
Pacific Graphics 2018
H. Fu, A. Ghosh, and J. Kopf
(Guest Editors)

Volume 37 (2018), Number 7

Piecewise linear mapping optimization based on the complex view
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Figure 1: Comparison of different optimization methods for shape deformation. The archery shape is deformed with user specified positional
constraints (blue dots). The depicted deformation is achieved by minimizing four different energies: ESD, ESARAP, EBCONF(k = 0.1) and
EBARAP(k = 0.1), all initialized using the rest pose. Notice that the results of optimizing the different energies are visually similar, however
Newton’s method is more efficient minimizing EBCONF and EBARAP.

Abstract
We present an efficient modified Newton iteration for the optimization of nonlinear energies on triangle meshes. Noting that
the linear mapping between any pair of triangles is a special case of harmonic mapping, we build upon the results of Chen
and Weber [CW17]. Based on the complex view of the linear mapping, we show that the Hessian of the isometric energies
has a simple and compact analytic expression. This allows us to analytically project the per-element Hessians to positive
semidefinite matrices for efficient Newton iteration. We show that our method outperforms state-of-the-art methods on 2D
deformation and parameterization. Further, we inspect the spectra of the per triangle energy Hessians and show that given
an initial mapping, simple global scaling can shift the energy towards a more convex state. This allows Newton iteration to
converge faster than starting from the given initial state. Additionally, our formulations support adding an energy smoothness
term to the optimization with little additional effort, which improves the mapping results such that concentrated distortions are
reduced.

CCS Concepts
• Theory of computation → Nonconvex optimization; • Computing methodologies → Computer graphics;

1. Introduction

For variational shape modeling, various geometric distortion mea-
sures have been proposed to capture different physical material
properties in geometric processing. The most popular models are
elasticity and rigidity. In general, a mapping between arbitrary do-
mains cannot be locally rigid everywhere, i.e. preserve both the
local area and angle. Therefore, optimization procedures have to be
used so that the overall distortion of the sought mapping is min-
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imized. While some geometric distortion measures, such as the
LSCM [LPRM02] conformal energy, are convex and therefore easy
to optimize, most distortion measures are nonlinear and nonconvex
and require more sophisticated methods for optimization.

While being very effective for finding local minima, Newton’s
method has generally much higher per iteration cost than first order
methods, as the system matrix changes in each iteration. However,
recent development has shown that much of the cost can be reduced
and amortized in the mapping computation tasks. For example, Ra-
binovich et al. [RPPSH17], Claici et al. [CBSS17] and Shtengel
et al. [SPSH∗17] use the fact that even though the sparse system
matrix changes between iterations, it possesses the same sparsity
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pattern. This allows to reuse the symbolic factorization of the di-
rect solvers.

Recently, Shtengel et al. [SPSH∗17] construct the composite ma-
jorizer of the objective energy as a convex proxy and apply New-
ton iteration to minimize it. We present a more straightforward ap-
proach by directly computing the Hessian of the energy function,
and projecting it to a close-by positive semi-definite (PSD) ma-
trix for Newton iteration. Our main observation is that the (lin-
ear) mapping of each triangle in a triangular mesh is a special
case of harmonic mappings, where both the holomorphic and anti-
holomorphic components are linear functions. This allows us to
adapt the analytic Hessian projection developed for general har-
monic mappings that are formulated using boundary elements by
Chen and Weber [CW17]. While our modification is not optimal in
the sense that it does not project to the closest positive definite ma-
trix as in [CW17], we show through many examples that in practice
the projection is close to the optimal and it leads to similar conver-
gence behavior.

We also show that the same strategy can be used for other ge-
ometric energies. Optimizing element-wise defined distortion en-
ergies may lead to concentrated distortions. We show that under
the complex view, a smoothness energy for neighboring triangles
can be easily differentiated and incorporated into the element-wise
distortion energy and optimized using the same pipeline.

We show that our method provides advantages over the cur-
rent state-of-the-art in deformation and parameterization. Figure 1
shows an example for shape deformation, where we compare the
runtime towards convergence between our method and several
competing methods. We outperform SLIM and AKVF, two recent
first order methods. We also compare in depth with CM, the sec-
ond order method of Shtengel et al. [SPSH∗17] in Section 5 and
show that the two methods share significant similarities. Both are
essentially projecting the Hessian to PSD matrices, yet our method
is straightforward to adapt to new energies and shows faster con-
vergence in many test cases. We also show that our analytical char-
acterization of the PSDness of the per-element Hessians gives rise
to possible analysis about the energy convexity profile. This allows
our method to outperform competing second order methods in pa-
rameterization by applying global scaling to the initialization, such
that the initial state of the optimization is locally more convex.

2. Related Work

Nonlinear optimization has been fundamental for geometric opti-
mization. Hormann and Greiner [HG00] introduced the MIPS en-
ergy for parameterization and optimize it via block coordinate de-
scent, which is later used by Fu et al. [FLG15] for locally injective
parameterization.

The local/global method, first proposed for surface modeling
[SA07], and later adapted for parameterization [LZX∗08], can be
regarded as a coordinate descent method. It alternates in solving
for the mapping in a global step, and local rotations in a local step.
It optimizes the As-Rigid-As-Possible (ARAP) energy, which be-
comes quadratic with fixed rotations. The global step has a fixed
system matrix, the mesh laplacian, which results in an efficient op-

timization procedure, since the system matrix does not change and
can be pre-factored.

While high quality deformation results can be obtained by op-
timizing the ARAP energy, it is finite and does not penalize in-
version. This leads to unnatural results. Lipman [Lip12] proposed
to explicitly bound the distortion of each individual triangle, and
further developed an iterative convexification technique to solve
the nonconvex optimization problem efficiently. Aigerman and Lip-
man [AL13] and Kovalsky et al. [KABL14] further extend the ap-
proach to higher dimensions. Kovalsky et al. [KABL15] use al-
ternating projection to compute bound distortion maps. Hefetz et
al. [HCW17] propose the alternating tangential projection method
with convergences guarantees.

Injective mappings are also achievable via unconstrained opti-
mization, by incorporating the injectivity constraint in the energy.
Schüller et al. [SKPSH13] introduced a barrier term to augment
arbitrary deformation energies to prevent inversions. Smith and
Schaefer [SS15] proposed to use the symmetric Dirichlet energy,
which has the barrier property built-in, and use L-BFGS to opti-
mize the nonlinear energy. In the following, we review the latest
work on solving such nonlinear optimization problems.

