tet) High resolution PWL (Tet) Ours

0

3

Fig. 3. A comparison of our meshless method with the mesh-based PWL (Tet) method [Smith et al. 2019] using two mesh resolutions. Execution time on the
low (high) resolution tetrahedral mesh with 10,180 (93,911) vertices is 2.72s (110.39s). Notice the lack of smoothness in the low resolution result, and the
concentration of the distortion near the handles in the high resolution result. Our method with 900 DOFs converges after 0.49 seconds and is 225 times faster
compared to the high resolution PWL (Tet) result. The result is smooth and the distortion is distributed more evenly.
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Fig. 4. Notations. On the left, a triangle mesh cage 𝜕Ω (in green) bounding
Ω. One triangle (denoted 𝑡 ) with vertices 𝑢, 𝑣, 𝑤 is highlighted (yellow)
and zoomed-in at the middle along with its image triangle with vertices
𝑦𝑢 , 𝑦𝑣, 𝑦𝑤 . The point 𝑝 ∈ Ω is mapped to 𝑓 (𝑝) . The vector coefficients
𝑦𝑣𝑖 and 𝑦𝑡 𝑗 are defined on 𝜕Ω. 𝑛𝑡 is the unit normal vector of triangle 𝑡 .
𝑙𝑣 denotes the vector from 𝑝 to 𝑣 and 𝑑𝑡𝑣 denotes the vector opposite to 𝑣
on 𝑡 . 𝐴𝑡 is the Jacobian of the affine transformation which maps the local
coordinate system {𝑑𝑡𝑣, 𝑑𝑡𝑢 , 𝑛𝑡 } to {𝑦𝑤 − 𝑦𝑢 , 𝑦𝑣 − 𝑦𝑤 , 𝑦𝑡 }.

where Δ is the Laplacian operator. Amap 𝑓 = (𝑓 𝑥 (𝑝), 𝑓 𝑦 (𝑝), 𝑓 𝑧 (𝑝)),
𝑝 ∈ R3 is called harmonic if 𝑓 𝑥 , 𝑓 𝑦 , 𝑓 𝑧 are harmonic functions. We

assume that the boundary of Ω is a triangle mesh (the so-called

cage)M = (V, E, F ), with verticesV , directed edges E, and faces

F . We use the same linear subspace of harmonic maps that was

used in [Ben-Chen et al. 2009; Lipman et al. 2008], namely:

𝑓 (𝑝) =
∑︁
𝑣𝑖 ∈V

𝑦𝑣𝑖𝜙𝑣𝑖 (𝑝) +
∑︁
𝑡 𝑗 ∈F

𝑦𝑡 𝑗𝜓𝑡 𝑗 (𝑝), (3)

where 𝜙𝑣𝑖 : R3 → R and 𝜓𝑡 𝑗 : R3 → R are real-valued harmonic

basis functions associated with vertex 𝑣𝑖 and triangle 𝑡 𝑗 respectively.

𝑦𝑣𝑖 ∈ R3 can be interpreted as the vertex positions of a deformed

cage, and 𝑦𝑡 𝑗 ∈ R3 as “normal” vectors for the target cage (though

these “normals” are orthogonal to its faces only for the identity

map). See Figure 4 for notations. The Jacobian and the Hessian of 𝑓

are:

𝐽 (𝑝) =
∑︁
𝑣𝑖 ∈V

𝑦𝑣𝑖∇𝜙𝑣𝑖
(𝑝)𝑇 +

∑︁
𝑡 𝑗 ∈F

𝑦𝑡 𝑗∇𝜓𝑡 𝑗 (𝑝)
𝑇 , (4)

𝐻 (𝑝) =
∑︁
𝑣𝑖 ∈V

𝑦𝑣𝑖 ◦ 𝐻𝜙𝑣𝑖
(𝑝) +

∑︁
𝑡 𝑗 ∈F

𝑦𝑡 𝑗 ◦ 𝐻𝜓𝑡 𝑗 (𝑝) . (5)

Throughout the paper we use the product 𝑣 ◦𝑀 with 𝑣 ∈ R3 and
𝑀 ∈ R3×3 to denote a tensor such that (𝑣 ◦𝑀)𝑖 𝑗𝑘 = 𝑣𝑖𝑀𝑗𝑘 . Similarly,

the notation 𝑀 ◦ 𝑣 denotes a tensor such that (𝑀 ◦ 𝑣)𝑖 𝑗𝑘 = 𝑀𝑖 𝑗𝑣𝑘 .

The expressions of the basis functions 𝜙𝑣𝑖 and𝜓𝑡 𝑗 , as well as their

differentials, are given in [Ben-Chen et al. 2009]. We provide them

in a slightly different form in Appendix A.

3.3 Local Injectivity in the Meshless Framework
As explained in Section 3.1, the local injectivity condition (Equation

(1b)) is verified in the line search step rather than added explicitly to

the optimization as a constraint. Nonetheless, in themeshless setting,

there is an infinite number of points in Ω on which the condition

should be verified. Since it is infeasible to verify the condition on

an infinite set, in practice, Condition (1b) is verified on a finite set

of samples I in Ω, and then implied for the entire domain by using

additional sufficient conditions. The idea is to estimate the maximal

amount of change in 𝜎3 in-between the samples. To this end, the

concept of Lipschitz continuity becomes handy.

Definition 3.1. A real function g: Ω → R is called 𝐿-Lipschitz

continuous if there exists a constant 𝐿 ≥ 0, such that ∀𝑝, 𝑞 ∈ Ω:
|𝑔(𝑝) − 𝑔(𝑞) | ≤ 𝐿 ∥𝑝 − 𝑞∥ .

Any such 𝐿 is referred to as a Lipschitz constant of 𝑔.

Intuitively, the rate of change of a Lipschitz continuous function

never exceed 𝐿. In particular, a differentiable function 𝑔(𝑝) with a

bounded derivative, is Lipschitz continuous with a tight Lipschitz

constant 𝐿 = sup𝑝∈𝑉 ∥∇𝑔(𝑝)∥ in any subdomain 𝑉 ⊂ Ω.

Let 𝑉 𝑟𝑝𝑖 be a voxel (a cube) with center 𝑝𝑖 and radius 𝑟 ,where 𝑟

is the distance from 𝑝𝑖 to one of the voxel’s corners. We partition

Ω into voxels with identical radius 𝑟 . Let I be the set of all voxel

centers. 𝑓 is certified as locally injective over Ω if we can verify that
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𝜎3 is strictly positive in all the voxels 𝑉 𝑟𝑝𝑖 . Let us denote by 𝐿
𝑟
𝑝𝑖
, the

Lipschitz constant of 𝜎3 in 𝑉
𝑟
𝑝𝑖
. For any point 𝑝 ∈ 𝑉 𝑟𝑝𝑖 , the following

inequality holds:

|𝜎3 (𝑝𝑖 ) − 𝜎3 (𝑝) | ≤ 𝐿𝑟𝑝𝑖 ∥𝑝𝑖 − 𝑝 ∥ ≤ 𝑟𝐿
𝑟
𝑝𝑖
,

which implies:

𝜎3 (𝑝) ≥ 𝜎3 (𝑝𝑖 ) − 𝑟𝐿𝑟𝑝𝑖 .

Hence, in order to ensure that 𝜎3 (𝑝) is positive everywhere inside
voxel 𝑉 𝑟𝑝𝑖 , it is sufficient to evaluate 𝜎3 at the voxel’s center, 𝑝𝑖 , and

ensure that 𝜎3 (𝑝𝑖 ) > 𝑟𝐿𝑟𝑝𝑖 . To conclude, in order to certify the map 𝑓

as locally injective, we first estimate the Lipschitz constants 𝐿𝑟𝑝𝑖 on

all the voxels. We then evaluate 𝜎3 (𝑝𝑖 ) at the voxel centers 𝑝𝑖 ∈ I,
and verify that:

𝜎3 (𝑝𝑖 ) > 𝑟𝐿𝑟𝑝𝑖 ∀𝑝𝑖 ∈ I . (6)

The above condition is sufficient but not necessary. One straightfor-

ward way to avoid false conclusions regarding the lack of injectivity

when the condition fails, is to reduce 𝑟 . This however, results in

more computations due to increased sampling density. Hence, it is

desirable that 𝜎3 (𝑝) will be as smooth (in the Lipschitz sense) as

possible. In addition, we strive to derive Lipschitz constants which

are as tight as possible.

4 A LIPSCHITZ CONSTANT FOR 𝜎3
As discussed in Section 3.3, the Lipschitz constant 𝐿𝑟𝑝𝑖 of 𝜎3 for a

given voxel 𝑉 𝑟𝑝𝑖 can be any value greater than max𝑝∈𝑉 𝑟
𝑝𝑖
∥∇𝜎3 (𝑝)∥.

This approach seems to be straightforward, however, 𝜎3 (𝑝) is not
necessarily smooth everywhere (for example the gradient is not well-

defined at points where 𝜎2 (𝑝) = 𝜎3 (𝑝)). Moreover, even in regions

where 𝜎3 (𝑝) is smooth, it is, in general, impossible to compute the

value of ∥∇𝜎3∥ analytically, because 𝜎𝑖 , 𝑖 = 1, 2, 3 do not posses

tractable closed-form expressions. This is in sharp contrast to the

2D case, where simple expressions for the singular values exist,

allowing effective estimation of its Lipschitz constant [Chen and

Weber 2017; Poranne and Lipman 2014].

To alleviate this difficulty, we searched for alternative ways for

obtaining a Lipschitz constant of 𝜎3 without ever evaluating ∇𝜎3 or
𝜎3 explicitly. A key result in this work is the development of a sur-

prisingly simple, but quite tight, Lipschitz constant for 𝜎3. Moreover,

this result can be used in order to compute a Lipschitz constant for

all three singular values (though we didn’t bound 𝜎1 and 𝜎2 in this

work). In fact, one can even use it in higher dimensions, and it is

applicable to any kind of 𝐶2
map, not necessarily harmonic. We ex-

press this result in the following theorem. For brevity, we formulate

the theorem only for dimension 3. Nonetheless, the generalization

is trivial.

