
Fast A* on Road Networks Using a Scalable
Separator-Based Heuristic

Renjie Chen

University of Science and Technology of China
Heifei, China

 renjie.c@gmail.com

Craig Gotsman
 New Jersey Institute of Technology

Newark, NJ, USA
gotsman@njit.edu

ABSTRACT
Fastest-path queries between two points in a very large road map is
an increasingly important primitive in modern transportation and
navigation systems, thus very efficient computation of these paths
is critical for system performance and throughput.

We present a novel method to compute an effective admissible
heuristic for the fastest-path travel time between two points on a
road map, which can be used to significantly accelerate the classical
A* algorithm when computing fastest paths. Our basic method -
called the Hierarchical Separator Heuristic (HSH) - is based on a
hierarchical set of linear separators of the map represented by a bi-
nary tree, where all the separators are parallel lines in a specific
direction. A preprocessing step computes a short vector of values
per road junction based on the separator tree, which is then stored
with the map and used to efficiently compute the heuristic at the
online query stage. We demonstrate experimentally that this
method scales well to any map size, providing a high-quality heu-
ristic, thus very efficient A* search, for fastest-path queries be-
tween points at all distances - especially small and medium range.
We show how to significantly improve the basic HSH method by
combining separator hierarchies in multiple directions and by par-
titioning the linear separators. Experimental results on real-world
road maps show that HSH achieves accuracy above 95% in esti-
mating the true travel time between two junctions at the price of
storing approximately 25 values per junction.

CCS CONCEPTS
• Theory of computation → Design and analysis of algorithms
→ Graph algorithms analysis → Shortest paths;

KEYWORDS
Road map, fastest-path, heuristic, A* search

ACM Reference format:
Renjie Chen and Craig Gotsman. 2020. Fast A* on Road Networks Using a
Scalable Separator-Based Heuristic. In 13th ACM SIGSPATIAL Interna-
tional Workshop on Computational Transportation Science (IWCTS’20),
November 3, 2020, Seattle, WA, USA. ACM, New York, NY, USA, 8 pages.
https://doi.org/10.1145/3423457.3429363

1 INTRODUCTION
Fastest-path queries between two points in a very large road map is
an increasingly important primitive in modern transportation and
navigation systems, thus very efficient computation of these paths
is critical for system performance and throughput. The road map is
modeled as a network - a mathematical graph - the vertices repre-
senting road junctions and the edges representing road segments
between the junctions. In the simplest scenario, the graph is almost
planar, the vertices are embedded in the plane, namely have (𝑥𝑥,𝑦𝑦)
coordinates, and each edge is assigned a positive weight measuring
its “travel time”, which is the segment’s physical length divided by
the maximal speed possible on that segment, depending on the cat-
egory of the road. Highway segments typically have shorter travel
times, as they allow higher speeds. The fastest-path query between
two points (𝑠𝑠, 𝑡𝑡) on a road map calls for determining the fastest
possible route along road segments between two points, and the re-
sulting path is called the “fastest path”. The more realistic variant
of this problem is when the graph edges are directed, namely the
travel time along an edge may depend on the direction of the edge.
In the special case of a one-way road, the edge exists in just one
direction (or, equivalently, the travel time in the opposite direction
is infinite).

Many methods have been proposed to compute fastest paths be-
tween two given points on a map, but the importance of this prob-
lem motivates the ongoing quest to provide even more efficient
methods. The subject of computing minimal-cost paths in graphs
has been studied for decades and the literature on this topic is vast.
Rather than surveying all this here, we refer the interested reader to
the recent survey by Bast et al [1]. We will just mention the Con-
traction Hierarchies (CH) family of algorithms of Geisberger et al.
[9], which relies on a hierarchical simplification of the road map,
with an Open Source software implementation available [5,13] and
the family of methods due to Delling et al. [4] relying on partition-
based overlay graphs, implemented in Bing Maps. Although both
families of methods are quite complex to implement, they achieve

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permis-
sion and/or a fee. Request permissions from permissions@acm.org.
IWCTS'20, November 3, 2020, Seattle, WA, USA
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-8166-6/20/11…$15.00
https://doi.org/10.1145/3423457.3429363

very good performance and are considered state-of-the-art in the
literature.

1.1 Heuristic A* Search
Our contribution focuses on improving one of the most fundamen-
tal and classic approaches to solving the fastest-path problem – the
heuristic A* algorithm, which was designed for computing mini-
mal-cost paths in graphs, of which the fast-path problem is just one
instance.

Let 𝐺𝐺 =< 𝑉𝑉,𝐸𝐸, 𝑐𝑐 > be an undirected graph with vertex set
𝑉𝑉, edge set 𝐸𝐸 ⊂ 𝑉𝑉 × 𝑉𝑉, and a positive cost function on the edges
𝑐𝑐:𝐸𝐸 → ℝ+. The minimal-cost path problem on 𝐺𝐺 is as follows:
Given a pair of query vertices 𝑠𝑠, 𝑡𝑡 ∈ 𝑉𝑉, find a path of edges in 𝐺𝐺
from 𝑠𝑠 to 𝑡𝑡, such that the sum of the costs of these edges is minimal
among all possible paths. This is called a minimal-cost path and
using this we can generalize the function 𝑐𝑐 to express the minimal
cost between all pairs of vertices: 𝑐𝑐:𝑉𝑉 × 𝑉𝑉 → ℝ+.