L-BFGS directly approximates the inverse of the Hessian, re-
quiring only the position and gradient information of few previ-
ous iterations. While L-BFGS iterations are fast, they typically re-
quire many iterations to converge. Liu et al. [LBK17] improve the
convergence of L-BFGS by initializing from the Laplacian. Zhu
et al. [ZBK18] further improve the convergence of L-BFGS by
blending the L-BFGS update with Laplacian preconditioned gra-
dient. Combined with their barrier-aware line search filtering, they
achieve fast convergence over a range of problems.

Kovalsky et al. [KGL16] proposed the Accelerated Quadratic
Proxy, which uses the mesh Laplacian as a fixed Hessian replace-
ment. They further introduced an acceleration step to speedup the
convergence. Although their per-iteration cost is low, recent work
[RPPSH17, SBCBG11, ZBK18] shows that it is comparatively less
efficient at minimizing the objective energy.

Rabinovich et al. [RPPSH17] adapted the local/global approach
[SA07, LZX∗08] for general isometric energies. Their presented
Scalable Locally Injective Mappings (SLIM) reweighs the ARAP
energy to match the gradient of the isometric energy. Similar to
the local/global approach, they observe effective iterations in the
beginning, but slow convergence approaching the minimum.

Claici et al. [CBSS17] proposed an energy agnostic matrix based
on approximate Killing vector fields (AKVF) motivated by the
observation that the Killing vector fields correspond to rigid mo-
tions [SBCBG11]. They modify the gradient field to be As-Killing-
As-Possible and show fast convergence for parameterization.

Most recently, Peng et al. [PDZ∗18] reformulate several existing
geometric optimization methods as fixed point problems and apply
Anderson acceleration [And65] to achieve increased convergence
rates.

In physical simulation, the eigenanalysis based per element Hes-
sians projection has been used for various materials [TSIF05,
SHST12, XSZB15, SGK18]. Compared to first order methods, the
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per-iteration cost for second order methods is much higher in gen-
eral. Thus, until very recently they have been less popular in geo-
metric optimization. Chao et al. [CPSS10] derived the Hessian of
the ARAP energy and used a blackbox Newton solver. While it
shows much faster convergence than the local/global approach, the
overall performance improvement seems not significant. The state-
of-the-art and most closely related work to ours is that of Shten-
gel et al. [SPSH∗17]. They construct a convex majorizer (CM) for
the optimization energy and derive the Hessian analytically. Their
Hessian is PSD by construction. CM can be applied to any energy
which is expressed as a composite function h(g(x)), where h and
g have convex-concave decompositions. We will show in Section 5
that the Hessian of the convex majorizer shares surprising similar-
ity to our projected Hessian.

Liu et al. [LYNF18] achieve acceleration by progressively inter-
polating the reference mesh triangles used for the distortion mea-
sure. They interpolate between the identity and the current map,
such that the distortion is bounded, which makes the optimization
problem easier to solve.

Our work is motivated by the boundary element method of Chen
and Weber [CW17] for shape deformation. They presented a purely
analytic approach for the PSD Hessian modification. Their method
achieves real-time performance for shape deformation, however it
is explicitly bound to harmonic maps in the plane. In this work,
we generalize their approach to triangle meshes. This allows us to
perform parameterizations and support more general maps, more
specifically, piecewise linear maps.

3. Background

Here, we give a brief overview of the concepts relevant for the pre-
sented Newton’s method for the optimization of piecewise linear
mappings. We refer the reader to the numerical optimization book
by Nocedal and Wright [NW06] and the complex analysis book by
Ahlfors [Ahl79] for further reading.

3.1. Newton’s Method and Locally Injective Mappings

Newton’s method is an optimization method for iteratively finding
the stationary points of the objective function. In each iteration,
it updates the current solution based on the gradient and Hessian.
The update is guaranteed to decrease the objective if the Hessian is
positive definite, which means the function is locally convex. How-
ever, this is generally not the case in practice. To address this issue,
various strategies exist for projecting the Hessian to PSD matri-
ces. Adding a scaled identity matrix to the Hessian will result in
a PSD matrix for sufficiently large values. A trivial implementa-
tion of this is however far from optimal, as shown in Shtengel et
al. [SPSH∗17]. Computing the eigen-decomposition of the Hessian
and clamping negative eigenvalues to zero gives the closest PSD
matrix measured in Frobenius norm. This generally quickly be-
comes infeasible for large matrices. If the Hessian can be expressed
as the sum of a series of matrices, modifying each matrix separately
is an alternative. Although not optimal, it is generally faster to mod-
ify the individual matrices, and still maintains fast convergence in
practice [TSIF05].

After an update step is produced by solving the linear system

in the Newton iteration, the Newton’s method is augmented with
a line search procedure for an effective minimization. The initial
step size t = 1 is iteratively reduced until the update produces a
sufficient energy decrease fulfilling the Armijo condition [NW06]

f (Y + t∆)≤ f (Y )+ ct∇ f T
∆, (1)

where f is the objective function, Y the current positions, ∆ the
update step and c a chosen parameter scaling the necessary energy
decrease.

For locally injective mapping optimization based on flip pre-
venting energies, the Newton iteration is guaranteed to produce an
update direction that maintains the triangle orientations. However
the line search step has to start from an orientation preserving step
size t. The maximal such step can be computed based on the pos-
itive Jacobian determinant criterion [SS15]. Algorithm 1 outlines
the Newton’s method for computing locally injective mappings by
minimizing some chosen objective function E, given a locally in-
jective map Y of the source X as initialization.

Algorithm 1 Augmented Newton’s method
1: procedure NEWTON(X ,Y )
2: repeat
3: G←∇E
4: H←∇2E
5: H← H+ . PSD projection of H
6: ∆← H−1G . Compute update step
7: t← in jectiveStep(Y,∆) . Max step size for loc. inj.
8: while ¬Armi jo(Y, t∆) do . Eq. 1
9: t← t γ . Shorten step by γ

10: end while
11: Y ← Y + t∆ . Perform update
12: until converged
13: return Y
14: end procedure

3.2. Linear Maps in the Plane: the Complex View

Our method relies on a complex reformulation of the isometric en-
ergies. Using complex numbers, we can express any planar map as
a complex function f (z,z), with z = x+ iy, where x and y are the
real and imaginary components of z.

As shown in [CG17], a planar linear mapping can be written as
f (z,z) = az+ bz+ c, which can easily be separated into its holo-
morphic component az+c and antiholomorphic component bz, ac-
cordingly. Given Z = (z1,z2,z3)

T and Y = (y1,y2,y3)
T , the source

and target vertex positions of a triangle respectively, the complex
constants a, b and c can be obtained by solving the following linear
system: z1 z1 1

z2 z2 1
z3 z3 1

a
b
c

=

y1
y2
y3

= Y.