Theorem 4.1. Let 𝑓 : Ω ⊂ R3 → R3 be a 𝐶2
map over a convex

region with a 3×3 Jacobian 𝐽 , and a 3
rd

order tensor Hessian 𝐻 . Let

∥𝐻 ∥ =
√︃∑

𝑖, 𝑗,𝑘=1,2,3 𝐻
2

𝑖 𝑗𝑘
denotes the “Frobenius” norm of the 3

rd

order tensor 𝐻 .

Then, max𝑣∈Ω ∥𝐻 (𝑣)∥ is a Lipschitz constant for 𝜎1, 𝜎2, and 𝜎3.

Proof. We start by stating the following result by Golub and Van

Loan [1996, Corollary 8.6.2]:

If 𝐴 and 𝐸 are in R𝑚×𝑛 , and 𝜎𝑖 is the 𝑖th singular value 𝑖 = 1 . . . 𝑛

then:

|𝜎𝑖 (𝐴 + 𝐸) − 𝜎𝑖 (𝐴) | ≤ 𝜎1 (𝐸) = ∥𝐸∥2 . (7)

By substituting 𝐴 = 𝐽 (𝑞) ∈ R3×3 and 𝐴 + 𝐸 = 𝐽 (𝑝) ∈ R3×3, where
𝐽 (𝑝) denotes the Jacobian of the map at 𝑝 , and using the fact that

the Frobenius norm of a matrix is always larger than its 𝑙2 norm,

we obtain:

|𝜎𝑖 (𝑝) − 𝜎𝑖 (𝑞) | ≤ ∥ 𝐽 (𝑝) − 𝐽 (𝑞)∥𝐹 . (8)

Equation (7) is stated for unsigned singular values. In Appendix B

we generalize it to signed singular values which allows us to apply it

to our 𝜎3. Furthermore, since our map is harmonic, 𝐽 (𝑝) is smooth,

hence, by the multivariable mean value theorem [Pugh 2015]:

∥vec(𝐽 (𝑝) − 𝐽 (𝑞))∥ ≤ ∥𝑝 − 𝑞∥ max

𝑣∈𝑝𝑞

𝐻 (𝑣)
2

, (9)

where 𝑝𝑞 is the line segment connecting 𝑝 and 𝑞, vec(𝑀) is the
vectorization of the matrix𝑀 (i.e. stacking the columns of𝑀 into

a long vector), 𝐻 =

[
𝐻1, 𝐻2, 𝐻3

]
with 𝐻 𝑖 being the 𝑖th slice of the

tensor 𝐻 . Let Ω be a convex region (e.g. a voxel). From Equations

(8) and (9), and the fact that ∥ 𝐽 (𝑝) − 𝐽 (𝑞)∥𝐹 = ∥vec(𝐽 (𝑝) − 𝐽 (𝑞))∥
and

𝐻
2

≤
𝐻

𝐹
= ∥𝐻 ∥, we obtain:

∀𝑝, 𝑞 ∈ Ω, |𝜎𝑖 (𝑝) − 𝜎𝑖 (𝑞) | ≤ ∥𝑝 − 𝑞∥max

𝑣∈Ω
∥𝐻 (𝑣)∥ . (10)

Hence, max𝑣∈Ω ∥𝐻 (𝑣)∥ is a Lipschitz constant for 𝜎𝑖 (in particular

𝜎3) in Ω. □

5 BOUNDING ∥𝐻 ∥
In Section 4, we showed that obtaining a Lipschitz constant for

𝜎3 boils down to bounding ∥𝐻 ∥. In this section, we show how to

compute an upper bound on the Hessian norm. Using Equation (5),

and the fact that the “Frobenius” tensor norm is submultiplicative,

the approach of Poranne and Lipman [2014] suggests the following

straightforward upper bound:

∥𝐻 (𝑝)∥ ≤
∑︁
𝑣𝑖 ∈V

𝑦𝑣𝑖  𝐻𝜙𝑣𝑖
(𝑝)


𝐹
+

∑︁
𝑡 𝑗 ∈F

𝑦𝑡 𝑗  𝐻𝜓𝑡 𝑗 (𝑝)𝐹 . (11)

With this, we can obtain a bound for ∥𝐻 ∥ by bounding the Hessians
of the individual basis functions. While simple, this inequality is

far from being tight and turned out to be quite useless in practice

when a sparse sampling density is used. One reason for this is

that, while ∥𝐻 ∥ is invariant to affine transformations of the target

cage (coefficients 𝑦𝑣𝑖 and 𝑦𝑡 𝑗 in Equation (3)), the right-hand side

of Equation (11) isn’t. Assume for instance, that the user wishes

to translate the shape by a large amount. This simply amounts to

addition of a constant to all the coefficients 𝑦𝑣𝑖 . As a consequence,

the right-hand side of Equation (11) will grow substantially. This

makes no sense, as such a translation shouldn’t affect 𝜎3 at all.

5.1 The Differential Map Representation
Our goal in this section is to develop, as tight as possible, bound

for ∥𝐻 ∥, and as a consequence, a Lipschitz constant for 𝜎3 which

is invariant to affine transformations of the cage. To this end, we

develop an alternative novel “differential” representation of the
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VHM barycentric mapping. By differential, we mean that the ex-

pression is a linear combination of the differentials of the 𝑦𝑣𝑖 and

𝑦𝑡 𝑗 coefficients, rather than their actual values.

Consider an affine transformation that transforms a triangle 𝑡 of

the source cage to a triangle of the target cage. Moreover, assume

that it transforms the normal 𝑛𝑡 (representing the orthogonal space)

to a vector 𝑦𝑡 (the target “normal”). Notations and a schematic are

given in Figure 4. Let 𝐴𝑡 be the differential (a 3×3 matrix) of such

an affine transformation:

𝐴𝑡 =
[
𝑦𝑣 − 𝑦𝑤 𝑦𝑤 − 𝑦𝑢 𝑦𝑡

] [
𝑑𝑡𝑢 𝑑𝑡𝑣 𝑛𝑡

]−1 ∈ R3×3, (12)

where 𝑑𝑡𝑢 = 𝑣 −𝑤 , and 𝑑𝑡𝑣 = 𝑤 − 𝑢. We provide a small Lemma (the

proof is in Appendix C) that will be handy later on.

Lemma 5.1. The linear part, 𝐴𝑡 , of the affine transformation can

be expressed alternatively as follows:

𝐴𝑡 = 𝑦𝑡𝑛
𝑇
𝑡 −

1

2𝑠𝑡

∑︁
𝑣𝑖 ∈𝑡

𝑦𝑣𝑖

(
𝑛𝑡 × 𝑑𝑡𝑣𝑖

)𝑇
, (13)

where 𝑠𝑡 is the signed area of triangle 𝑡 .

Let 𝑡1, 𝑡2 be the two triangles adjacent to edges 𝑒 and 𝑒 ′, where
𝑒 and 𝑒 ′ are opposite edges and 𝑒 ∈ 𝑡1, 𝑒 ′ ∈ 𝑡2. The notation 𝛿𝑒

𝐴

stands for a 3×3 matrix such that 𝛿𝑒
𝐴
= 𝐴𝑡1 − 𝐴𝑡2 (Similarly, 𝛿𝑒

′
𝐴

=

𝐴𝑡2 − 𝐴𝑡1 ). Intuitively, 𝛿𝑒𝐴 is the “differential” of 𝐴𝑡 , or the second

order “differential” of 𝑦𝑣𝑖 , 𝑦𝑡 𝑗 . Using Lemma 5.1, we can obtain the

following Theorem (see Appendix E for the proof) that allows us to

substitute the straightforward representation of 𝐻 (𝑝) (Equation (5))

with a “differential” representation.

Theorem 5.2. The Hessian tensor of the VHM harmonic map can

be expressed using the following alternative representation:

𝐻 (𝑝) = 1

2

∑︁
𝑒∈E

(
𝛿𝑒𝐴 ◦ 𝛼𝑒 (𝑝) +

(
𝛿𝑒𝐴

[
𝑑𝑒

∥𝑑𝑒 ∥

]
×

)
◦ 𝛽𝑒 (𝑝)

)
, (14)

where 𝛼𝑒 (𝑝) and 𝛽𝑒 (𝑝) are the vector functions 𝛼𝑡𝑣 and 𝛽𝑡𝑣 from

Appendix A, just notated differently. Specifically, the subscript 𝑒

corresponds to the edge opposite to vertex 𝑣 in triangle 𝑡 . Similarly,

𝑑𝑒 is 𝑑
𝑡
𝑣 written in a different form. The notation [𝑣]× stands for a

3×3 skew symmetric matrix, such that for any vector𝑤 ∈ R3, the
matrix-vector product [𝑣]×𝑤 produces the vector 𝑣 ×𝑤 .

5.2 A Tight Bound for ∥𝐻 ∥
We now utilize the differential representation of𝐻 (𝑝) (Theorem 5.2)

in order to derive a tighter upper bound for ∥𝐻 ∥. From Equation (14)

and the subadditivity of the tensor norm:

∥𝐻 (𝑝)∥ ≤ 1

2

∑︁
𝑒∈E

𝛿𝑒𝐴 ◦ 𝛼𝑒 + (
𝛿𝑒𝐴

[
𝑑𝑒

∥𝑑𝑒 ∥

]
×

)
◦ 𝛽𝑒

.
Note that the corresponding rows from 𝛿𝑒

𝐴
and 𝛿𝑒

𝐴

[
𝑑𝑒
∥𝑑𝑒 ∥

]
×
are or-

thogonal to each other, hence, we have:

∥𝐻 (𝑝)∥ ≤ 1

2

∑︁
𝑒∈E

√︄𝛿𝑒
𝐴
◦ 𝛼𝑒

2 + (𝛿𝑒𝐴 [
𝑑𝑒

∥𝑑𝑒 ∥

]
×

)
◦ 𝛽𝑒

2
≤ 1

2

∑︁
𝑒∈E

√︄𝛿𝑒
𝐴

2
𝐹
∥𝛼𝑒 ∥2 +

𝛿𝑒𝐴 [
𝑑𝑒

∥𝑑𝑒 ∥

]
×

2
𝐹

∥𝛽𝑒 ∥2 .