The A* algorithm [11] is a generalization of the classical (and
most basic) Dijkstra algorithm [6] to computing minimal-cost paths,
which is notoriously slow. In search of the minimal-cost path from
𝑠𝑠 to 𝑡𝑡, the Dijkstra algorithm traverses many more graph edges and
vertices than those on the actual path. In fact, the complexity of
computing the minimal cost from 𝑠𝑠 to the single vertex 𝑡𝑡 is essen-
tially the same as computing the minimal cost from 𝑠𝑠 to all other
vertices in the graph. To wit, the time complexity of the Dijkstra
algorithm, even after some optimization [8], is 𝑂𝑂(𝑚𝑚 +
𝑛𝑛 log 𝑛𝑛), where 𝑚𝑚 is the number of edges and 𝑛𝑛 the number of ver-
tices in the graph. A* improves on this with the help of an admissi-
ble heuristic function ℎ:𝑉𝑉 × 𝑉𝑉 → 𝑅𝑅+ , such that ∀𝑠𝑠, 𝑡𝑡: ℎ(𝑠𝑠, 𝑡𝑡) ≤
𝑐𝑐(𝑠𝑠, 𝑡𝑡), namely ℎ is a lower bound on 𝑐𝑐. The closer ℎ is to 𝑐𝑐, the
faster A* runs, reducing the number of graph edges and vertices
traversed during the search for the minimal-cost path. For the trivial
uninformed ℎ ≡ 0, A* reduces to the Dijkstra algorithm, and for
the perfectly informed ℎ = 𝑐𝑐 , A* performs gradient descent on
𝑐𝑐 directly from 𝑠𝑠 to 𝑡𝑡, with no unnecessary search overhead. Ideally,
A* coupled with a good heuristic should reduce the overhead of the
search to some constant multiplier of the number of vertices along
the optimal path.

Much effort has been invested in designing good heuristics for
A*. A complete account would be lengthy, and much of it is do-
main-dependent, so we discuss here just the most generic method.
All heuristics require preprocessing of the graph, in which some
auxiliary information is computed and stored, to be referred to later
during the running of online minimal-cost queries. The name of the
game is, therefore, to optimize the tradeoff between 1) the prepro-
cessing time complexity; 2) the space complexity to store the re-
sults of the preprocessing; 3) the time complexity of computing the
heuristic based on the stored information when A* runs on a given
(𝑠𝑠, 𝑡𝑡) query, and 4) the quality (i.e. accuracy) of the resulting heu-
ristic.

1.2 The Differential Heuristic ALT
A very simple, but surprisingly effective differential heuristic,

was proposed by Goldberg et al. [10] (who called it ALT) and inde-
pendently by Chow [3]. A small number (usually 𝑘𝑘 ≤ 10) “land-

mark” vertices (also called anchors/pivots/centers) 𝑙𝑙1, . . , 𝑙𝑙𝑘𝑘 are
chosen from 𝑉𝑉(𝐺𝐺). In a preprocessing step, for each vertex 𝑣𝑣 ∈
𝑉𝑉(𝐺𝐺), the vector of minimal costs 𝑚𝑚𝑚𝑚(𝑣𝑣) = �𝑐𝑐(𝑙𝑙1, 𝑣𝑣) , . . , 𝑐𝑐(𝑙𝑙𝑘𝑘 ,𝑣𝑣)�
is computed and stored. Then, at the online computation of the min-
imal-cost path from 𝑠𝑠 to 𝑡𝑡, the heuristic

ℎ(𝑠𝑠, 𝑡𝑡) = ‖𝑚𝑚𝑚𝑚(𝑠𝑠) −𝑚𝑚𝑚𝑚(𝑡𝑡)‖∞
is used, which is proven to be admissible and consistent based on
the simple triangle inequality. This heuristic requires 𝑂𝑂�𝑘𝑘(𝑚𝑚 +
𝑛𝑛 log 𝑛𝑛)� preprocessing time and 𝑂𝑂(𝑘𝑘𝑘𝑘) space to store. Given
𝑠𝑠 and 𝑡𝑡, ℎ(𝑠𝑠, 𝑡𝑡) can be computed online in 𝑂𝑂(𝑘𝑘) time.

The degrees of freedom in the ALT heuristic are the choice of
the landmark vertices. Goldberg et al. [6] and Efentakis et al. [7]
show how to optimize these, concluding that a good choice are
landmarks which cover the graph well. In the special case of a plane
(or close to plane) graph, a good choice are vertices covering the
boundary. However, as the size of the road map increases, more and
more landmarks are required, incurring more storage costs. So it
would seem that ALT does not scale well.

1.3 The Separator Heuristic
Since each landmark employed by ALT induces a cost field on the
graph vertices, where every vertex is assigned the value of the min-
imal cost of a path between vertex and the landmark, we first ob-
serve that this concept may be easily generalized. Instead of a land-
mark being a mere single vertex, it may be a set of vertices 𝑆𝑆 ⊂
𝑉𝑉(𝐺𝐺), and the minimal cost of a vertex 𝑣𝑣 (relative to 𝑆𝑆) is defined
as:

𝑚𝑚𝑚𝑚(𝑣𝑣, 𝑆𝑆) = min
𝑢𝑢∈𝑆𝑆

𝑚𝑚𝑚𝑚(𝑣𝑣,𝑢𝑢)

This defines a more complicated distance field per landmark, to
which the triangle inequality may be applied to obtain an analogous
differential heuristic. Unfortunately, in practice this generalization
does not add much power to that heuristic.