The solution gives the Wirtinger derivatives of f compactly as fol-
lows:

fz = a =
i

4A
(
e1 e2 e3

)
Y, fz = b =− i

4A
(
e1 e2 e3

)
Y,
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where e1 = z2−z3, e2 = z3−z1, e3 = z1−z2 are the three edge vec-
tors and A is the area of the triangle. This leads to a linear operator
D = i

4A
(
e1 e2 e3

)
with DY = fz and DY = fz.

Any rotation invariant distortion measure [RPPSH17] can be ex-
pressed as a function of the singular values of the Jacobian of the
mapping, σ1 and σ2, which can be expressed via the Wirtinger
derivatives [Lip12]:

σ1 = | fz|+ | fz|, σ2 = | fz| − | fz|

Note that we use the signed singular value convention, which indi-
cates that the mapping is orientation reversing if and only if σ2 < 0.

Other important identities include the determinant of the Jaco-
bian |J| = | fz|2− | fz|2 and the Frobenius norm ‖J‖2

F = 2(| fz|2 +
| fz|2). These identities allow us to easily rewrite isometric energies
in terms of the Wirtinger derivatives. Table 1 lists a few examples
of common isometric energies.

E E(x, y)

ESD
1
2 (‖J‖2

F +‖J−1‖2
F ) (x+ y)

(
1+ (x− y)−2)

Eexp exp(kESD) exp(kESD)

ESARAP (σ1− 1)2 + (σ−1
2 − 1)2 (

√
x+
√

y− 1)2 +
( 1√

x−√y − 1
)2

ENH
µ
2 (‖J‖2

F |J|
−1− 2) + κ

2 (|J|− 1)2 µ 2y
x−y + κ

2 (x− y− 1)2

EBARAP EARAP + k
(
|J|+ |J|−1) 2(x+ y− 2

√
x+ 1) + k

(
x− y+ 1

x−y
)

EBCONF ECONF + k
(
|J|+ |J|−1) y+ k

(
x− y+ 1

x−y
)

Table 1: Different isometric energies E, additionally expressed in
terms of the squared modulus of Wirtinger derivatives x = | fz|2 and
y = | fz|2.

4. Method

The main steps of a modified Newton iteration include the compu-
tation of the gradient and Hessian of the objective function, pro-
jecting the Hessian to a positive definite matrix, and solving a lin-
ear system. As there exist efficient linear solvers, the main issues in
developing a practical Newton iteration are then the efficient com-
putation of the derivatives and projecting the Hessian to a positive
definite matrix, which we will discuss in this section.

While there exist off-the-shelf solutions for computing the
derivatives of nonlinear functions, e.g. finite differencing and auto-
matic differentiation [NW06], they can be one order of magnitude
slower than compact analytic expressions [SPSH∗17]. For the case
of piecewise linear mappings, we show it is easy to derive concise
analytic expressions of the gradient and Hessian for isometric en-
ergies.

In the following, we focus the derivation on the energy of a
single element, i.e. the linear mapping of one triangle face. For
simplicity, we will use the real equivalents of the complex ex-
pressions from Section 3. In particular, the real equivalents of fz
and fz are given as column 2-vectors fff zzz =

(
Re( fz) Im( fz)

)T

and fff z =
(
Re( fz) Im( fz)

)T , accordingly (note the bold symbol).
While the real equivalent matrix of D is a 2×6 matrix

DDD =

(
Re(D) −Im(D)
Im(D) Re(D)

)
.

We concatenate the real and imaginary parts of the coordinates of

the triangle vertices into a column 6-vector YYY =

(
Re(Y )
Im(Y )

)
. With

the energy E expressed as a function of | fz|2 and | fz|2, we reuse
the following definitions from [CW17]:

α1 =∇| fz|2 E, α2 =∇| fz|2 E

β1 =∇2
| fz|2 E, β2 =∇2

| fz|2 E, β3 =∇| fz|2∇| fz|2 E,

It is straightforward to derive the gradient and Hessian of E w.r.t.
the free variables YYY . For completeness, we include the derivation
in Appendix A. In short, we have the following expression for the
Hessian,

H =∇2E = MT KM, (2)

with M =

[
DDD
DDD

]
∈ R4×6, ∇2E ∈ R6×6 and K ∈ R4×4, which is

similar to the matrix under the same notation in [CW17]:

K =

[
2α1I +4β1 fff zzz fff T

zzz 4β3 fff zzz fff T
zzz

4β3 fff zzz fff T
zzz 2α2I +4β2 fff zzz fff T

zzz

]
. (3)

Having the analytic expression of the Hessian matrix, we are
ready to apply the per-element approach of Teran et al. [TSIF05]
for PSD Hessian projection. We note that our Hessian (2) has sim-
ilar structure to that of the harmonic maps in [CW17], except that
our left and right multiplying matrix M is not orthonormal. How-
ever, we can apply the reduced RQ factorization, M = RQ, with
R ∈ R4×4 and Q ∈ R4×6. We only need to modify two rows of M
using the Gram-Schmidt process, as the rows in both DDD and DDD are
already orthogonal with equal norm. The lower triangular matrix R
is given by:

R =


1 0 0 0
0 1 0 0
a b c 0
−b a 0 c

 ,

where:

a = (‖Re(D)‖2−‖Im(D)‖2)‖D‖−2

b = 2〈Re(D), Im(D)〉‖D‖−2

c =
√

1−a2−b2

Then the orthonormal component of M is:

Q = R−1M =

[
DDD

1
c (DDD−

[ a b
−b a

]
DDD)

]
.

The 6×6 PSD projection of H = MT KM = QT (RT KR)Q is there-
fore equivalent to the 4×4 PSD projection of RT KR, since Q is or-
thonormal. Alas, we are unable to obtain the eigen-decomposition
of RT KR analytically, therefore we resort to numerical factorization
for the optimal PSD projection of H.