Furthermore, 𝛿𝑒
𝐴
and 𝛿𝑒

𝐴

[
𝑑𝑒
∥𝑑𝑒 ∥

]
×
have the same norm, thus:

∥𝐻 (𝑝)∥ ≤ 1

2

∑︁
𝑒∈E

𝛿𝑒𝐴
𝐹

√︃
∥𝛼𝑒 ∥2 + ∥𝛽𝑒 ∥2

=
1

2

∑︁
𝑒∈E

𝛿𝑒𝐴
𝐹
∥𝛼𝑒 − 𝛽𝑒 ∥ .

(15)

The equality is due to that 𝛼𝑒 and 𝛽𝑒 are orthogonal vectors (see

Equation (42)). By denoting the vector𝛾𝑒 (𝑝) as the difference𝛼𝑒 (𝑝)−
𝛽𝑒 (𝑝), we finally obtain the Lipschitz constant for the 𝑖th voxel:

𝐿𝑟𝑝𝑖 = max

𝑝∈𝑉 𝑟
𝑝𝑖

1

2

∑︁
𝑒∈E

𝛿𝑒𝐴
𝐹
∥𝛾𝑒 (𝑝)∥. (16)

For every voxel, and every edge, we compute the constant Γ𝑒
𝑖

=
1

2
max𝑝∈𝑉 𝑟

𝑝𝑖
∥𝛾𝑒 (𝑝)∥ once during preprocessing. Finally, the Lips-

chitz constant for the 𝑖th voxel is given by:

𝐿𝑟𝑝𝑖 =
∑︁
𝑒∈E

Γ𝑒𝑖
𝛿𝑒𝐴

𝐹
. (17)

The advantages of having

𝛿𝑒
𝐴


𝐹
in Equation (17) are:

(1)

𝛿𝑒
𝐴


𝐹
vanishes if 𝑓 is a global affine map.

(2) The scalar function ∥𝛾𝑒 (𝑝)∥ is local and decays fast as a func-
tion of the distance from edge 𝑒 .

(3)

𝛿𝑒
𝐴


𝐹
is invariant to compositions of 𝑓 with affine transfor-

mations.

5.3 Higher Order Estimation
While Equation (17) provides a fairly tight 𝐿𝑟𝑝𝑖 , we can further

tighten the estimation using the third order derivative of 𝑓 . Given

𝑝𝑖 ∈ I and 𝑝 ∈ 𝑉 𝑟𝑝𝑖 , we have:
∥𝐻 (𝑝)∥ ≤ ∥𝐻 (𝑝𝑖 )∥ + ∥𝐻 (𝑝) − 𝐻 (𝑝𝑖 )∥

≤ ∥𝐻 (𝑝𝑖 )∥ + max

𝑝∈𝑉 𝑟
𝑝𝑖

𝐽 3𝑓 (𝑝) 𝑟, (18)

where 𝐽 3
𝑓
(𝑝) is a 4

th
order tensor whose components are the 3

rd

order derivatives of 𝑓 , i.e., the “Jacobian” of 𝐻 :

𝐽 3
𝑓
(𝑝) = 1

2

∑︁
𝑒∈E

(
𝛿𝑒𝐴 ◦ ∇𝛼𝑒 +

(
𝛿𝑒𝐴

[
𝑑𝑒

∥𝑑𝑒 ∥

]
×

)
◦ ∇𝛽𝑒

)
. (19)

Similar to inequality (15), we can derive an upper bound for ∥ 𝐽 3
𝑓
(𝑝)∥

from Equation (19):

∥ 𝐽 3
𝑓
(𝑝)∥ ≤ 1

2

∑︁
𝑒∈E

𝛿𝑒𝐴
𝐹

√︃
∥∇𝛼𝑒 ∥2 + ∥∇𝛽𝑒 ∥2 . (20)

Appendix H provides an upper bound for ∥∇𝛼𝑒 ∥2 + ∥∇𝛽𝑒 ∥2. The
important thing to note here is that this upper bound depends solely

on the geometries of the source cage, and the voxel. Since these are

fixed throughout the optimization, they are computed once during

preprocessing.

To sum up, the Lipschitz constants of our algorithm are deter-

mined as follows. For each sample 𝑝𝑖 ∈ I, we evaluate ∥𝐻 (𝑝𝑖 )∥ and
max𝑝∈𝑉 𝑟

𝑝𝑖

𝐽 3
𝑓
(𝑝)

 , then 𝐿𝑟𝑝𝑖 is defined as:

𝐿𝑟𝑝𝑖 = ∥𝐻 (𝑝𝑖 )∥ + max

𝑝∈𝑉 𝑟
𝑝𝑖

𝐽 3𝑓 (𝑝) 𝑟 . (21)

ACM Trans. Graph., Vol. 40, No. 4, Article 74. Publication date: August 2021.



Real-time Locally Injective Volumetric Deformation • 74:7

Figure 5 (left graph) compares the different estimations of 𝐿𝑟𝑝𝑖 given

by Equations (17) and (21). As anticipated, using the 3
rd
order deriva-

tives leads to a significantly smaller 𝐿𝑟𝑝𝑖 which are close to the

optimal ground truth bounds. The ground truth is estimated by

computing the maximum of ∥∇𝜎3∥ over 1000 samples in each voxel.

In addition to showing the superiority of the higher order bounds

of Equation (21) over Equation (17), this experiment demonstrates

the tightness of the bound obtained by Theorem 4.1.

Result
0 100 200 300 400 500

i-th voxel

without Esmooth
Ground truth
2nd order
3rd order

10-1

100

101

L

10-1

100

101

L

0 100 200 300 400 500
i-th voxel

with Esmooth =  ||H(pi)||

Ground truth
2nd order
3rd order

0 100 200 300 400 500
i-th voxel

10-1

100

101

L Ground truth
2nd order
3rd order

with Esmooth = ||Ky||22

Input

Fig. 5. A comparison of Lipschitz constants computed with Equations (17)
and (21). In the left graph, no smoothness energy is used. In the middle,
the VHM smoothness energy is used, while on the right, we use 𝐸smooth =

∥𝐾𝑦 ∥2. To avoid clutter, the plots include only the values for the 500 points
with the largest 3rd order Lipschitz constants (21). The values are sorted
according to the ground truth values (red).

6 SMOOTHNESS ENFORCEMENT
Condition (6) is a sufficient but not a necessary condition for local

injectivity. In order to avoid cases in which Condition (6) fails, yet

the map is injective, it is desirable to either have as small as possible

Lipschitz constants, or use a smaller sampling radius 𝑟 . Chen and

Weber [2017] used dense sampling of the 1D boundary curve in

order to evaluate the symmetric Dirichlet energy, which promotes

injectivity by design. In contrast, we must sample the 3D space, and

it is computationally infeasible to use high density sampling for

a cubic domain. This implies that our sampling density needs to

be significantly lower compared to the planar case. Note that even

though harmonic mappings are 𝐶∞, their differentials may have

large norm and can potentially cause the mapping to reverse orien-

tation locally, in-between the samples. Hence, we need a strategy

to encourage the mapping to be locally injective away from the

samples.

Theorem 4.1 indicates that max𝑝∈𝑉 𝑟
𝑝𝑖
∥𝐻 (𝑝)∥ is a valid Lipschitz

constant 𝐿𝑟𝑝𝑖 . Therefore, it makes sense to enhance the smoothness

of 𝑓 , as measured by ∥𝐻 ∥, by introducing a regularization energy

term, so that the obtained 𝐿𝑟𝑝𝑖 can be as small as possible:

𝐸 = 𝐸
dis
+ 𝜆1𝐸P2P + 𝜆2𝐸smooth

. (22)

𝜆1 and 𝜆2 are user-defined weights which balance the three energy

terms. Whereas Section 5.2 deals with obtaining a tight Lipschitz

constant for 𝜎3, in this section we strive to push down the optimal
Lipschitz constant. The combination of these two steps leads to a

Lipschitz constant that is as small as possible (Figure 5).

To see the effect of our smoothness energy, a comparison between

the results with and without 𝐸
smooth

is shown in Figure 6. Clearly

the smoothness energy makes it possible for our algorithm to suc-

cessfully certify local injectivity with much sparser samplings. In

contrast, without 𝐸
smooth

, the optimization with the exact same set

of samples, terminates prematurely due to failure of the injectivity

certification step.

Input #s: 1476
with Esmooth

#s: 197632
without Esmooth

#s: 1476
without Esmooth

Fig. 6. A comparison of results computed with and without the smoothness
energy term. The constructed harmonic mapping space has 450 DOFs. With
the smoothness term included, only 1,476 samples are needed in order to
produce the result and the runtime is 0.17s. Without the smoothness term,
we can observe that the result (right) fails to satisfy the P2P constraints.
This problem can be avoided by using a much denser sampling (197,632
samples). The result is visually identical, albeit, the execution time (12.2s) is
X70 times longer.

6.1 The Smoothness Energy
We first rewrite Equations (3) and (4) as follows:

[𝑓 (𝑝)]𝑇 = 𝐷𝑝𝑦 (23)

[𝐽 (𝑝)]𝑇 = 𝐽𝑝𝑦, (24)

where 𝐷𝑝 = [Φ,Ψ], Φ ∈ R1×|V | is a row vector with Φ𝑖 = 𝜙𝑣𝑖 ,

Ψ ∈ R1×|F | is a row vector with Ψ𝑗 = 𝜓𝑡 𝑗 . 𝐽𝑝 = [∇Φ,∇Ψ] is the
gradient of 𝐷𝑝 . 𝑦 is a ( |V|+|F )|×3 matrix, concatenating 𝑦𝑣𝑖 and

𝑦𝑡 𝑗 . It can be seen from Equation (13) that 𝐴𝑡 is linear in 𝑦 (since

𝑛𝑡 and 𝑑𝑡𝑣 are constants that depend solely on the source cage).