In an unpublished preprint of ours [2], we first observed that a
heuristic significantly more powerful than ALT can be obtained if
the vertex set 𝑆𝑆 is a separator of the graph, namely its removal
(along with the edges incident on the removed vertices) results in
𝑉𝑉 being partitioned into three sets 𝑈𝑈1 , 𝑆𝑆 and 𝑈𝑈2 = 𝑉𝑉 − 𝑈𝑈1 − 𝑆𝑆 ,
such that there exist no edges between 𝑈𝑈1 and 𝑈𝑈2. This means
that 𝑆𝑆 separates between 𝑈𝑈1 and 𝑈𝑈2 and the separated graph con-
tains at least two connected components, none of them mixing 𝑈𝑈1
and 𝑈𝑈2. We say that 𝑆𝑆 separates 𝑠𝑠 and 𝑡𝑡 if 𝑠𝑠 ∈ 𝑈𝑈1 and 𝑡𝑡 ∈ 𝑈𝑈2 or
vice-versa. We showed [2] that the following separator heuristic is
admissible:

ℎ𝑆𝑆(𝑠𝑠, 𝑡𝑡) = � 𝑐𝑐
(𝑠𝑠, 𝑆𝑆) + 𝑐𝑐(𝑡𝑡, 𝑆𝑆) if 𝑆𝑆 separates 𝑠𝑠 and 𝑡𝑡

|𝑐𝑐(𝑠𝑠, 𝑆𝑆) − 𝑐𝑐(𝑡𝑡, 𝑆𝑆)| otherwise

Essentially the first case means that if 𝑆𝑆 separates 𝑠𝑠 and 𝑡𝑡, then
the minimal cost between 𝑠𝑠 and 𝑡𝑡 is at least the minimal cost from
𝑠𝑠 to 𝑆𝑆 + the minimal cost from 𝑡𝑡 to 𝑆𝑆, since any path from 𝑠𝑠 to 𝑡𝑡
must cross 𝑆𝑆. In the second case, that 𝑆𝑆 does not separate 𝑠𝑠 from 𝑡𝑡,
we fall back onto the ALT heuristic, which is typically much
weaker.

Generating a separator can be quite simple. If the graph is em-
bedded in the plane, namely, each vertex is assigned (𝑥𝑥,𝑦𝑦) coordi-
nates, and every edge (𝑢𝑢,𝑤𝑤) drawn as a straight line segment

between the position of 𝑢𝑢 and the position of 𝑤𝑤, it is possible to
generate a separator of the graph by “drawing” a line (or polyline)
𝐿𝐿 on the plane through the graph. 𝐿𝐿 will intersect a subset of the
edges 𝐹𝐹 ⊂ 𝐸𝐸 . It is straightforward to verify that the set 𝑆𝑆 defined
as the vertices obtained by taking (either) one of the two vertex
endpoints of all edges in (a non-empty) 𝐹𝐹 is a separator of 𝐺𝐺. See
Fig. 1 for examples.

Using the separator heuristic based on 𝑆𝑆 means storing the pos-
itive value 𝑐𝑐(𝑣𝑣, 𝑆𝑆) for each 𝑣𝑣 ∈ 𝐺𝐺. In practice, a number of inde-
pendent separators 𝑆𝑆𝑖𝑖 , 𝑖𝑖 = 1, . . , 𝑘𝑘 are employed , computing and
storing in a preprocessing stage all the 𝑘𝑘 cost values 𝑐𝑐(𝑣𝑣, 𝑆𝑆𝑖𝑖) for
each vertex 𝑣𝑣 ∈ 𝐺𝐺 . Each results in a different heuristic value
ℎ𝑆𝑆𝑖𝑖(𝑠𝑠, 𝑡𝑡). Since all the heuristics are admissible, we can take the fi-
nal heuristic value to be:

ℎ(𝑠𝑠, 𝑡𝑡) = max
𝑖𝑖=1,..,𝑘𝑘

ℎ𝑆𝑆𝑖𝑖(𝑠𝑠, 𝑡𝑡)

To be effective, the set of 𝑘𝑘 separators should cover the map well.
This could possibly be a set of equally-spaced horizontal and/or
vertical separators. The heuristic power depends critically on the
separation property. If 𝑠𝑠 and 𝑡𝑡 are separated by some 𝑆𝑆, ℎ𝑆𝑆(𝑠𝑠, 𝑡𝑡)
will typically be a good estimate of 𝑐𝑐(𝑠𝑠, 𝑡𝑡), albeit this also depends
on the “angle” of the separator relative to 𝑠𝑠 and 𝑡𝑡. If 𝑠𝑠 and 𝑡𝑡 are not
separated by any of the 𝑘𝑘 separators, ℎ(𝑠𝑠, 𝑡𝑡) will be computed us-
ing ALT, typically a weak estimate of 𝑐𝑐(𝑠𝑠, 𝑡𝑡). This implies that if
the map is very large, a significant number of separators will be
required to ensure that most pairs of query points (𝑠𝑠, 𝑡𝑡) are sepa-
rated by at least one separator, especially if 𝑠𝑠 is close to 𝑡𝑡 (relative
to the size of the map), as is typical in navigation applications. Un-
fortunately, using a large number 𝑘𝑘 of separators could be unprac-
tical, as it would require the storage of a large number of values per
graph vertex, which could be prohibitive. Thus, in its simplest form,
it would seem that the separator heuristic is not scalable to very
large road maps, just like ALT.

The objective of this paper is to describe a scalable method to
deploy the separator heuristic of [2] on large roadmaps. We de-
scribe an admissible heuristic using a binary tree of parallel sepa-
rators, parameterized by a tree depth 𝑘𝑘, such that the preprocessing
time complexity is 𝑂𝑂(2𝑘𝑘𝑛𝑛 log 𝑛𝑛), the storage space complexity is

𝑂𝑂(𝑘𝑘𝑘𝑘), the heuristic computation time complexity is 𝑂𝑂(𝑘𝑘) and the
heuristic quality increases with 𝑘𝑘 . In practice, 𝑘𝑘 is taken to be
𝑂𝑂(log𝑛𝑛), thus the time complexity of preprocessing, storage space
complexity of the result, and heuristic computation time complex-
ity become 𝑂𝑂(𝑛𝑛2 log 𝑛𝑛),𝑂𝑂(𝑛𝑛 log 𝑛𝑛),𝑂𝑂(log 𝑛𝑛), respectively. Exper-
imentally we have observed that the overhead of computing the
minimal-cost path using this heuristic is a small constant factor of
the number of vertices along the path.