We further note that H is PSD if and only if K is PSD. Therefore,
projecting K to PSD will lead to a PSD version of H. Furthermore,
the matrix R is close to the identity matrix in general, depending
on the value of c. The PSD projection of K should thus imply near
optimal projection of RT KR, or equivalent H, the Hessian. We can
then reuse the eigenvalue analysis and the analytic PSD projection
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of K from [CW17], which we show in Appendix B for complete-
ness. For certain energies such as the symmetric Dirichlet, only α1
and β1 have to be modified for the projection:

α
′
1 = max(α1,0), β

′
1 = β1 +

1
2

min(α1,0)| fz|−2. (4)

4.1. Isometric Energies

Many isometric energies have been proposed over the last decade
for geometric optimization, including the symmetric Dirichlet en-
ergy ESD proposed by Schreiner et al. [SAPH04], the exponential
symmetric Dirichlet energy Eexp [RPPSH17], the symmetric as-
rigid-as-possible energy ESARAP introduced by Poranne and Lip-
man [PL16] and the strain density for Neo-Hookean material ENH
[XSZB15, SPSH∗17]. The expressions for mentioned energies can
be found in Table 1. The modifiers for the Hessian projection for
some energies are already given in [CW17], and we add the sym-
metric As-Rigid-As-Possible and Neo-Hookean energies (see Table
2). The process of adding support for new energies to our method
simply consists of finding an expression E(| fz|2, | fz|2) for the en-
ergy (see Table 1) and setting the modifiers α1...β3 to its first and
second order derivatives. Table 2 lists the modifiers for the energies
shown in Table 1.

Newton’s method works most effectively for convex functions.
For general nonconvex functions, Newton’s method may take many
iterations to converge. For more efficient isometric mapping opti-
mization, we introduce the following energies:

EBARAP = EARAP + k(|J|+ |J|−1)

EBCONF = ECONF + k(|J|+ |J|−1),

using the barrier term |J|+ |J|−1 (it is also possible to use ESD as
the barrier). Since the LSCM conformal [LPRM02] energy ECONF
is convex and the ARAP energy EARAP is also “largely convex”
(the eigenvalues of K are {2− 2| fz|−1,2,2,2}), the less we weigh
(k) the barrier, the more convex EBARAP and EBCONF will be. For
EBARAP, it can be shown that if k ≤ 2, only the eigenvalue 2α1
can be negative. Similarly for EBCONF, only 2α1 can be negative, if
k ≤ 1.

4.2. Initialization

Given different initializations, most nonconvex optimization
solvers, including Newton’s method, are likely to take different
paths and therefore different number of iterations to converge to
possibly different local minima. Therefore it is important to initial-
ize the Newton iteration carefully, so that the optimization finishes
in less iterations and hence shorter runtime.

In shape deformation, the user usually does not change the
positional constraints abruptly, therefore the result from the last
user interaction provides a good initialization. In surface param-
eterization, we choose Tutte’s embedding [Tut63, Flo97] as it is
the only linear method guaranteed to produce injective mappings.
However, it is often observed that the Tutte’s embedding contains
severely stretched triangles, especially for highly complex surfaces.
We speculate that these badly shaped triangles have negative im-
pact on Newton’s method as the energies on these triangles are

highly nonconvex. Take the symmetric Dirichlet energy for ex-
ample, when many triangles are mapped to be close to singular,
i.e. with |J| = | fz|2−| fz|2 ≈ 0, the eigenvalue 2α1 = 1− (| fz|2 +
3| fz|2)(| fz|2−| fz|2)−3 becomes a large negative value, which im-
plies the energy is most likely to be highly nonconvex. This could
be the cause for the projected Newton to have difficulty in reducing
the energy in some parameterization scenarios [RPPSH17].

Noting that simple global scaling changes this energy charac-
teristic, we propose to move the initialization towards where the
energy becomes locally convex. With the spectra of K at hand, we
can achieve more convex initialization as follows. For ESD, know-
ing only the eigenvalue 2α1 of K can become negative, we intro-
duce the scaling factor s as a free variable of the initialization and
insert it into the expression as follows,

2α1(s) = 2−2(|s fz|2 +3|s fz|2)(|s fz|2−|s fz|2)−3

= 2−2(| fz|2 +3| fz|2)(| fz|2−| fz|2)−3s−4,

from which we see that 2α1(s) increases as s increases. The mini-
mal s that gives PSD K (consequently PSD Hessian H) is then,

sSD = 4
√
(| fz|2 +3| fz|2)(| fz|2−| fz|2)−3.

We take the maximum of sSD among all triangles as the scaling
factor for the mesh, so that the energy becomes “strongly” convex.
The same procedure can be repeated for EBCONF and EBARAP. For
EBCONF with k ≤ 1, the scaling is sBCONF = (| fz|2−| fz|2)−

1
2 . For

EBARAP with k ≤ 2, one has to solve the fourth order polynomial
(k+ 2)s4− 2| fz|−1s3− k(| fz|2− | fz|2)−2, however an alternative
is simply taking sBCONF, which provides a conservative estimation.

Yet, it is unnecessary for the energy to be convex on each ele-
ment, in order for the global energy to be convex. It is beneficial
to use a smaller scaling factor than the maximum, since the energy
also tends to increase. The inset shows an example of the scaling
factors from Tutte’s initialization, sorted by magnitude. Apparently,
only a few factors are very large. A heuristic for separating these

0 105
10-5

100

105large factors is to start form the middle of this
sorted sequence and choose the first factor whose
difference to the previous factor exceeds a preset
threshold. In our experiments, we found 0.1 works
well as a threshold.

4.3. Smoothness Energy

While the results of minimizing isometric energies look pleasing
overall, the energy i.e. the distortion can be concentrated in some
areas. This can especially be observed near positional constraints
for deformation. Some previous work tries to alleviate this artifact
by forcing smooth mapping across neighboring triangles. Levi and
Gotsman [LG15] minimize a modified ARAP energy that penal-
izes the difference in the rotations of adjacent triangles, which re-
sults in smoother and better volume preserving deformations. Mar-
tinez et al. [MERT14] propose an energy smoothness term as a
regularizer for quadratic energies, which effectively penalizes the
energy difference between neighboring triangles. We introduce
a similar smoothness term based on per-face isometric energies,
Ei j = (Ei−E j)

2 = E2
diff, with Ei and E j being the energy on ad-

jacent triangles Ti and Tj. As in [MERT14], we weigh each term

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.