Hence, 𝛿𝑒
𝐴

= 𝐴𝑡1 − 𝐴𝑡2 ∈ R3×3 is also linear in 𝑦 (𝑡1, 𝑡2 are the

adjacent triangles sharing edge 𝑒). Therefore, we construct a sparse

3|E |×(|V|+|F |) matrix 𝐾 such that:[
𝛿
𝑒1
𝐴

𝛿
𝑒2
𝐴
· · · 𝛿

𝑒 |E |
𝐴

]𝑇
= 𝐾𝑦. (25)

Equation (14) shows that𝐻 (𝑝) is a “linear” combination of 𝛿𝑒
𝐴
, hence

there must exist a constant 𝑐 , which is independent of 𝑝 and 𝑦, such

that for any point 𝑝 ∈ Ω, the following inequality holds:

∥𝐻 (𝑝)∥ ≤ 𝑐 ∥𝐾𝑦∥ . (26)

An estimation for the constant 𝑐 is given in Appendix F. In order to

push down ∥𝐻 (𝑝)∥ over the entire domain, we suggest to push the

right-hand side of Equation (26) instead, therefore:

𝐸
smooth

= ∥𝐾𝑦∥2 . (27)

Ben-Chen et al. [2009] proposed a different smoothness energy

based on the maximum principle of harmonic functions. Their en-

ergy essentially integrates ∥𝐻 ∥2 over 𝜕Ω, the boundary of the volu-

metric domain. However, the integral is approximated with a sum
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∑
𝑖 ∥𝐻𝑖 ∥2 over boundary samples, and optimizing it only guarantees

that ∥𝐻 ∥ is small on these samples. In contrast, our smooth energy

is independent of any sampling and promotes smoothness through-

out the entire domain evenly (as the constant 𝑐 is independent of

𝑝). Figure 5 compares the smoothness energy of Ben-Chen et al.

with ours. It is evident that both smoothness energies encourage

the Lipschitz constants to be smaller, albeit, our smoothness term is

more effective in doing so.
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10 -1

10 0

10 1

10 2

10 3

10 4

En
er

gy

900 DOF
3000 DOF
6873 DOF

900 DOF

3000 DOF

6873 DOF

Fig. 7. Subspace dimensionality reduction on the animal shape. (right) The
graphs illustrate that approximately, the same energy level is reached when
the dimension of the subspace is reduced from 6,873 (a cage with 765 vertices
and 1,526 triangles) to 900. The runtime on the other hand is reduced by
90%. (left) The actual deformations are also quite similar.

6.2 Spectral Subspace Dimensionality Reduction
Our optimization problem is formulated in the subspace spanned

by the harmonic basis functions. Therefore, the dimension of this

subspace is determined by the discretization of the cage. In order to

capture the shape well, a high-resolution cage is required, which

leads to a large number of DOFs. This severely affect the efficiency of

our algorithm. Since the deformation complexity is often decoupled

from the shape complexity, we opt to reduce the dimension of our

subspace using spectral analysis. By doing so, we can greatly reduce

the computational cost without dramatically sacrificing quality.

In order to promote smoothness, we first perform an eigenvalue

decomposition of the Hessian of the smoothness term, 𝐾𝑇𝐾 , and

find 𝑠 eigenvectors Ξ𝑠 = [𝜉1, 𝜉2, · · · , 𝜉𝑠 ] that correspond to the 𝑠

smallest eigenvalues. We then restrict our variables 𝑦 to be in the

subspace spanned by Ξ𝑠 such that 𝑦 = Ξ𝑠𝑦, where 𝑦 becomes our

new optimization variable. Figure 7 demonstrates that we can use

much less DOFs without losing visual fidelity. This behavior is

consistent across a wide range of models.

7 IMPLEMENTATION
The building blocks of our method are outlined in Algorithm 1. The

main body of the loop includes a Newton iteration that computes

the update direction, and a line search procedure that computes

a proper step size along the update direction that, 1) satisfies the

Wolfe condition [Nocedal and Wright 2006, Chapter 3.1], 2) certifies

the map as locally injective (by checking Condition (6)). An energy

decreasing step size always exist since the energy Hessian is forced

to be positive definite. Moreover, since the previous step is assumed

Algorithm 1 Locally Injective Volumetric Deformation

Input: 𝑦 ⊲ initialization - locally injective map

𝑝𝑖 ∈ P ⊂ Ω, 𝑞𝑖 ∈ R3 ⊲ P2P constraints

Output: 𝑦𝑜𝑝𝑡 ⊲ new locally injective map

1: preprocess()
2: 𝑦0 = 𝑦, 𝐸0 = compute_energy(𝑦0), 𝑛 = 0

3: loop ⊲ Newton iteration

4: (∇2𝐸𝑛)+𝛿𝑦 = −∇𝐸𝑛 ⊲ solve linear system

5: (𝑦𝑛+1, 𝐸𝑛+1, 𝑡) ← line_search(𝐸𝑛, 𝑦𝑛,∇𝐸𝑛, 𝛿𝑦)
6: if 𝑡 ∥𝛿𝑦 ∥ ≤ 𝜖 then ⊲ solver converged

7: return 𝑦𝑛+1
8: else
9: 𝑛 ← 𝑛 + 1
10: end if
11: end loop

12: procedure line_search(𝐸𝑛, 𝑦𝑛,∇𝐸𝑛, 𝛿𝑦 )
13: 𝑡 ← 1

14: repeat
15: 𝑦𝑛+1 ← 𝑦𝑛 + 𝑡𝛿𝑦
16: 𝐸𝑛+1 = compute_energy(𝑦𝑛+1)
17: if 𝐸𝑛+1 < 𝐸𝑛 + 𝑐𝑡 dot(𝛿𝑦,∇𝐸𝑛) then ⊲ Wolfe condition

18: if (6) holds for any 𝑝 ∈ I then ⊲ locally injective

19: return (𝑦𝑛+1, 𝐸𝑛+1, 𝑡)
20: end if
21: end if
22: 𝑡 ← 𝑡/2
23: untilMaxNumSteps

24: end procedure

to be locally injective (hence the symmetric Dirichlet energy is

finite), there exists a nonzero step size that corresponds to a locally

injective map. Since we start with an injective map (the identity), by

induction, the algorithm is guaranteed to maintain local injectivity

at all times.

In the remaining part of this section, we discuss these steps in de-

tail. To promote reproducibility, we provide a publicly available refer-

ence implementation (https://github.com/lwt831/Real-time-Locally-

Injective-Volumetric-Deformation). Our algorithm is easily paral-

lelized on the GPU by following the exact same principles presented

in [Chen and Weber 2017, Appendix G].

7.1 The Gradient and the Hessian of the Energy
In order to minimize the objective function using Newton’s method,

the gradient and the Hessian of the energy 𝐸 are required. While

𝑓 and 𝐸iso posses closed-form, as far as we know, the integrals in

Equation (2) cannot be represented in such a manner. Consequently,

we approximate them numerically:

𝐸
dis

=
∑︁
𝑝𝑖 ∈I

𝑤𝑖𝐸iso (𝑝𝑖 ), (28)
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where𝑤𝑖 is the volume of the voxel centered at 𝑝𝑖 . The soft positional

constraints term is given by:

𝐸P2P =
∑︁
𝑝𝑖 ∈P

∥ 𝑓 (𝑝𝑖 ) − 𝑞𝑖 ∥2 , (29)

where P ⊂ Ω ⊂ R3 is a set of user specified points and 𝑞𝑖 ∈ R3 is
the target position for the 𝑖th handle. Plugging Equation (23) into

Equation (29) and using matrix notations, we obtain:

𝐸P2P = ∥𝐷𝑦 −𝑄 ∥2 , (30)

where 𝐷 =

[
𝐷𝑇𝑝1 , 𝐷

𝑇
𝑝2
, · · · , 𝐷𝑇𝑝 |P |

]𝑇
such that ∀𝑝𝑖 ∈ P, [𝑓 (𝑝𝑖 )]𝑇 =

𝐷𝑝𝑖𝑦, 𝑄 is the matrix stacking 𝑞𝑇
𝑖
. The expression for 𝐸

smooth
is

given in (27). Since 𝐸
smooth

and 𝐸P2P are both convex quadratic, it

is trivial to derive their differentials:

∇𝑦𝐸P2P = vec(𝐷𝑇 (𝐷𝑦 −𝑄)), ∇2𝑦𝐸P2P = (𝐷𝑇𝐷) ⊗ 𝐼3, (31)

∇𝑦𝐸smooth
= vec(𝐾𝑇𝐾𝑦), ∇2𝑦𝐸smooth

= (𝐾𝑇𝐾) ⊗ 𝐼3, (32)

where 𝐼3 is the identity matrix in R3×3, ⊗ is the Kronecker product.

For the distortion energy 𝐸
dis

, we consider 𝐸iso (𝑝) at each 𝑝 ∈ I,
whose gradient and Hessian are given as follows:

∇𝑦𝐸iso = vec(𝐽𝑇𝑝 ∇𝐽 𝐸iso), (33)

∇2𝑦𝐸iso = (𝐽𝑝 ⊗ 𝐼3)𝑇∇2𝐽 𝐸iso (𝐽𝑝 ⊗ 𝐼3), (34)

where 𝐽𝑝 is defined in Equation (24). The expressions for ∇𝐽 𝐸iso and
∇2
𝐽
𝐸iso are given in Appendix G.

Note that ∇2𝑦𝐸iso is, in general, not positive semidefinite (PSD)

since 𝐸iso is not convex. Therefore, we follow the projected New-

ton approach and project the 9×9 matrix ∇2
𝐽
𝐸iso to the closest (in

Frobenius norm) PSDmatrix ∇2
𝐽
𝐸+
iso

using the analytic solution from

[Smith et al. 2019; Stomakhin et al. 2012]. We then, substitute ∇2𝑦𝐸iso
with (𝐽𝑝 ⊗ 𝐼3)𝑇∇2𝐽 𝐸

+
iso
(𝐽𝑝 ⊗ 𝐼3) when ∇2𝐽 𝐸iso is not PSD.

The cost to evaluate ∇2
𝐽
𝐸iso and ∇2𝑦𝐸iso on the full sampling set I

can adversely impact the interactive performance of our method. To

alleviate that, we adopt the strategy proposed by Chen and Weber

[2017] in the 2D case. Namely, we introduce an additional setH ⊂ I
that contains significantly fewer samples, and approximate ∇2𝐸

dis

as:

∇2𝐸
dis
≈

∑︁
𝑝𝑖 ∈H

𝑤𝑖∇2𝐸iso (𝑝𝑖 ). (35)

In all our experiments, we used |H | = 0.05|I |, which consistently

reduced the execution times of our algorithmwithout compromising

quality, as the example in Figure 8 shows.