2 THE HIERARCHICAL SEPARATOR HEU-
RISTIC (HSH)

We now describe the main contribution of this paper: a more so-
phisticated version of the basic separator heuristic, one that guar-
antees that any pair of query vertices (𝑠𝑠, 𝑡𝑡), even those close to each
other, will be separated with high probability, and the separator an-
gle (the angle formed by the separator and the fastest path between
the query vertices) will not be too small. This relies on a recursive
binary subdivision of the map.

If 𝐺𝐺 is a graph representing a road network, and 𝐵𝐵 its bounding
box in the plane, then an obvious separator 𝑆𝑆 is a vertical line
through the center of the box. The use of this separator requires the
storage of the values 𝑐𝑐(𝑣𝑣, 𝑆𝑆) for each 𝑣𝑣 ∈ 𝑉𝑉.

Given query vertices (𝑠𝑠, 𝑡𝑡), if indeed 𝑆𝑆 separates them - we may
finish the heuristic computation here. Alas, with just one separator,
the chances of separating an arbitrary pair of vertices which are
close to each other is very small. Thus we continue to recursively
separate the two subgraph components generated by 𝑆𝑆 (by a verti-
cal separator through the middle of each component) and store the
minimal costs to these separators for each vertex in each relevant
subgraph. After 𝑑𝑑 levels of recursion, each vertex will have a vec-
tor of 𝑑𝑑 costs, albeit each vertex will have a different set of 𝑑𝑑 costs,
depending on its 𝑥𝑥 coordinate. We say that a cost entry of 𝑠𝑠 is com-
mon to a cost entry of 𝑡𝑡 if they are derived from the same separator.
In general, a pair of vertices which are close to each other will have
more costs in common than a pair of vertices which are distant from
each other. These common costs will be all the costs computed at

Figure 1: Separators of road map of New York City region generated by vertical or horizontal lines. Green vertices are component
𝑼𝑼𝟏𝟏, blue vertices are component 𝑼𝑼𝟐𝟐, and large pink vertices are the separator vertices 𝑺𝑺. The vertices of 𝑺𝑺 are the left (top, resp.)
endpoint of the black edges intersected by the vertical (horizontal, resp.) dotted pink line in the plane.

all the levels higher than the level at which separation occurs. See
the example in Fig. 2.

2.1 Computing HSH
Assuming 𝑑𝑑 costs per vertex, the HSH heuristic is computed in two
parts: In an offline preprocessing stage, an abstract binary tree of
depth 𝑑𝑑 is constructed recursively while generating vertical separa-
tors. During the recursive process, a 𝑑𝑑-bit binary code and a posi-
tive real 𝑑𝑑-vector of costs are assigned to each vertex, using the 𝑥𝑥
coordinates of the vertices. See the pseudo-code in Fig. 3.

In the online query stage, computing the HSH ℎ(𝑠𝑠, 𝑡𝑡) involves
comparing the binary codes of 𝑠𝑠 and 𝑡𝑡 from left to right. If the cor-
responding bits are equal, this indicates a common cost to which
ALT may be applied. If the corresponding bits are different, this
indicates a separator between 𝑠𝑠 and 𝑡𝑡 and the separator heuristic
may be applied. The procedure terminates when either the codes
are exhausted, thus identical, namely no separation is ultimately
achieved, or when the first nonequal bit is discovered, indicating
separation at that level. The complexity of computing ℎ(𝑠𝑠, 𝑡𝑡) is
thus 𝑂𝑂(𝑑𝑑). The chances of separating 𝑠𝑠 and 𝑡𝑡 increases exponen-
tially with depth, so this will happen even when they are quite close
to each other, given a reasonable depth. Essentially high probability
of separation is achieved for 𝑑𝑑 = 𝑂𝑂(log𝑛𝑛), where 𝑛𝑛 is the number
of vertices in the graph. See the pseudo-code in Fig. 3.

2.2 Generalizations of HSH
There are two ways to generalize HSH, improving its heuristic
power at the expense of extra storage costs.

Partitioning separators: It is possible to partition each separa-
tor 𝑆𝑆 into 𝑘𝑘 ≥ 1 segments: 𝑆𝑆1, . . , 𝑆𝑆𝑘𝑘 such that 𝑆𝑆 =∪𝑖𝑖=1𝑘𝑘 𝑆𝑆𝑖𝑖 . In this
case the heuristic for this separator becomes:

ℎ𝑝𝑝𝑆𝑆(𝑠𝑠, 𝑡𝑡) = min
𝑖𝑖=1,..,𝑘𝑘

ℎ𝑆𝑆𝑖𝑖(𝑠𝑠, 𝑡𝑡)

and requires storing the 𝑘𝑘 values 𝑐𝑐�𝑣𝑣, 𝑆𝑆𝑖𝑖� for each vertex 𝑣𝑣 ∈ 𝑉𝑉. It
is not difficult to see that the partitioned separator heuristic can only
improve the non-partitioned separator heuristic, while still being
admissible:

ℎ𝑝𝑝𝑆𝑆(𝑠𝑠, 𝑡𝑡) ≥ ℎ𝑆𝑆(𝑠𝑠, 𝑡𝑡)
There are many ways to partition a separator. A particularly ef-

fective strategy is when the separator is crossed by 𝑘𝑘 highways. In
this case it is best to partition the separator such that each segment
contains one such highway crossing. In practice, however, it may
be simplest just to uniformly partition the linear separators into 𝑘𝑘
equal-length segments. Note that if ALT is applied to a partitioned
line (e.g. when it does not separate the two vertices), the max oper-
ator is applied to the values obtained from the individual segments.