B. Golla, H. Seidel & R. Chen / Mapping optimization based on the complex view

ESD ESARAP ENH EBARAP EBCONF

α1 1− (x+ 3y)(x− y)−3 √
x−1(

σ1− 1−σ
−3
2 +σ

−2
2
)

−2 µ y (x− y)−2 + κ (x− y− 1) k(1− (x− y)−2) + 2(1− x−
1
2 ) k(1− (x− y)−2)

α2 1+ (3x+ y)(x− y)−3 √
y−1(

σ1− 1+σ
−3
2 −σ

−2
2
)

2 µ x (x− y)−2− κ (x− y− 1) k(x− y)−2 + 2− k k(x− y)−2 + 1− k

β1 2(x+ 5y)(x− y)−4 1
2 x−

3
2
(
σ
−3
2 −σ

−2
2 −σ1 + 1+ x(3σ

−4
2 − 2σ

−3
2 + 1)

)
4 µ y (x− y)−3 + κ 2k(x− y)−3 + x−

3
2 2k(x− y)−3

β2 2(5x+ y)(x− y)−4 1
2 y−

3
2
(
σ
−2
2 −σ

−3
2 −σ1 + 1+ y(3σ

−4
2 − 2σ

−3
2 + 1)

)
4 µ x (x− y)−3 + κ 2k(x− y)−3 2k(x− y)−3

β3 −6(x+ y)(x− y)−4 1
2
√

x y (2σ
−3
2 − 3σ

−4
2 + 1) −2 µ (x+ y)(x− y)−3− κ −2k(x− y)−3 −2k(x− y)−3

Table 2: The modifiers of K for different energies. x and y denote | fz|2 and | fz|2 for brevity.

by the length of the common edge between Ti and Tj, and the in-
fluence of this energy on the results can be weighted against the
per-element distortion energy.

With the complex view, the energy Ei j can be expanded as
Ei j(| fiz|2, | fiz̄|2, | f jz|2, | f jz̄|2), where fi and f j are the maps on tri-
angles Ti and Tj. The derivation for the gradient and the Hessian
of this per edge energy is analogous to that of the per face en-
ergy. We denote the first and second order derivatives of Ei j as ρ

and υ. Enumerating the parameters {| fiz|2, | fiz̄|2, | f jz|2, | f jz̄|2}with
{1,2,3,4}, we denote the respective partial derivatives in subscript,
e.g. ρ1 =∇| fiz|2 Ei j and υ23 =∇| fiz̄|2| f jz|2 Ei j . The gradient is given
by

2ρ1DDDT
i fiz +2ρ2DDD

T
i fiz̄ +2ρ3DDDT

j f jz +2ρ4DDD
T
j f jz̄.

For the Hessian we obtain a 8×8 matrix given by:DDDi
DDDi
DDD j
DDD j

T 2ρ1I + 4υ11 fiz f T
iz 4υ12 fiz f T

iz̄ 4υ13 fiz f T
jz 4υ14 fiz f T

jz̄
4υ21 fiz̄ f T

iz 2ρ2I + 4υ22 fiz̄ f T
iz̄ 4υ23 fiz̄ f T

jz 4υ24 fiz̄ f T
jz̄

4υ31 f jz f T
iz 4υ32 f jz f T

iz̄ 2ρ3I + 4υ33 f jz f T
jz 4υ34 f jz f T

jz̄
4υ41 f jz̄ f T

iz 4υ42 f jz̄ f T
iz̄ 4υ43 f jz̄ f T

jz 2ρ4I + 4υ44 f jz̄ f T
jz̄

DDDi
DDDi
DDD j
DDD j

 .
For this 8× 8 matrix, we can also perform PSD projection an-

alytically. Starting with the observation that the structure of the
center matrix is analogous to that of K in Eq. 3, we obtain four
of the eight eigenvalues: 2ρ1,2ρ2,2ρ3,2ρ4. After clamping these
eigenvalues to zero using the same modification as in Eq. 4, the
remaining matrix can be written as the following triple product:

4

[
fiz 0 0 0
0 fiz̄ 0 0
0 0 f jz 0
0 0 0 f jz̄

][
υ
′
11 υ12 υ13 υ14

υ12 υ
′
22 υ23 υ24

υ13 υ23 υ
′
33 υ34

υ14 υ24 υ34 υ
′
44

][
fiz 0 0 0
0 fiz̄ 0 0
0 0 f jz 0
0 0 0 f jz̄

]T

After evaluating the off-diagonal elements of the center 4× 4
matrix using the partial derivatives of the per element energies Ei
and E j , we can further decompose it into the sum :

2


υ
′
11/2−α

2
i1 Ediff βi3 0 0

Ediff βi3 υ
′
22/2−α

2
i2 0 0

0 0 υ
′
33/2−α

2
j1 −Ediff β j3

0 0 −Ediff β j3 υ
′
44/2−α

2
j2


+2
[
αi1 αi2 −α j1 −α j2

]T [
αi1 αi2 −α j1 −α j2

]
.

Note, that variables with subscripts including triangle indices, e.g.
αi1, are the derivatives of the corresponding per element energies
Ei and E j as in Section 4. The block diagonal structure allows us to
derive the eigenvalues of the first matrix analytically, while the sec-
ond matrix is PSD by construction. The details for the respective

eigenvectors and eigenvalues are given in Appendix B. The over-
all modification of the smoothness energy Hessian consists of two
steps. First we project the block diagonal matrix and add the outer
product. Second, we perform the triple product to obtain the 8× 8
matrix and add the contributions of the non-negative eigenvalues
2ρ1,2ρ2,2ρ3,2ρ4.

5. Comparison to Composite Majorization

For piecewise linear mappings, we can also apply the complex
formulation of the isometric energies to Composite Majorization
[SPSH∗17], which allows us to reveal the close relationship be-
tween CM and our simple PSD Hessian projection approach.

CM constructs a majorizer for energies expressed as a composite
function h(g(x)), following the same notations from [SPSH∗17].
Since all the energies presented in [SPSH∗17] are expressible in
terms of Wirtinger derivatives, the CM Hessian can be produced
by equivalently altering the modifiers α1...β3 in the matrix K. We
derive the expressions for these energies in Appendix C. It turns
out that although the two methods follow seemingly very different
approaches, they share significant similarities. Table 3 shows how
CM equivalently alters our modifiers in their Hessian construction.
We point out that for energies constructed based on the decompo-
sition h(σ1,σ2) with convex h, CM produces the same Hessian as
our method. The symmetric Dirichlet energy is such an example.

To apply CM to new energies, one needs to construct a convex-
concave decomposition of the objective function. The choice of
this decomposition is not unique and is likely to result in different
PSD Hessians and consequently affects the convergence behavior.
In contrast, our approach only requires the partial derivatives of a
simple-to-obtain energy formulation. Additionally, our method has
the property that the per face Hessians are not modified if they are
already PSD, which is not necessarily the case for CM.