In some rare cases, e.g. when the user adds the first P2P handle

and starts deforming a shape from its rest pose, the Hessian of the

full energy (22) can be positive semidefinite after the PSD projection.

To address this, and to improve numerical stability for the linear

solver, we add a small positive constant (10
−5

in our implementation)

to the diagonal of the Hessian matrix.

7.2 Adaptive Injectivity Certification Sampling
Our estimated Lipschitz constant is pretty tight for most moderate

deformations, and the smoothness energy further pushes it down.

Yet, for extreme deformations, denser 3D sampling is needed in
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Fig. 8. Approximation of ∇2𝐸dis. We show (right) the effect of different
sampling ratios (𝑟𝑠 = |H |/ |I |) on the optimization of the depicted boy
deformation (left). We observed that with 𝑟𝑠 ≥ 2%, our method consistently
converges to the same final result.When using the full set of samples (orange
curve), the execution time is dominated by the Hessian evaluation term.
On the other hand, when 𝑟𝑠 drops down to 1%, the progress of the Newton
iterations significantly slows down due to early termination in the line
search step. Using a ratio of 𝑟𝑠 = 5% provides a sweet spot, leading to the
fastest convergence.

order to prevent premature false termination of the local injectivity

certification. To alleviate this without excessive density increase, we

use a simple yet effective adaptive sampling strategy, by increasing

the sampling density only at the problematic areas.

Assume that Ω is partitioned into a set of voxels with the same

radius 𝑟 , and denote each voxel by 𝑉 𝑟𝑝 with 𝑝 being its center, all

such centers form the sampling set I. In the Newton iteration, we

verify Condition (6) at all the voxels. If it fails on any of them, we

subdivide that voxel and get eight sub-voxels with radius 𝑟/2. The
centers of these new sub-voxels are then added to I. This process
is repeated until Condition (6) is satisfied on all voxels and the

map is certified as locally injective. Alternatively, if a user-specified

threshold for the maximal number of subdivision steps is reached,

the map is assumed not to be locally injective. The Newton step size

is then shorten, and further certification attempts are performed. For

simplicity, we reuse the Lipschitz constant of the parent voxel for

all its subvoxels and only benefit from reducing the voxel’s radii. In

a typical scenario, there is no need for more than 10% extra samples.

harmonic maps

locally injective

source
target

Iteration
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m
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3
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Fig. 9. Fixed vs. dynamically adjusted weights. The top left row shows the
result using fixed weights. The bottom row shows the deformation results
with dynamic weighting. The top right schematics shows the optimization
paths taken by the two approaches. The plot (bottom right) compares the
lower bounds on 𝜎3, obtained using the Lipschitz constant given in Equa-
tion (21).
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7.3 Dynamic Weighting for Fast and Robust Deformation
The user interface of our system supports either direct specification

of the target positions of the P2P handles, or continuous dragging

of the handles toward its target position, which result in a highly

responsive and interactive user experience. However, due to its non-

convex nature, our optimization is not guaranteed to satisfy the

P2P constraints under all circumstances. A small weight for the P2P

energy term leads to a significant miss of the user constraints. On

the other hand, a large weight results in a P2P energy term that

overshadows the other terms, pulling the map toward the boundary

of the feasible domain (the subspace of locally injective maps). Due

to the interior point nature of the optimization, leaving the feasi-

ble domain is impossible and will be prevented by the line search

step. Nonetheless, this slows down the algorithm and temper with

robustness and convergence. This is illustrated by the blue path in

Figure 9 top right. To avoid this, we propose a heuristic for dynamic

weight adjustment such that a relatively “safe” path (marked red)

within the feasible domain is taken.

Let the current weights for 𝐸P2P and 𝐸
smooth

in Equation (22)

be 𝜆1 and 𝜆2 respectively. In each iteration, we adjust the weights

by comparing 𝐸P2P to a user-defined threshold 𝐸0. If 𝐸P2P ≥ 𝐸0 we
increase 𝜆2 by a multiplicative factor 𝜅2 > 1 and check the following

condition:

𝜎3 (𝑝) − 𝑟𝐿𝑟𝑝 ≥ 𝜖, (36)

which is a stronger version of Condition (6), with 𝜖 being a pre-

defined constant. If Condition (36) does not hold, we reduce the

influence of 𝐸P2P by decreasing 𝜆1 by a multiplicative factor 𝜅1 < 1.

If 𝐸P2P < 𝐸0, we acknowledge that the influence of 𝐸P2P is small

enough. We check Condition (6), and if it’s not satisfied, we en-

hance 𝐸
smooth

by increasing 𝜆2 by the factor 𝜅2. After the iteration

converges, we reset 𝜆1 and 𝜆2 to their default values.

By taking the strategy above, we effectively “pull” the optimiza-

tion direction towards the interior of the subspace of the locally

injective maps in each iteration. This strategy turned out to be

extremely effective in practice. The bottom right plot of Figure 9

shows that the estimated lower bound on 𝜎3 in the second iteration

goes as low as 0.001, which indicates the proximity to the boundary

of the feasible domain. Using the dynamic weighting scheme, we

successfully prevent this from happening. This is also illustrated in

the top left part of Figure 9, where fixed weights are used and the

method terminates prematurely after two iterations.

8 EXPERIMENTAL RESULTS
For all the results presented in this paper, we use the following

default parameters unless stated otherwise. We set the dimension of

the reduced subspace to 900 (Section 6.2). The size of the sampling

sets are |I | ≈ 3 × 104 and |H | = 0.05|I |. The maximum number

of subdivisions for the adaptive injectivity certification is 6. The

weights for 𝐸P2P and 𝐸
smooth

are 𝜆1 = 10
5
and 𝜆2 = 0.1. All experi-

ments are performed on aWindows 10machine with an Intel i5-8500

CPU 3.0GHz, with 32GB RAM, and a NVIDIA TITAN RTX graphics

card. The cages are automatically generated using [Sacht et al. 2015].

To avoid singularities in the harmonic basis functions 𝜙𝑣𝑖 and𝜓𝑡 𝑗
which may cause problem with the injectivity certification (6), we

ensure that there is some offset from the cage to the deforming

Input OursPWL (Tet) VHM

0

3

Fig. 10. Deformation of the boy. A comparison of our method with the
other two volumetric methods using a coarse cage with 102 vertices. For
PWL (Tet), the cage is tessellated into a tetrahedral mesh with 735 vertices
(bottom left). 378 anchors are placed on the medial axis of the cage for VHM
(bottom middle). 37,913 samples are scattered in the cage’s interior for our
method (bottom right).

shape, and none of the voxels 𝑉 𝑟𝑝𝑖 intersects the cage. We visualize

the user specified P2P target positions 𝑞𝑖 as cyan spheres, and the

images of 𝑝𝑖 (i.e., 𝑓 (𝑝𝑖 )) as smaller black spheres. A small black

sphere centered inside a larger cyan sphere indicates satisfaction of

the P2P constraint.

Input

PWL (Tri) PWL (Tet)

VHM VHM (Refine)

Ours

0

5

Fig. 11. Injectivity loss. Due to the extreme deformation, the VHM result
fails to be locally injective, and depicts high distortion in the head of the
bunny. We experimented with a modified VHM method such that the
samples (so-called anchors) are taken from our method. Though improved,
the result still fails to be locally injective.

We compare our method against three state-of-the-art methods.

PWL (Tet) denotes the tetrahedral deformation method using the

analytic Eigensystem [Smith et al. 2019] optimizing the symmetric

Dirichlet energy. PWL (Tri) denotes the SR-ARAP surface defor-

mation [Levi and Gotsman 2015], and VHM denotes [Ben-Chen

et al. 2009]. To provide online user interaction with PWL (tet), we

embed the deforming shape into a low resolution tetrahedron mesh,

and use a barycentric mapping to represent the deformation. The

superiority of our method can be observed by comparing the speed

as well as the overall appearance, including smoothness, local-and-

global volume preservation, and isometric distortion of the results

produced with the different methods. The heat maps depict the vol-
umetric symmetric Dirichlet energy (𝐸iso). We subtract 6 such that

no isometric distortion corresponds to 0 on the side color bars. For

the meshless methods, we evaluate the distortion on the vertices of
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Input PWL (Tri) PWL (Tet) VHM Ours
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Fig. 12. Volume preservation of a twisting bar. The percentage above each
method indicates the global volume ratio, defined as the quotient of the
volume of the result and the volume of the source. The heat maps show the
relative local volume change for the volumetric methods and is omitted for
the surface-based method. Our method nicely preserves the volume globally
as well as locally.

the mesh and interpolate linearly over triangles. PWL (Tri) colors

are omitted since volumetric distortion is undefined for surfaces.

The degrees of freedom (DOF) of VHM are derived from the

cage’s complexity (3 scalars for each vertex and additional 3 for

each triangle). In PWL (Tet), we tessellated the cage using TetGen

[Si 2015], and obtained a tetrahedral mesh in which each vertex

corresponds to 3 DOF. We also tried tessellating some input meshes

as opposed to its (much coarser) cages, albeit, this was prohibitively

slow. For PWL (Tri), there are 3 DOF per vertex of the full resolution

triangle mesh, with no DOF for the interior. Our method uses the

same cage as VHM and PWL (Tet).
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Fig. 13. Algorithm balance. We show how the runtime of a single iteration
of our algorithm is spread across the four stages. Each group of bins corre-
sponds to a different model with variable amount of DOF.

Figure 13 shows how the runtime of each Newton iteration is

spread among the four stages, including gradient evaluation (Equa-

tion (33)), Hessian assembly-and-modification, linear solve, and line

search. We observed that our solver is well-balanced among these

four stages. Table 1 compares the execution times and iteration

count to reach convergence on a variety of shapes. Our method

has the shortest execution times and the least number of iterations

consistently. Note that we ran PWL (Tet) on a low resolution mesh

for better efficiency. PWL (Tri) operates on the original meshes

directly, therefore has the highest number of DOF, leading to the

slowest execution times.