Multiple orientations: Another way to generalize HSH is to
employ multiple separator sets, each a binary tree of parallel sepa-
rators at a distinct angle 𝛼𝛼 ∈ �0, 𝜋𝜋

2
� relative to the north direction.

The vertical separators described above are the special case 𝛼𝛼 =
0, but since vertical separators do not always capture well the min-
imal cost paths, other orientations, especially horizontal separators,
complement it well. In practice 𝑘𝑘 equi-distant orientations are em-
ployed �𝛼𝛼𝑖𝑖 = 𝜋𝜋

𝑘𝑘
(𝑖𝑖 − 1): 𝑖𝑖 = 1, . . , 𝑘𝑘�. The resulting heuristic is just:

ℎ𝑜𝑜(𝑠𝑠, 𝑡𝑡) = max
𝑖𝑖=1,..,𝑘𝑘

ℎ𝛼𝛼𝑖𝑖(𝑠𝑠, 𝑡𝑡)

which obviously can only improve the heuristic as 𝑘𝑘 increases.

3 IMPLEMENTATION DETAILS
Since efficiency of the fast-path computation is critical, we list here
a number of implementation details which have a significant effect
on this:

Avoiding the A* priority queue: It is sometimes possible to
completely avoid operating on the priority queue. When the heuris-
tic is almost perfect (close to the true minimum cost), the A* search

(a) (b) (c)

(d)

Figure 2: The HSH: (a) Top level of the local separator heuristic. The plane embedded graph is separated by a vertical line 𝑺𝑺 through
the middle of the horizontal extent of the graph, separating 𝒔𝒔 from 𝒕𝒕. The (black) minimal-cost path between 𝒔𝒔 and 𝒕𝒕 has cost
𝒄𝒄(𝒔𝒔, 𝒕𝒕). The heuristic using 𝑺𝑺 is defined by the (green) “costs” to 𝑺𝑺: 𝒉𝒉(𝒔𝒔, 𝒕𝒕) = 𝒄𝒄(𝒔𝒔,𝑺𝑺) + 𝒄𝒄(𝒕𝒕,𝑺𝑺). (b) Two level separator heuristic. Two
new vertical separators 𝑺𝑺𝟎𝟎 and 𝑺𝑺𝟏𝟏 are added to the system, subdividing the two horizontal extents defined by 𝑺𝑺. The binary subscript
of the separator indicates in which extent it lies. Any vertex of 𝑮𝑮 can be labeled with a two-bit binary code derived from its 𝒙𝒙
coordinate, indicating in which of the four cells the vertex lies. Each vertex has two (green) “costs”, measuring the minimal cost
from the vertex to the relevant separators. Since 𝒂𝒂 is separated from 𝒄𝒄 and 𝒅𝒅 immediately at the top level by 𝑺𝑺, then they have only
one cost in common, and the heuristic value is determined by 𝑺𝑺. Vertices 𝒄𝒄 and 𝒅𝒅 are separated only by 𝑺𝑺𝟏𝟏 at the second level, so
have two costs in common and the cost to 𝑺𝑺𝟏𝟏 may be used to determine the heuristic value: 𝒉𝒉(𝒄𝒄,𝒅𝒅) = 𝒄𝒄(𝒄𝒄,𝑺𝑺𝟏𝟏) + 𝒄𝒄(𝒅𝒅,𝑺𝑺𝟏𝟏). Vertices
𝒂𝒂, 𝒃𝒃 and 𝒆𝒆 are not separated at all. (c) Three level separator heuristic. Each vertex has two three-bit codes. 𝒉𝒉(𝒂𝒂, 𝒄𝒄) is identical to the
one-level case, and 𝒉𝒉(𝒄𝒄,𝒅𝒅) to the two-level case, but 𝒃𝒃 and 𝒆𝒆 are now separated by 𝑺𝑺𝟎𝟎𝟎𝟎, so 𝒉𝒉(𝒃𝒃, 𝒆𝒆) = 𝒄𝒄(𝒃𝒃,𝑺𝑺𝟎𝟎𝟎𝟎) + 𝒄𝒄(𝒆𝒆,𝑺𝑺𝟎𝟎𝟎𝟎). 𝒂𝒂 and 𝒆𝒆
are still not separated. (d) The binary tree corresponding to the three-level vertical separator system.

will be close to gradient descent from source to target, and the next
node expanded at any given step will be one of the neighbors of the
current minimal element of the priority queue. In this case, there is
no need to insert this neighboring node in the priority queue only
to immediately delete it. A simple comparison of the neighbors to
the minimal element of the priority queue is sufficient to determine
if this is the case, and then just insert all neighbors which are not
the one to be expanded (the one with the smallest cost). This “short
cut” has proven to be quite effective.

Efficient implementation of the A* “CLOSED” list: The A*
algorithm also uses the so-called “CLOSED” list to determine
which network nodes have already been visited. This may be im-
plemented efficiently using a bit-array whose length is the number
of nodes in the network. All operations on this data structure are
constant time.

Parallelizing the offline pre-computation: The minimal-cost
values associated with a separator tree (and stored with the map)
are computed in a preprocessing step. The time required for this
preprocessing is not critical, but should be accelerated if possible,
since these values may need to be recomputed periodically in the
case of a dynamic network (e.g. the travel times on road segments
are changing due to evolving traffic conditions). Fortunately, due
to the hierarchical subdivision nature of the separators, the values
are computed independently on strips of network nodes. These may
be computed in parallel in a multi-core computing environment,
significantly speeding up the preprocessing phase.