6. Results

We compare our algorithm to state-of-the-art methods in two appli-
cations: deformation and parameterization. The tested algorithms
are the following:

• KP-Newton: Our method, PSD projection of K with the given
eigendecomposition.
• CM: In our implementation we use modifiers introduced in Table

3 for the general form of K [SPSH∗17].
• AKVF: We implemented this method following the description

in [CBSS17] and the reference code.
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Energy Term modification

E(σ1,σ2)

α′1 = (α1)+

α′2 = (α2)+

β′1 = β1 +
1
2 | fz|−2(α1)−− 1

4 (h
−
uu +h−vv +2h−uv)| fz|−2

β′2 = β2 +
1
2 | fz|−2(α2)−− 1

4 (h
−
uu +h−vv −2h−uv)| fz|−2

β′3 = β3− 1
4 (h
−
uu−h−vv )(| fz|| fz|)−1

ENH
α′1 = µ (| fz|2−| fz|2)−1 +(hv)+

α′2 = µ (| fz|2−| fz|2)−1− (hv)−

Table 3: We can express CM as a projection of K, by altering the
modifiers in Table 2. Here we give the alterations for two types
of energies. h(u,v) is the energy function as in [SPSH∗17] under
the same notation and h− is its concave component. (·)+ and (·)−
clamp negative and positive values to zero respectively.

• FP-Newton: We use the presented orthogonalization procedure
to reduce the full (6×6) projection to the 4×4 case.
• SLIM: We implemented SLIM based on the description in the

paper [RPPSH17].

Experiment Setup: The experiments are performed in Matlab.†

All methods share the same pipeline and we only replace the system
matrix according to the method. Computationally intensive steps
are delegated to OpenMP parallelized C++ code via mex. We use
the Pardiso solver to benefit from its symbolic pre-factorization and
numeric solve routines. The test machine has an Intel Xeon E5-
1650 v3 (3.5 GHz, 6 cores) and 32GB of RAM. We use Tikhonov
regularization with a scaling factor of 10−10. For the line search,
the step size is reduced by a factor of 0.5 in each step, and the
gradient scaling for the sufficient energy decrease criterion is c =
0.2.

Note that for the energy plots we have subtracted the minimal
energy achieved over all methods from the energy values, to gain
more visible detail in the regions where the energy is small. We
omit comparisons with CM for EBCONF and EBARAP. For the cho-
sen parameter (k = 0.1), both energies are convex w.r.t. the singular
values, so the computed Hessians are identical to ours.

6.1. Parameterization

The testing datasets are taken from [MPZ14] and [RPPSH17]. For
closed meshes, the datasets include cuts that turn the meshes into
disk-like topology. In these cases, we observe that the system ma-
trix is often badly conditioned and causes the Cholesky factoriza-
tion to fail. Experimentally, we find that this can be mitigated by
applying the symmetric Jacobi preconditioning [CCSY98] before
the Tikhonov regularization. In the supplemental material, we pro-
vide detailed results. Noted values are taken upon convergence or
after exceeding a prescribed maximum of 1000 iterations. For pa-
rameterization the convergence criterion is ‖∇E‖ < 10−3, in ac-
cordance to [CBSS17]. For ESARAP, we terminate if ∆E < 10−8,

† Source code is available at https://github.com/renjiec/meshNewton

since the gradient indicator for convergence fails in this case. This
is because its gradient is ill-defined for close to conformal maps
(including rigid maps), as the denominator | fz| in α2 goes towards
zero.

For parameterization, we initialize with Tutte’s embedding
[Tut63, Flo97]. For ESD, EBCONF and EBARAP we used the scal-
ing factor with heuristic introduced in Section 4.2 for our method.
While the initial energy may increase, the convex initialization
shows advantage in the optimization. The effect is visible in Fig-
ure 2, as throughout the optimization, the energy stays largely con-
vex.

Iteration

10

10 5

E
B

C
O

N
F Largest Scale

No Scale
Partial Scale

10 0 10 1 10 2 10 3

5

#N
E

10 0

10 0

Figure 2: Comparison of different initialization scalings for sur-
face parameterization with EBCONF. The graphs show the conver-
gence behavior of KP-Newton on the bumpy torus mesh, and ac-
cordingly, how #NE, the number of triangles with indefinite energy
Hessian, increases during the iterations.

Since our method is essentially identical to CM [SPSH∗17] for
the symmetric Dirichlet energy, we can confirm many of their
observations. The second order methods typically outperform the
first order methods in terms of number of iterations. Since ex-
tensive comparison of CM and SLIM has already been presented
in [SPSH∗17], we will omit a detailed comparison here.

Except for ESARAP, the energies upon convergence for all meth-
ods match. We attribute differences for ESARAP to its instability
close to rigid transformations. We list two metrics for the compar-
ing methods in Table 4. We provide histograms of the performance
data in the supplemental material as well as detailed results.

it/tv ESD ESARAP EBCONF EBARAP

KP 67.3/0.188 209.9/0.661 89.1/0.249 158.9/0.447
FP 119.2/0.402 265.3/0.973 109.5/0.369 144.4/0.490

AKVF 347.7/1.037 436.9/1.460 543.9/1.651 463.9/1.385
CM 93.2/0.260 210.9/0.662

Table 4: Statistics for parameterization: The number of iterations
(it) and the runtime (in ms) divided by the number of vertices (tv)
of the mesh, averaged over the testing datasets including noncon-
verged cases (terminated by iteration limit).

Our method outperforms the other methods, except in two cases:
1) for ESARAP, our method is on par with CM; 2) for EBARAP, the
performance of FP-Newton is comparable to ours. Although FP-
Newton takes fewer iterations for EBARAP, our per iteration cost is
lower due to the analytical modification. For some input, such as
the Hilbert curve, AKVF is a competitive first order method, as it is
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Figure 3: Comparison of different optimization methods for sur-
face parameterization on two meshes with different energies. For
ESD, EBCONF and EBARAP, we additionally show the number of
negative eigenvalues over all local Hessians below the energy plots.

very effective in resolving near rigid motions. In cases where this
advantage does not apply, it struggles comparatively.

Figure 3 compares the convergence behavior of different meth-
ods for four energies on two meshes. We also include KP-Newton
without scaling the initialization to additionally showcase the im-
provement by global scaling. We plotted the amount of negative
eigenvalues in the local Hessians, which shows that global scaling
is effective in reducing their count and consequently improved the
convergence rate.

Table 5 compares the per iteration runtime of the analytic projec-
tion against the two different sized numerical projection variants,
also in relation to the linear system solve runtime. Although the
runtime ratio between the projection and the linear solve decreases
as the problem size increases, numerical factorization still takes a
substantial amount of time for medium sized meshes. On average
we have observed 20% slow-down of the runtime per iteration for
FP-Newton comparing to the analytic KP-Newton.