Our method and PWL (Tet) are designed to produce locally injec-

tive maps. In contrast, VHM, while aiming at that in spirit, develops

foldovers quite often, especially in the vicinity of the P2P handles,

as shown in Figure 11. These failures of VHM are identified by us-

ing our injectivity certification mechanism. For PWL (Tri), local

injectivity is undefined within the 3D ambient space.

Our method is also effective in keeping the average-and-maximal

distortion low, which is partly due to the newly introduced smooth-

ness energy term. This is illustrated by the distortion heat maps

in Figures 3,10,11,12, and 14. It is evident that the distortion in our

results is kept relatively low even around the P2P handles. In con-

trast, we observed significant increase of distortion for both VHM

and PWL (Tet) on the same problematic regions. Our method dis-

tributes the distortion more uniformly over the shape compared to

the others.

Our method and PWL (Tet) are both effective in volume preserva-

tion, though it is not targeted explicitly. This is attributed to the use

of the symmetric Dirichlet energy, which is evaluated over the entire

domain rather than solely on the boundary [Chen and Weber 2015,

2017; Levi and Gotsman 2015] or along the medial axis [Ben-Chen

et al. 2009]. This is illustrated in Figures 1, 10 and 11. A quantitative

comparison of the volume preserving ability is given in Figure 12.

In Figure 3, we compare our method to [Smith et al. 2019] (PWL

(Tet)) on a high resolution tetrahedral mesh. While both methods

guarantee injectivity and optimize the symmetric Dirichlet energy,

due to the harmonic subspace and our additional smoothness term,

our method is free of artifacts. The piecewise linear nature of [Smith

et al. 2019] is evident by the lack of smoothness when executed on

a low resolution tetrahedral mesh. The execution time of PWL (Tet)

on the high resolution mesh is 225 times slower compared to ours,

and artifacts near the handles persist.

In Figure 11, we compare against a modified VHM method where

the energy is evaluated on I rather than on the medial axis solely.

While the VHM result is improved with this dense and uniform

sampling, it still fails to be locally injective.

We include an additional compilation of comparisons of the four

methods in Figure 14. Finally, the accompanying video showcases

some of these results, examines them from different point of views,

and demonstrates the real-time performance of our method.

9 SUMMARY AND DISCUSSION
We have presented the first meshless framework for volumetric

deformation with local injectivity guarantees. A novel generaliza-

tion of the principle ideas from [Poranne and Lipman 2014] to the

volumetric case is formed, where themain challenge lies in the devel-

opment of a tight Lipschitz constant for the smallest singular value

of the map Jacobian. We choose to follow Chen and Weber [2017]

who demonstrated the many advantages of shape-aware harmonic

basis functions as opposed to general RBFs. The main building block

of our generalization (Section 4), however, can be extended to other

function types, if one explicitly wishes to avoid smoothness, or when

the interior of the domain should be deformed without affecting the

boundary.
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Fig. 14. Additional comparisons of our method with the state-of-the-art.
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Table 1. Comparison of execution times and iteration count for each method to reach convergence when initialized with the identity map. We also report the
DOF used in each method when deforming these shapes.

Model DOF time (sec) #iter DOF time (sec) #iter DOF time (sec) #iter DOF time (sec) #iter
animal 58,566 2.87 129 7,920 1.02 26 6,873 6.53 71 900 0.34 15

amardillo 497,862 25.34 131 8,316 0.47 13 1,464 1.05 36 900 0.21 10
bar 19,974 2.00 250 3,312 0.30 23 1,032 1.50 393 900 0.32 14
boy 39,996 3.20 194 8,208 0.41 12 906 0.76 145 900 0.28 10

bunny 79,371 1.68 51 21,123 2.21 18 9,375 10.55 50 900 0.35 14
beast 85,164 11.08 323 9,267 1.06 27 1,356 3.89 443 900 0.37 21
cat 105,870 7.14 165 8,370 0.50 12 906 3.01 204 900 0.31 9

hand 43,041 3.01 167 8,550 0.55 11 906 1.70 295 900 0.31 10
horse 59,550 10.05 407 5,727 0.40 16 447 0.54 124 300 0.19 11

PWL (Tri) [Levi 2015] PWL (Tet) [Smith 2019] VHM [Ben-Chen 2009] Ours

Unlike [Chen andWeber 2015], we targeted local injectivity solely,

without the ability to bound the distortion. Setting an explicit dis-

tortion bound should be straightforward by using semidefinite pro-

gramming (SDP), based on the convexification presented in [Koval-

sky et al. 2014].

Through experiments and comparisons, we demonstrated that

our method is significantly faster than the existing methods, while

producing superior results which are smooth, locally injective, and

exhibit low isometric distortion.

9.1 Limitations and Future Work
Our method guarantees local injectivity, however, the space of lo-

cally injective maps is nonconvex, hence we cannot guarantee that

the positional constraints will be satisfied while simultaneously

guaranteeing injectivity. To the best of our knowledge, none of the

existing methods (meshless or mesh-based) has this ability and de-

veloping such a method is highly desirable. For the space of locally

injective planar harmonic maps, there exists a change of variables

[Hefetz Fedida et al. 2017; Levi and Weber 2016] that transforms

bijectively the nonconvex space of harmonic injective maps to a

convex space (albeit, without positional constraints). The existence

of such a transformation in the volumetric case is an open question.

On the theoretical side, it was disappointing to learn that a

bounded distortion harmonic mapping theorem, analogous to the

planar case, does not exist. In the future, it would be interesting to

explore other mapping spaces for which the injectivity in the vol-

ume interior can be deduced solely based on the boundary behavior

of the map. In particular, for certain harmonic maps, the minimum

of 𝜎3 is attained on the boundary. Characterizing and identifying

these maps is useful, and we intend to explore it.

Finally, our method is designed to produce locally injective maps.

An avenue for future work would be to address a requirement for

global injectivity.
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A THE HARMONIC BASIS FUNCTIONS
Using the notations given in Figure 4, one can express 𝜙𝑣 (𝑝) and
𝜓𝑡 (𝑝) as follows:

𝜙𝑣 =
∑︁

𝑡 ∈𝑁 (𝑣)

1

2𝑠𝑡
(𝑙𝑢 × 𝑙𝑤) · 𝑃𝑡 , (37)

𝜓𝑡 = −
∑︁
𝑣∈𝑡

𝐶𝑡𝑣𝑑𝑡𝑣 ((𝑙𝑢 × 𝑙𝑤) · 𝑛𝑡 ) − 3

𝑠𝑡
𝜔𝑡𝑣𝑜𝑙𝑡 , (38)

where 𝑁 (𝑣) is the set of triangles neighboring vertex 𝑣 . The area of

triangle 𝑡 is denoted 𝑠𝑡 . We denote by 𝑣𝑜𝑙𝑡 the signed volume of the

tetrahedron formed by triangle 𝑡 and the point 𝑝 . The signed solid

angle at 𝑝 is 4𝜋𝜔𝑡 . The functions 𝐶
𝑡
𝑣 (𝑝) ∈ R, and 𝑃𝑡 (𝑝) ∈ R3 are:

𝐶𝑡𝑣 =
1

4𝜋
log

(
∥𝑙𝑢 ∥ + ∥𝑙𝑤 ∥ +

𝑑𝑡𝑣
∥𝑙𝑢 ∥ + ∥𝑙𝑤 ∥ −

𝑑𝑡𝑣
)
,

𝑃𝑡 = 𝑛𝑡 ×
∑︁
𝑣∈𝑡

𝑑𝑡𝑣𝑑𝑡𝑣𝐶𝑡𝑣 − 𝜔𝑡𝑛𝑡 .
The gradients of Equation (37) and (38) are given by:

∇𝜙𝑣
=

∑︁
𝑡 ∈𝑁 (𝑣)

1

2𝑠𝑡
𝑃𝑡 × 𝑑𝑡𝑣, (39)

∇𝜓𝑡 = −𝑃𝑡 . (40)

To obtain the Hessian of 𝜙𝑣 and𝜓𝑡 , we first compute the Jacobian

matrix of 𝑃𝑡 :

𝐽 (𝑃𝑡 ) =
∑︁
𝑣∈𝑡

©«𝛽𝑡𝑣
(
𝑛𝑡 ×

𝑑𝑡𝑣𝑑𝑡𝑣
)𝑇
− 𝛼𝑡𝑣𝑛𝑇𝑡

ª®¬, (41)

where 𝛼𝑡𝑣, 𝛽
𝑡
𝑣 ∈ R3 are row vectors:

𝛼𝑡𝑣 =
∥𝑙𝑢 ∥ + ∥𝑙𝑤 ∥

2𝜋

(
(∥𝑙𝑢 ∥ + ∥𝑙𝑤 ∥)2 −

𝑑𝑡𝑣2)
(
𝑙𝑢

∥𝑙𝑢 ∥
× 𝑙𝑤

∥𝑙𝑤 ∥

)
,

𝛽𝑡𝑣 =

𝑑𝑡𝑣
2𝜋

(
(∥𝑙𝑢 ∥ + ∥𝑙𝑤 ∥)2 −

𝑑𝑡𝑣2)
(
𝑙𝑢

∥𝑙𝑢 ∥
+ 𝑙𝑤

∥𝑙𝑤 ∥

)
.

(42)

Finally, the Hessians of 𝜙𝑣 and𝜓𝑡 are:

𝐻𝜙𝑣
=

∑︁
𝑡 ∈𝑁 (𝑣)

1

2𝑠𝑡
𝐽 (𝑃𝑡 )

[
𝑑𝑡𝑣

]
× , (43)

𝐻𝜓𝑡 = −𝐽 (𝑃𝑡 ) . (44)

B EXTENSION TO SIGNED SINGULAR VALUES
By convention, the signed (smallest) singular value, 𝜎𝑠𝑚 , of a𝑚 ×𝑚
matrix 𝐴 is defined as 𝜎𝑠𝑚 (𝐴) = sign(det(𝐴))𝜎𝑚 (𝐴). In the follow-

ing, we prove that given any 𝐴, 𝐸 ∈ R𝑚×𝑚 :

|𝜎𝑠𝑚 (𝐴 + 𝐸) − 𝜎𝑠𝑚 (𝐴) | ≤ ∥𝐸∥2 .

Proof. We consider the following cases:

(1) 𝜎𝑠𝑚 (𝐴 + 𝐸)𝜎𝑠𝑚 (𝐴) = 0.