4 EXPERIMENTAL RESULTS
We used the datasets used by Chen and Gotsman [2], who ex-

tracted directed graphs on the portions of New York (NY), Colo-
rado (COL) and the San Francisco Bay Area (BAY) from Open-
StreetMap [12] and removed all vertices of degree 2, a common
simplification useful for fast-path computations. We also used a
much larger road map of Europe. Table 1 shows the specs of those
graphs. We used undirected versions of these graphs, where the
edges of the graphs were weighted by the minimal travel time along
the two directed edges, which was computed as the Euclidean
length of the edge (using the UTM coordinates computed from the
latitude and longitude information per vertex) divided by the max-
imal speed on that edge, as extracted from OpenStreetMap. In our
experiments, we distinguished between pairs of points based on the
(Euclidean) distance between them. We randomly selected 3,000
pairs of points in “bins” of distances, e.g.: 1-5 km, 5-10 km, 10-20
km, 20-50 km, 50-100 km, 100-200 km, 200-400 km and 400-750
km. For COL, for example, which is approximately a rectangle of
size 610×450 km, this covers all possible cases. The (𝑠𝑠, 𝑡𝑡) pairs in
each bin were chosen with uniform distribution over area, using the
following method for the bin [𝑎𝑎, 𝑏𝑏]: 𝑠𝑠 was chosen at random uni-
formly within the bounding box of the graph, and then “snapped”
to the closest map vertex, as long as the snap was not too far. 𝑡𝑡 was
then chosen also at random within an annular region centered at 𝑠𝑠
with inner radius 𝑎𝑎 and outer radius 𝑏𝑏 and snapped to the closest
vertex as long as the snap was not too far and ‖𝑠𝑠 − 𝑡𝑡‖ ∈ [𝑎𝑎, 𝑏𝑏]. We

Preprocess(𝑮𝑮,𝒌𝒌)
 for each 𝑣𝑣 ∈ 𝐺𝐺
 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑣𝑣) ≔ (); // empty binary code
 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑣𝑣) ≔ (); // empty cost vector
 end
 Code(𝐺𝐺, 1,𝑘𝑘,𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 ,𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚); // 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 and 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 are the 𝑥𝑥-extents of 𝐺𝐺

 HSH(𝒔𝒔, 𝒕𝒕,𝒅𝒅)
 ℎ ∶= 0;
 for 𝑖𝑖 ≔ 1 to 𝑑𝑑
 if 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑠𝑠, 𝑖𝑖) == 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑡𝑡, 𝑖𝑖)
 // 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑠𝑠, 𝑖𝑖) is the 𝑖𝑖'th bit of 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑠𝑠)
 ℎ ≔ max(ℎ, |𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑠𝑠, 𝑖𝑖) − 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑡𝑡, 𝑖𝑖)|);
 else
 ℎ ≔ max�ℎ, 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑠𝑠, 𝑖𝑖) + 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑡𝑡, 𝑖𝑖)�;
 return ℎ;
 end
 return ℎ;
 end

Code(𝑮𝑮,𝒅𝒅,𝒅𝒅𝒎𝒎𝒎𝒎𝒎𝒎,𝒙𝒙𝟏𝟏,𝒙𝒙𝟐𝟐) // generate codes and costs for
 // each vertex of 𝐺𝐺 up to depth 𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚
 if 𝑑𝑑 ≤ 𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚
 𝑥𝑥𝑐𝑐 = (𝑥𝑥1+𝑥𝑥2)

2
;

 𝐹𝐹 ≔ edges of 𝐸𝐸 cut by the line 𝑥𝑥 = 𝑥𝑥𝑐𝑐;
 𝑆𝑆 ≔ right endpoints of edges in 𝐹𝐹 ; // 𝑆𝑆 is separator
 partition 𝐺𝐺 to (𝐿𝐿, 𝑆𝑆,𝑅𝑅);
 for each 𝑣𝑣 ∈ 𝐺𝐺

 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑣𝑣) ≔ concat(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑣𝑣),𝑥𝑥(𝑣𝑣) ≤ 𝑥𝑥𝑐𝑐 ? 0 ∶ 1);
 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑣𝑣) ≔ concat�𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑣𝑣), 𝑐𝑐(𝑣𝑣,𝑆𝑆)�;

 end
 Code(𝐿𝐿,𝑑𝑑 + 1,𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚 , 𝑥𝑥1, 𝑥𝑥𝑐𝑐);
 Code(𝑅𝑅 ∪ 𝑆𝑆,𝑑𝑑 + 1,𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚 , 𝑥𝑥𝑐𝑐 , 𝑥𝑥2);
 end

Figure 3: (left) Pseudo-code for the preprocessing stage: constructing binary codes and cost vectors for all vertices of graph 𝑮𝑮
based on 𝒙𝒙-coordinates of the vertices. (right) Pseudo-code of online computation of the HSH heuristic estimate of the minimal
cost between two vertices 𝒔𝒔, 𝒕𝒕 ∈ 𝑮𝑮 based on the top 𝒅𝒅 ≤ 𝒌𝒌 levels of a separator tree of depth 𝒌𝒌.

then compared the true fastest travel time 𝑐𝑐(𝑠𝑠, 𝑡𝑡) with the heuristic
ℎ(𝑠𝑠, 𝑡𝑡).