Times(s) Time(s) Ratio
Model (#vertices) KP FP4×4 FP6×6 Solve KP FP4×4 FP6×6

Bimba (5691) 0.0033 0.0088 0.0122 0.0102 0.3235 0.8627 1.1961
Bunny (71141) 0.0305 0.0702 0.0945 0.1498 0.2036 0.4686 0.6308

Buddha (235771) 0.0743 0.2345 0.3139 0.6732 0.1104 0.3483 0.4663

Table 5: Runtime comparison of different projection methods for
surface parameterization. The per iteration runtime is shown on
the left. The middle column shows the time for solving the linear
system (including numerical factorization). The right column gives
the ratio of the projection in relation to that of the linear system
solve. For KP, the majority of the runtime is spent on the triple
product (2) which converts K to the Hessian H.

6.2. Deformation

The deformation shapes are taken from [CW17]. For comparison,
we fix a number of positional constraints and initialize from the
identity map. The handles are shown as dots in the figures. The
characters are meshed with around 8300 vertices. Positional con-
straints are added as soft constraints. We also provide detailed com-
parisons for deformation in the supplemental material. For defor-
mation, convergence is determined if an update reduces the energy
by less than 10−6, since the visual appearance for smaller differ-
ences is nearly indistinguishable. We include a comparison with
SLIM in Figure 1, where we compare it against the other methods
using ESD. There, SLIM is slow in resolving large rotations, as has
been noticed in previous work. AKVF at times also shows good
performance in the tests, when it can maintain near rigid motion.
However, it often oscillates during the iterations, which occurred
in the Archer example (Figure 1). This is even more pronounced in
interactive sessions. For deformation we do not divide the runtimes
by the number of vertices, since all meshes have a similar vertex
count.

it/t ESD ESARAP EBCONF EBARAP

KP 24.8/0.533 28.5/0.650 22.1/0.486 36.9/0.795
FP 25.0/0.775 27.3/0.830 21.9/0.631 38.8/1.150

AKVF 61.3/1.411 80.5/1.893 41.8/0.943 100.0/2.360
CM 24.8/0.536 28.5/0.633

Table 6: Statistics for shape deformation: The average number of
iterations (it) and the average runtime(t in seconds) .

For the tested energies, all methods except AKVF perform sim-
ilarly for deformation in terms of number of iterations. However,
FP-Newton takes longer due to its higher per iteration time. We
show an example deformation using ENH in Figure 4, where KP-
Newton is faster in propagating the deformation. After only 20 iter-
ations the visual change is very small, while CM takes 80 iterations
for a similar result. In Figure 5 we show the influence of the barrier
term for EBCONF and EBARAP. Reducing the weight for the barrier
in EBCONF makes the Newton iterations converge faster, although
to a noticeably more conformal result.

6.3. Smoothness

We applied the energy smoothness term in shape deformation. The
smoothness term visibly changes the appearance of the deformed
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Figure 4: Deformation of the rex shape using the Neo-Hookean en-
ergy. We show snapshots of the deformed shapes at four instances.
We choose µ

κ
= 0.25.
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Figure 5: Convergence comparison with different weights of the
barrier term for EBCONF and EBARAP. The mapping becomes visu-
ally more conformal as the weight decreases for EBCONF.

shape. Figure 6 compares the deformation with and without the
term. The weight for the smoothness is 0.25. It is apparent that
the energy penalizes the strong distortions near handles, which are
visible in the energy plot and produce artifacts in the texture map.
Compared to our method without the smoothness term, the number
of nonzero entries in the system matrix of Newton iteration almost
doubled, and the runtime of each iteration increases by a factor of
around 3.5 on average. For the raptor shape meshed with around
8,300 vertices, the deformation runs at interactive rates.

Table 7 shows the runtime of the Hessian projection for the
smoothness energy. For small size problems, the numerical pro-
jection costs more than solving the linear system. The analytical
projection is faster and takes less than half the time of the linear
solve. The overall per iteration runtime increased 46% using nu-
merical projection, compared to the analytic projection.

Small (6268) Large (32540)
Solve Analytic 8×8 Solve Analytic 8×8
0.028 0.012 0.040 0.113 0.043 0.113

Table 7: Comparison of per iteration runtimes (seconds) of solving
the linear system (including numerical factorization) and Hessian
projection steps for the smoothness energy. The experiments were
performed for two mesh resolutions.

Figure 6: The deformation results without (left) and with (right)
smoothness term. Concentrated distortions near handles are visible
as highlights in the energy plot (ESD). The distortion is distributed
more evenly when applying the smoothness term. The distortion
leads to smeared textures at the nose.

7. Discussion & Conclusion

We have applied the complex view to the piecewise linear map-
ping, and shown that simple analytic expressions of the Hessian are
obtained, which allows simple and close to optimal analytic PSD
projection. We have also sped-up the numerical projection for FP-
Newton by reducing the matrix size. Still, we observe that using nu-
merical projection was 20% slower than the analytic approach per
Newton iteration. Our results show that the Newton iteration is an
effective optimization approach for up to medium scale mesh prob-
lems. For parameterization, we additionally introduced the global
scaling strategy, which is shown often effective in improving the
convergence rate in comparison to CM and FP-Newton. This is
possible, since we have analytic expressions directly related to the
PSDness of the per-element Hessians.

As demonstrated, our PSD projection of the Hessian can be eas-
ily adapted to new isometric energies in a straightforward way. For
EBCONF, our assumption that increased weight for the convex en-
ergy term improves the convergence was confirmed in deformation
test cases. The complex formulations also allow us to effortlessly
add a smoothness term, which improves the resulting mapping near
large distortions.

Our method is limited to planar mappings by construction.
Deformations in 3D are thus out of reach of our method. Like
[RPPSH17, CBSS17, SPSH∗17], the scalability of our method is
limited by the size of the sparse linear system. In spite of the
low number of iterations, the setup and solve of the linear sys-
tems becomes prohibitive for large meshes. Alternative optimiza-
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tion schemes such as a matrix-free truncated Newton method are
imaginable as a direction for future work.

Appendix A: Gradient and Hessian of Isometric Energies

With the multivariate chain rule, we arrive at the gradient of E,

∇YYY E = α1∇YYY ‖DDDYYY‖2 +α2∇YYY ‖DDDYYY‖2 = 2(α1DDDT DDD+α2DDD
T

DDD)YYY .