In this case either 𝜎𝑠𝑚 (𝐴 + 𝐸) = 0 or 𝜎𝑠𝑚 (𝐴) = 0, hence:

|𝜎𝑠𝑚 (𝐴 + 𝐸) − 𝜎𝑠𝑚 (𝐴) | = |𝜎𝑚 (𝐴 + 𝐸) − 𝜎𝑚 (𝐴) | ≤ ∥𝐸∥2.
(2) 𝜎𝑠𝑚 (𝐴 + 𝐸)𝜎𝑠𝑚 (𝐴) > 0.

In this case 𝜎𝑠𝑚 (𝐴 + 𝐸) has the same sign as 𝜎𝑠𝑚 (𝐴), therefore:

|𝜎𝑠𝑚 (𝐴 + 𝐸) − 𝜎𝑠𝑚 (𝐴) | = |𝜎𝑚 (𝐴 + 𝐸) − 𝜎𝑚 (𝐴) | ≤ ∥𝐸∥2 .

(3) 𝜎𝑠𝑚 (𝐴 + 𝐸)𝜎𝑠𝑚 (𝐴) < 0.

For any 𝜆0 we have:

|𝜎𝑠𝑚 (𝐴 + 𝐸) − 𝜎𝑠𝑚 (𝐴) |
=|𝜎𝑠𝑚 (𝐴 + 𝐸) − 𝜎𝑠𝑚 (𝐴 + 𝜆0𝐸) + 𝜎𝑠𝑚 (𝐴 + 𝜆0𝐸) − 𝜎𝑠𝑚 (𝐴) |
≤|𝜎𝑠𝑚 (𝐴 + 𝐸) − 𝜎𝑠𝑚 (𝐴 + 𝜆0𝐸) | + |𝜎𝑠𝑚 (𝐴 + 𝜆0𝐸) − 𝜎𝑠𝑚 (𝐴) |,
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where the last inequality is due to the triangle inequality.

Since 𝜎𝑠𝑚 (𝐴 + 𝐸)𝜎𝑠𝑚 (𝐴) < 0, we know that 𝜎𝑠𝑚 (𝐴 + 𝐸) and
𝜎𝑠𝑚 (𝐴) have different signs. By construction, 𝜎𝑠𝑚 (𝑀) is a con-
tinuous function of the elements of 𝑀 . Therefore, by the

intermediate value theorem, there exists 𝜆0 ∈ [0, 1] such that

𝜎𝑠𝑚 (𝐴 + 𝜆0𝐸) = 0. Hence, we can apply case (1) twice:
|𝜎𝑠𝑚 (𝐴 + 𝐸) − 𝜎𝑠𝑚 (𝐴 + 𝜆0𝐸) | + |𝜎𝑠𝑚 (𝐴 + 𝜆0𝐸) − 𝜎𝑠𝑚 (𝐴) |
≤(1 − 𝜆0) ∥𝐸∥2 + 𝜆0 ∥𝐸∥2 = ∥𝐸∥2 .

□

C PROOF FOR LEMMA 5.1 - AFFINE MAP
Proof. To prove the lemma, we need to show that the right-hand

side of Equation (13) maps the vectors {𝑑𝑡𝑢 , 𝑑𝑡𝑣, 𝑛𝑡 } to {𝑦𝑣 −𝑦𝑤 , 𝑦𝑤 −
𝑦𝑢 , 𝑦𝑡 }. Since 𝑛𝑡 is orthogonal to 𝑛𝑡 × 𝑑𝑡𝑣𝑖 , we have:(

𝑦𝑡𝑛
𝑇
𝑡 −

1

2𝑠𝑡

∑︁
𝑣𝑖 ∈𝑡

𝑦𝑣𝑖

(
𝑛𝑡 × 𝑑𝑡𝑣𝑖

)𝑇 )
𝑛𝑡

= 𝑦𝑡

(
𝑛𝑇𝑡 𝑛𝑡

)
− 1

2𝑠𝑡

∑︁
𝑣𝑖 ∈𝑡

𝑦𝑣𝑖

((
𝑛𝑡 × 𝑑𝑡𝑣𝑖

)𝑇
𝑛𝑡

)
= 𝑦𝑡 .

Also notice that (𝑛𝑡 × 𝑑𝑡𝑖 )
𝑇𝑑𝑡

𝑗
is the triple product of the vector set

{𝑛𝑡 , 𝑑𝑡𝑖 , 𝑑
𝑡
𝑗
} (𝑖, 𝑗 ∈ {𝑢, 𝑣,𝑤}), which denotes (6×) the signed volume

of the tetrahedron spanned by this set, hence we have:(
𝑦𝑡𝑛

𝑇
𝑡 −

1

2𝑠𝑡

∑︁
𝑣𝑖 ∈𝑡

𝑦𝑣𝑖

(
𝑛𝑡 × 𝑑𝑡𝑣𝑖

)𝑇 )
𝑑𝑡𝑢 = 𝑦𝑣 − 𝑦𝑤 ,(

𝑦𝑡𝑛
𝑇
𝑡 −

1

2𝑠𝑡

∑︁
𝑣𝑖 ∈𝑡

𝑦𝑣𝑖

(
𝑛𝑡 × 𝑑𝑡𝑣𝑖

)𝑇 )
𝑑𝑡𝑣 = 𝑦𝑤 − 𝑦𝑢 ,

which completes the proof. □

D PROOF FOR THE SUBHARMONICITY OF 𝜎1
We have ∇𝜎1 =

∑
9

𝑖=1 ∇ �̃�𝑖
𝜕𝜎1

𝜕�̃�𝑖
, where �̃� is the vectorized represen-

tation of matrix 𝐽 (i.e 𝐻 =

[
∇ �̃�1,∇ �̃�2, · · · , ∇ �̃�9

]
). By applying the

product rule, we get:

∇2𝜎1 =
9∑︁
𝑖=1

∇2 �̃�𝑖
𝜕𝜎1

𝜕�̃�𝑖
+

9∑︁
𝑖=1

∇ �̃�𝑖 (∇
𝜕𝜎1

𝜕�̃�𝑖
)𝑇 . (45)

With the chain rule, we get ∇ 𝜕𝜎1
𝜕�̃�𝑖

=
∑
9

𝑗=1 ∇ �̃� 𝑗
𝜕2𝜎1

𝜕�̃�𝑖𝜕�̃�𝑗
. Plugging it into

Equation (45), we obtain:

∇2𝜎1 =
9∑︁
𝑖=1

∇2 �̃�𝑖
𝜕𝜎1

𝜕�̃�𝑖
+

9∑︁
𝑖, 𝑗=1

∇ �̃�𝑖∇ �̃�𝑇𝑗
𝜕2𝜎1

𝜕�̃�𝑖 𝜕�̃� 𝑗
. (46)

Therefore,

Δ𝜎1 =

𝐼︷       ︸︸       ︷
9∑︁
𝑖=1

Δ �̃�𝑖
𝜕𝜎1

𝜕�̃�𝑖
+Trace(

𝐼 𝐼︷                  ︸︸                  ︷
9∑︁

𝑖, 𝑗=1

∇ �̃�𝑖∇ �̃�𝑇𝑗
𝜕2𝜎1

𝜕�̃�𝑖 𝜕�̃� 𝑗
). (47)

Notice that �̃�𝑖 is a component of the derivative of 𝑓 . Since 𝑓 is

harmonic, so is each component of its derivative, which means that

part 𝐼 in Equation (47) vanishes. For part 𝐼 𝐼 , we first rewrite it using

vector notations:

9∑︁
𝑖, 𝑗=1

∇ �̃�𝑖∇ �̃�𝑇𝑗
𝜕2𝜎1

𝜕�̃�𝑖 𝜕�̃� 𝑗
= 𝐻∇2𝐽 𝜎1𝐻

𝑇 . (48)

By plugging 𝐸 = 𝜎1 into the expression from Appendix G, we ob-

tain the 9 eigenvalues of ∇2
𝐽
𝜎1: 0, 0, 0, 0, 0,

1

𝜎1−𝜎2 ,
1

𝜎1+𝜎2 ,
1

𝜎1−𝜎3 ,
1

𝜎1+𝜎3 .
Since 𝜎1 is the largest singular value, both inmagnitude and absolute

value, the 4 fractions are all positive. Hence, ∇2
𝐽
𝜎1 is positive semi-

definite and 𝐻∇2
𝐽
𝜎1𝐻

𝑇 ≥ 0. Finally, we conclude that the Laplacian

of 𝜎1 is positive, hence, it is a subharmonic function.

E THE DIFFERENTIAL REPRESENTATION OF THE
JACOBIAN AND HESSIAN OF 𝑓

We prove below Theorem 5.2. As a side result, we also have a differ-

ential representation for the map Jacobian (though we do not utilize

it directly in this work). Plugging Equation (39)-(40) into Equation

(4), we have:

𝐽 (𝑝) =
∑︁
𝑡 ∈F

(
1

2𝑠𝑡

∑︁
𝑣∈𝑡

𝑦𝑣
(
𝑃𝑡 × 𝑑𝑡𝑣

)𝑇 − 𝑦𝑡𝑃𝑇𝑡 )
=

∑︁
𝑡 ∈F

𝜔𝑡

(
𝑦𝑡𝑛

𝑇
𝑡 −

1

2𝑠𝑡

∑︁
𝑣𝑖 ∈𝑡

𝑦𝑣𝑖

(
𝑛𝑡 × 𝑑𝑡𝑣𝑖

)𝑇 )
+

∑︁
𝑡 ∈F

∑︁
𝑣∈𝑡

𝐶𝑡𝑣

(
𝑦𝑡𝑛

𝑇
𝑡 −

1

2𝑠𝑡

∑︁
𝑣𝑖 ∈𝑡

𝑦𝑣𝑖

(
𝑛𝑡 × 𝑑𝑡𝑣𝑖

)𝑇 ) [
𝑑𝑡𝑣𝑑𝑡𝑣

]
×
.