For each pair of vertices (𝑠𝑠, 𝑡𝑡), we measure the relative quality
of the heuristic:

qual(𝑠𝑠, 𝑡𝑡) =
ℎ(𝑠𝑠, 𝑡𝑡)
𝑐𝑐(𝑠𝑠, 𝑡𝑡)

which is a value in [0,1] reflecting how accurate the heuristic is.
The closer this number is to 1, the more informed the heuristic is.
The quality of the heuristic is the mean of this quantity over all
possible pairs (𝑠𝑠, 𝑡𝑡) in the experiment.

The efficiency of a heuristic in conjunction with A* is measured
as the number of vertices on the fastest path divided by the total
number of vertices traversed by A*:

eff(𝑠𝑠, 𝑡𝑡) =
#𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣�fastest−path(𝑠𝑠, 𝑡𝑡)�
#𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣(A−

∗ traversal(𝑠𝑠, 𝑡𝑡))

The closer this number is to 1 – the more efficient the heuristic is.
The efficiency of the heuristic is the mean of this quantity over all
possible pairs (𝑠𝑠, 𝑡𝑡) in the experiment. The best possible efficiency
on a road network is typically 40%-50%, since any variant of A*
must traverse at least the fastest path vertices and also their imme-
diate neighbors. When an uninformed heuristic is used, the effi-
ciency can sometimes drop dramatically to the vicinity of 1%,
meaning 100 vertices of the graph are explored for every vertex
along the fastest path.

4.1 HSH vs. FSH
In our first set of experiments we compared the simple Flat Sepa-
rator Heuristic (FSH) of Chen and Gotsman [2], which uses just a
simple set of 𝑘𝑘 parallel separators covering the map to the Hierar-
chical Separator Heuristic (HSH) based on a binary tree of depth
𝑘𝑘, described in this paper. Fig. 4 shows the qualities and efficiencies
of HSH vs. FSH obtained in the experiments we performed on the
road maps of EUR, COL and BAY, one graph per distance bin, as
a function of the number of separators used per vertex, which for
HSH is the single vertical separator tree depth and for FSH is the
number of vertical separators uniformly covering the horizontal ex-
tent of the map. Each distance bin is color-coded separately, the
dashed line for FSH and the solid line for HSH.

The results confirm that HSH outperforms FSH on most dis-
tances, especially the shorter ones, as HSH is able to position a sep-
arator between two vertices, even when they are very close to each
other. For example, on the map of EUR, in the 1-5km range of dis-
tances, HSH obtains up to 87% quality vs. 63% for FSH at a depth
of 12. This difference may be even more significant if a deeper tree

is used. In the 5-10km range, HSH levels off at depth 11, obtaining
85% vs. 60% for FSH. HSH continues to exhibit a significant ad-
vantage at much longer ranges. However, for very long distances
(400-750km), FSH starts to supply more than one separator be-
tween two vertices, so is more effective than HSH. The efficiency
measure behaves in the same way.

Similarly, on the map of COL, in the 1-5km range, HSH obtains
up to 85% quality vs. 73% for FSH at depth 9. In the 5-10km range,
HSH obtains 80% vs. 73% for FSH, even at tree depth of 7, and
still exhibits an advantage at the 10-20km range. Similar results are
obtained for the map of BAY. Since this map spans an area smaller
than EUR or COL, the first bin was designed to cover a smaller
range of distances: 1-2 km, for which a separator tree of depth 9 is
needed, and the last bin was 100-200 km. For 1-2 km, HSH ob-
tained on BAY a quality of 83% and efficiency of 41%, vs. 70%
and 36% for FSH.

4.2 Multiple Segments vs. Multiple Orientations
The quality of FSH may be improved, at the expense of more pre-
processing and storage costs, as described in Section 2.2, by either
partitioning each separator into a number of segments, or simply
using more separator trees at different orientations. Partitioning
each separator into 𝑟𝑟 segments would increase the storage costs by
the same factor, as would using 𝑟𝑟 separator trees. Fig. 5 shows the
improvement obtained as more segments or tree orientations are
used in HSH for queries in the range 5-10km. As expected, increas-
ing 𝑟𝑟 improves both the quality and efficiency of HSH, although it
seems it is far more beneficial to use multiple separator trees than
to partition the separators. For example, increasing 𝑟𝑟 from 1 to 2
segments increases the heuristic quality from 80% to 82% in COL
and from 69% to 78% in NY whereas increasing the number of
trees from 1 to 2 orientations increases the heuristic quality from
80% to 91% in COL and from 69% to 87% in NY. Obviously add-
ing more costs per vertex will have diminishing returns, but it
seems that using 4 separators trees, spanning the angles
�0, 𝜋𝜋

4
, 𝜋𝜋
2

, 3𝜋𝜋
4
� would be the most cost-effective, resulting in heuristic

quality of 95% and efficiency of 47% for COL and heuristic quality
of 93% and efficiency of 27% for NY.

5 SUMMARY AND DISCUSSION
We have described a separator-based admissible heuristic for A*,
which is based on a binary tree of separators, thus scales well to
provide an informed estimate of the fastest travel time between two
vertices in a road map, at short and long distances. The shorter

Roadmap Europe (EUR) Colorado (COL) Bay Area (BAY) New York (NY)
Physical dimen-
sions (km) 4,063 x 3,567 623 x 450 178 x 225 85 x 112

 original culled original culled original culled original culled
Vertices 18,010,173 15,634,580 5,157,103 705,676 3,094,277 743,974 1,582,249 387,139
Edges 42,560,279 39,463,514 5,404,002 1,850,567 3,354,097 1,955,307 1,747,827 1,082,194

Table 1: Specs of the roadmap graphs used in our experiments. Graphs were extracted from OpenStreetMap and degree-2 ver-
tices culled.

distances are captured well by the deeper levels of the tree. We have
shown that this approach, which we call the Hierarchical Separator
Heuristic (HSH), easily outperforms the simpler Flat Separator
Heuristic (FSH), where the map is partitioned by a fixed number of
separators, simply because FSH does not scale well to cover large
road maps. Loosely speaking, to be effective, the required number
of costs stored per vertex is 𝑂𝑂(𝑛𝑛) for FSH vs. 𝑂𝑂(log𝑛𝑛) for HSH,
where 𝑛𝑛 is the number of vertices in the graph.