To derive the Hessian, we first apply the product rule:

∇2
YYY E = 2

(
α1∇YYY (YYY

T DDDT DDD)+∇YYY α1(YYY
T DDDT DDD)

)
+2
(
α2∇YYY (YYY

T DDD
T

DDD)+∇YYY α2(YYY
T DDD

T
DDD)
)
,

then apply the chain rule to α1 and α2, and with further simplifica-
tion we get:

= DDDT (2α1I +4β1 fff zzz fff T
zzz )DDD+DDD

T
(4β3 fff zzz fff T

zzz )DDD

+DDDT (4β3 fff zzz fff T
zzz )DDD+DDD

T
(2α2I +4β2 fff zzz fff T

zzz )DDD,

which can be written in the following shape,

=

[
DDD
DDD

]T [2α1I +4β1 fff zzz fff T
zzz 4β3 fff zzz fff T

zzz
4β3 fff zzz fff T

zzz 2α2I +4β2 fff zzz fff T
zzz

][
DDD
DDD

]
.

Appendix B: Eigen Value Decompositions of Energy Hessians

First, we restate the eigenvalues and eigenvectors of K in Eq. 3
given by [CW17] :

Im( fz) 0 Re( fz) Re( fz)
−Re( fz) 0 Im( fz) Im( fz)

0 Im( fz) t1Re( fz) t2Re( fz)
0 −Re( fz) −t1Im( fz) −t2Im( fz)

 ,
where the columns are the eigenvectors corresponding to the eigen-
values

2α1
2α2

s1 +
√

s2
2 +16β2

3| fz|2| fz|2

s1−
√

s2
2 +16β2

3| fz|2| fz|2

, with

s1,2 = α1 +2β1| fz|2± (α2 +2β2| fz|2)

t1,2 =
λ3,4−2α1−4β1| fz|2

4β3| fz|2

Second, we continue with the eigen-decompositions needed for
the smoothness energy Hessian projection. The eigenvectors for the
four observable eigenvalues of the center 8×8 matrix in Section 4.3
are analogous to the previous and given by the columns of:

f⊥iz 0 0 0
0 f⊥iz̄ 0 0
0 0 f⊥jz 0
0 0 0 f⊥jz̄

 ,
where f⊥ =

[
Im( f ) −Re( f )

]T .

Computing the eigenvectors and eigenvalues of the 4× 4 block
diagonal matrix is then reduced to finding those of the 2× 2 sub-
matrices. The four eigenvalues are:

1
2

p1−
√

q1
p1 +
√

q1
p2−
√

q2
p2 +
√

q2

 , with

p1 = υ
′
11/2−α

2
i1 +υ

′
22/2−α

2
i2

q1 = (υ′11/2−α
2
i1−υ

′
22/2+α

2
i2)

2 +4E2
diffβ

2
i3

p2 = υ
′
33/2−α

2
j1 +υ

′
44/2−α

2
j2

q2 = (υ′33/2−α
2
j1−υ

′
44/2+α

2
j2)

2 +4E2
diffβ

2
j3

.

And the corresponding eigenvectors are
p3 +
√

q1 p3−
√

q1 0 0
−2Ediffβi3 −2Ediffβi3 0 0

0 0 p4 +
√

q2 p4−
√

q2
0 0 2Ediffβ j3 2Ediffβ j3

 ,
with p3 = υ

′
22/2− υ

′
11/2+α

2
i1−α

2
i2 and p4 = υ

′
44/2− υ

′
33/2+

α
2
j1−α

2
j2. For the special case that Ediffβi3 or Ediffβ j3 is zero, the

corresponding block (top left or bottom right) becomes the identity.

Appendix C: Derivation of the Composite Majorizer Modifiers

With the definition of the composite majorizer [SPSH∗17] con-
cretized for a two parameter function h(u,v), we get:

H =
∂g
∂x

T
∇2h+

∂g
∂x

+
(

∂h
∂u

)
+
∇2u++

(
∂h
∂v

)
+
∇2v+

+
(

∂h
∂u

)
−
∇2u−+

(
∂h
∂v

)
−
∇2v−

(5)

Here, (·)+ and (·)− mean the values are clamped if they are smaller
and larger than 0 respectively. (·)+ and (·)− are the convex and
concave component of a function. For g(x) = (σ1,σ2), we have:

∂g
∂x

=
∂

∂x

[
σ1
σ2

]
=

[
| fz|−1 fff T

zzz DDD+ | fz|−1 fff T
zzz DDD

| fz|−1 fff T
zzz DDD−| fz|−1 fff T

zzz DDD

]
.

Substitute this into Eq. 5, simplify and apply term gathering, we
can then write the CM Hessian in the shape of Eq. 2 with K =[

K11 K12
KT

12 K22

]
, where

K11 =(hu +hv)+| fz|−3(| fz|2I− fff zzz fff T
zzz )+(h+uu +h+vv +2h+uv)| fz|−2 fff zzz fff T

zzz

K12 =(h+uu−h+vv)(| fz|| fz|)−1 fff zzz fff T
zzz

K22 =(hu−hv)+| fz|−3(| fz|2I− fff zzz fff T
zzz )+(h+uu +h+vv−2h+uv)| fz|−2 fff zzz fff T

zzz .

On the other hand, for the composite function h(σ1,σ2), we have
E(x,y) = h(

√
x+
√

y,
√

x−√y), with x= | fz|2 and y= | fz|2, which
allows us to express the derivatives of E in terms of those of h:

α1 =
hu+hv
2| fz|

α2 =
hu−hv
2| fz|

β1 =
1
4 | fz|

−3((huu +hvv +2huv)| fz| − (hu +hv)
)

β2 =
1
4 | fz|

−3((huu +hvv−2huv)| fz| − (hu−hv)
)

β3 =
1
4 (| fz|| fz|)

−1(huu−hvv) .
We can then express the CM Hessian equivalently as alterations to
our modifiers, as shown in Table 3.

For the Neo-Hookean energy, we repeat the same procedure. In
this case, we have:

K11 = (16µ| fz|2|J|−3 +κ) fff zzz fff T
zzz +2µ|J|−1I +2

(
κ(|J|−1)−µm

)
+

I

K12 =−4
(
2µ|J|−1m+κ

)
fff zzz fff T

zzz

K22 = (16µ| fz|2|J|−3 +κ) fff zzz fff T
zzz +2µ|J|−1I−2

(
κ(|J|−1)−µm

)
−I,

where m = |J|−2(| fz|2 + | fz|2).

c© 2018 The Author(s)
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