Using Lemma 5.1 we express 𝐽 as a blend of matrices 𝐴𝑡 :

𝐽 (𝑝) =
∑︁
𝑡 ∈F

(
𝜔𝑡𝐴𝑡 +

(∑︁
𝑣∈𝑡

𝐶𝑡𝑣𝐴𝑡

[
𝑑𝑡𝑣𝑑𝑡𝑣

]
×

))
. (49)

To compute 𝐻 (𝑝), we take the derivative of Equation (49):

𝐻 (𝑝) =
∑︁
𝑡 ∈F

(
𝐴𝑡 ◦ ∇𝜔𝑡 +

∑︁
𝑣∈𝑡

(
𝐴𝑡

[
𝑑𝑡𝑣

∥𝑑𝑡𝑣 ∥

]
×
◦ ∇𝐶𝑡𝑣

))
. (50)

Following [Ben-Chen et al. 2009], we get:

∇𝜔𝑡 =
∑︁
𝑣∈𝑡

𝛼𝑡𝑣 . (51)

Again, by taking the derivative of 𝐶𝑡𝑣 we have:

∇𝐶𝑡𝑣 =
1

4𝜋
∇ log

( ∥𝑙𝑢 ∥ + ∥𝑙𝑤 ∥ + 𝑑𝑡𝑣
∥𝑙𝑢 ∥ + ∥𝑙𝑤 ∥ − 𝑑𝑡𝑣

)
= 𝛽𝑡𝑣 . (52)

Plugging Equation (51)-(52) into Equation (50), we have:

𝐻 (𝑝) =
∑︁
𝑡 ∈F

∑︁
𝑣∈𝑡

(
𝐴𝑡 ◦ 𝛼𝑡𝑣 +𝐴𝑡

[
𝑑𝑡𝑣

∥𝑑𝑡𝑣 ∥

]
×
◦ 𝛽𝑡𝑣

)
. (53)

The summation can be rewritten as follows,

𝐻 (𝑝) =
∑︁
𝑒∈E

(
𝐴𝑒 ◦ 𝛼𝑒 +

(
𝐴𝑒

[
𝑑𝑒

∥𝑑𝑒 ∥

]
×

)
◦ 𝛽𝑒

)
, (54)

where 𝐴𝑒 denotes the matrix 𝐴𝑡 with 𝑒 ∈ 𝑡 . Next, let 𝑒 ′ be the

opposite edge of 𝑒 , it follows that 𝛼𝑒 = −𝛼𝑒′ , 𝛽𝑒 = 𝛽𝑒′ and 𝑑𝑒 = −𝑑𝑒′

ACM Trans. Graph., Vol. 40, No. 4, Article 74. Publication date: August 2021.



74:16 • Liao, W., Chen, R., Hua, Y., Liu, L., and Weber, O.

and the Hessian can be written as:

𝐻 (𝑝) =
∑︁
𝑒∈E

(
−𝐴𝑒′ ◦ 𝛼𝑒 −

(
𝐴𝑒′

[
𝑑𝑒

∥𝑑𝑒 ∥

]
×

)
◦ 𝛽𝑒

)
. (55)

Finally, we combine Equation (54) and (55), and express the Hessian

as a blend of matrix differences 𝛿𝑒
𝐴
:

𝐻 (𝑝) = 1

2

∑︁
𝑒∈E

(
𝛿𝑒𝐴 ◦ 𝛼𝑒 +

(
𝛿𝑒𝐴

[
𝑑𝑒

∥𝑑𝑒 ∥

]
×

)
◦ 𝛽𝑒

)
. (56)

F INEQUALITY OF THE HESSIAN MODULUS
Here, we provide an estimation of the constant 𝑐 such that Equa-

tion (26) holds. By Equation (25), we have:

∥𝐾𝑦∥ =
√︄∑︁
𝑒∈E

𝛿𝑒
𝐴

2
(57)

Using the inequality of means, it follows that:

1

𝑛

∑︁
𝑒∈E

𝛿𝑒𝐴 ≤ √︄
1

𝑛

∑︁
𝑒∈E

𝛿𝑒
𝐴

2 . (58)

Combining Equation (57) and (58), we get:

1

√
𝑛

∑︁
𝑒∈E

𝛿𝑒𝐴 ≤ ∥𝐾𝑦∥ . (59)

Now, let’s take:

𝑐 (𝑝) =
√
𝑛

2

max

𝑒∈E

√︃
∥𝛼𝑒 ∥2 + ∥𝛽𝑒 ∥2 . (60)

Substitute Equation (60) into inequality (15), and it follows that:

∥𝐻 (𝑝)∥ ≤ 𝑐 (𝑝) 1

√
𝑛

∑︁
𝑒∈E

𝛿𝑒𝐴 ≤ 𝑐 (𝑝) ∥𝐾𝑦∥ . (61)

If we take 𝑐 = max𝑝∈Ω 𝑐 (𝑝), then the following inequality holds:

∥𝐻 (𝑝)∥ ≤ 𝑐 ∥𝐾𝑦∥ . (62)

G EXPRESSIONS FOR ∇𝐽 𝐸iso AND ∇2𝐽 𝐸iso
Following [Stomakhin et al. 2012], the expression of ∇𝐽 𝐸iso and

∇2
𝐽
𝐸iso are given as follows (to avoid clutter, 𝐸 substitutes 𝐸iso):

∇𝐽 𝐸 =

3∑︁
𝑖=1

(𝑉(𝑖) ⊗ 𝑈 (𝑖) )
𝜕𝐸

𝜕𝜎𝑖
,

∇2𝐽 𝐸 = 𝑄Λ𝑄𝑇 ,

(63)

where 𝑄 = (𝑉 ⊗ 𝑈 )𝑃 , 𝐽 = 𝑈𝑆𝑉⊤ is the SVD decomposition of 𝐽 , 𝑃

is a permutation matrix that maps column (1, 2, 3, 4, 5, 6, 7, 8, 9) to
(1, 5, 9, 2, 4, 6, 8, 7, 3). Λ is a block diagonal matrix whose diagonal

blocks are Λ0, Λ1, Λ2 and Λ3, and Λ0 is a 3 × 3 matrix with entries:

(Λ0)𝑖 𝑗 =
𝜕2𝐸

𝜕𝜎𝑖𝜎 𝑗
, 𝑖, 𝑗 = 1, 2, 3,

while each Λ𝑖 (𝑖 = 1, 2, 3) is a 2 × 2 matrix:

Λ𝑖 =

[
𝜕𝐸
𝜕𝜎 𝑗

− 𝜕𝐸𝜕𝜎𝑖
− 𝜕𝐸𝜕𝜎𝑖

𝜕𝐸
𝜕𝜎 𝑗

] [
𝜎 𝑗 −𝜎𝑖
−𝜎𝑖 𝜎 𝑗

]−1
,

where 𝑖 = 1, 2, 3, 𝑗 = (𝑖 mod 3) + 1.

H UPPER BOUNDS FOR ∥∇𝛼𝑒 ∥2 + ∥∇𝛽𝑒 ∥2 IN 𝑉 𝑟𝑝𝑖
Let us introduce the following simplified notations:

𝑚 = ∥𝑙𝑢 ∥ + ∥𝑙𝑤 ∥ , 𝑛 = ∥𝑙𝑢 ∥ ∥𝑙𝑤 ∥ , 𝑑 =
𝑑𝑡𝑣 = ∥𝑑𝑒 ∥ .

Using a symbolic math software, we obtained the following expres-

sions:

∥∇𝛼𝑒 ∥2 =
sin

2 𝜃

(
2𝑛2 (1 + cos𝜃 ) +𝑚2 (∥𝑙𝑢 ∥2 + ∥𝑙𝑤 ∥2)

)
+ 2𝑚2𝑑2

4𝜋2𝑛2
(
𝑚2 − 𝑑2

)
2

,

(64)

∥∇𝛽𝑒 ∥2 =
2𝑚2𝑑2 cos𝜃 + 4𝑚2𝑑2 − 2𝑛 sin2 𝜃

4𝜋2𝑛2
(
𝑚2 − 𝑑2

)
2

, (65)

where 𝜃 denotes the angle between the vectors 𝑙𝑢 and 𝑙𝑤 , as shown

in Figure 15. Consider the triangle formed by (𝑞,𝑢,𝑤). Obviously

u wde

lu

q p

θ

r

Vp
r

Fig. 15. Notations. 𝑑𝑒 = 𝑤 −𝑢 is an edge vector on the cage.𝑉 𝑟
𝑝 is a voxel

with center 𝑝 and radius 𝑟 . The point 𝑞 lies inside the voxel, forming the
triangle (𝑞,𝑢, 𝑤) .

∥𝑙𝑢 ∥ sin𝜃 is its height towards edge
−→𝑞𝑤 , therefore smaller than 𝑑 ,

and similarly ∥𝑙𝑤 ∥ sin𝜃 < 𝑑 . Using Equation (64) we get:

∥∇𝛼𝑒 ∥2 ≤
1

𝜋2 (𝑚2 − 𝑑2)2
+ 𝑚2𝑑2

𝜋2𝑛2 (𝑚2 − 𝑑2)2
,

which implies that:

max

𝑞∈𝑉 𝑟
𝑝

∥∇𝛼𝑒 ∥2 ≤
1

𝜋2 (ℎ2𝑒 − 𝑑2)2

(
1 + ℎ2𝑒𝑑

2

(∥𝑙1∥ − 𝑟 )2 (∥𝑙2∥ − 𝑟 )2

)
, (66)

where ℎ𝑒 = min𝑞∈𝑉 𝑟
𝑝
∥𝑙𝑢 ∥ + ∥𝑙𝑤 ∥, 𝑙1 =

−→
𝑝𝑢 and 𝑙2 =

−→
𝑝𝑤 .

Similarly, by taking 𝜃 = 0, we obtain an upper bound for ∥∇𝛽𝑒 ∥2:

∥∇𝛽𝑒 ∥2 ≤
3𝑚2𝑑2

2𝜋2 (𝑚2 − 𝑑2)2𝑛2
,

which implies that

max

𝑡 ∈𝑉 𝑟
𝑝

∥∇𝛽𝑒 ∥2 ≤
3ℎ2𝑒𝑑

2

2𝜋2 (ℎ2𝑒 − 𝑑2)2 (∥𝑙1∥ − 𝑟 )2 (∥𝑙2∥ − 𝑟 )2
. (67)
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