Our HSH heuristic has been formulated in this paper and exper-
imented with for undirected graphs, but is immediately applicable
also to the more realistic case of directed graphs (especially when
the graph models a road network). As shown by Chen and Gotsman

[2], dealing with directed graphs merely doubles the number of
costs stored per graph vertex. They also show that the quality and
efficiency of separator-based heuristics is similar for both types of
graphs.

In practice, to obtain superior results, a single binary separator
tree is not sufficient, since it has a specific orientation, thus does
not cover well all possible orientations. We found that, in practice,
it is most cost-effective to use four trees, at orientations of multiples
of 𝜋𝜋/4. Using these trees at depth 7, namely storing 28 values per
map vertex.

One aspect of our work that could be improved is the time com-
plexity of the preprocessing stage. Currently it is 𝑂𝑂(𝑛𝑛2 log 𝑛𝑛) ,

Figure 4: HSH vs. FSH heuristic qualities (top row) and efficiencies (bottom row) on the roadmaps of Europe, COL and BAY for
(𝒔𝒔, 𝒕𝒕) pairs of different distances, as a function of the single vertical separator tree depth. For the hierarchical separator heuristic
(HSH), marked by solid curves, quality monotonically increases with tree depth. For the flat separator heuristic (FSH), marked by
dashed curves, quality tends to increase with the number of separators (equivalent to the HSH tree depth), but at a much lower rate.
Large distances require shallower trees than short distances, which benefit much more from tree depth.

which is quite slow, and we speculate that it could still be optimized
down to 𝑂𝑂(𝑛𝑛 log 𝑛𝑛). This is especially important for dynamic traf-
fic maps, in which the edge costs (i.e. travel times) change fre-
quently, forcing the preprocessing to be repeated. On the same note,
it would be interesting to devise an efficient update procedure for
the vertex cost vectors in the event of a few isolated changes to the
edge weights.

Finally, we should mention that we have run most of our exper-
iments on rather modest road maps representing single states of the
USA, where a depth of 8 suffices to achieve very good results.
Since the tree depth scales logarithmically with the number of ver-
tices in the map, for larger maps such as Europe – a binary tree of
depth 12 suffices. Similarly, depth 13 would suffice to deal well
with a map of the entire continental USA.

ACKNOWLEDGMENTS
This work is partly supported by the Anhui Provincial Natural Sci-
ence Foundation (2008085MF195) and the National Natural Sci-
ence Foundation of China (62072422).

REFERENCES
1. H. Bast, D. Delling, A. Goldberg, M. Mueller-Hannemann, T. Pajor, P. Sanders,

D. Wagner and R.F. Werneck. Route planning in transportation networks. In
Algorithm Engineering: Selected Results and Surveys (L. Kliemann and P.
Sanders, Eds.), p. 19-80, Springer, 2016.

2. R. Chen and C. Gotsman. Efficient fastest-path computations in road maps.
arXiv Preprint arXiv: 1810.01776, 2018.

3. E. Chow. A graph search heuristic for shortest distance paths. Proc. AAAI, 2005.
4. D. Delling, A.V. Goldberg, T. Pajor and R.F. Werneck. Customizable route

planning in road networks. Transportation Science, 51(2):566-591, 2017.
5. J. Dibbelt, B. Strasser and D. Wagner. Customizable contraction hierarchies.

ACM J. Exp. Alg., 21(1), 2016.
6. E.W. Dijkstra. A note on two problems in connexion with graphs. Numerische

Mathematik, 1(1), 1959.

7. A. Efentakis and D. Pfoser. Optimizing landmark-based routing and prepro-
cessing. Proc. ACM SIGSPATIAL Intl. Work. Comp. Transp. Sci., p. 25:25–
25:30, 2013.

8. M.L. Fredman and R.E. Tarjan. Fibonacci heaps and their uses in improved net-
work optimization algorithms. Proc. IEEE FOCS, 1984.

9. R. Geisberger, P. Sanders, D. Schultes and C. Vetter. Exact routing in large road
networks using contraction hierarchies. Transportation Science, 46(3):388–404,
2012.

10. A.V. Goldberg and C. Harrelson. Computing the shortest path: A* search meets
graph theory. Proc. SODA, 2005.

11. P.E. Hart, N.J. Nilsson and B. Raphael. A formal basis for the heuristic deter-
mination of minimum cost paths. IEEE TSSC, 4(2):100-107, 1968.

12. https://www.openstreetmap.org/
13. https://github.com/RoutingKit/RoutingKit

Figure 5: Heuristic qualities (top row) and efficiencies (bottom row) of HSH on the roadmaps of COL, BAY and NY for (𝒔𝒔, 𝒕𝒕) pairs
of range 5-10km as a function of depth when increasing either the number of segments per separator in a single (vertical) separator
tree or the number of orientations/directions of multiple trees. It is quite obvious that increasing the number of directions is more
cost-effective.

javascript:void(0)

	1 Introduction
	2 The Hierarchical Separator Heuristic (HSH)
	2.1 Computing HSH
	2.2 Generalizations of HSH

	3 Implementation Details
	4 Experimental Results
	4.1 HSH vs. FSH
	4.2 Multiple Segments vs. Multiple Orientations

	5 Summary and Discussion

