
174

Computational Mirror Cup and Saucer Art

KANG WU, RENJIE CHEN, XIAO-MING FU, and LIGANG LIU, University of Science and Technology of China,

China

Fig. 1. Our system takes two completely different images as inputs: (a) a reference saucer shape (bottom image in (b)), and a mirror (upper image in (b)).

A textured saucer is automatically generated by slightly deforming the input saucer so that the direct view of the saucer and the reflected view through

the mirror match the input images (c). To validate our system, we use 3D printing technology to fabricate the resulting saucer (d).

In the mirror cup and saucer art created by artists Yul Cho and Sang-Ha
Cho, part of the saucer is directly visible to the viewer, while the other part
of the saucer is occluded and can only be seen as a reflection through a
mirror cup. Thus, viewers see an image directly on the saucer and another
image on the mirror cup; however, the existing art design is limited to wave-
like saucers. In this work, we propose a general computational framework
for mirror cup and saucer art design. As input, we take from the user one
image for the direct view, one image for the reflected view, and the base
shape of the saucer. Our algorithm then generates a suitable saucer shape
by deforming the input shape. We formulate this problem as a constrained
optimization for the saucer surface. Our framework solves for the fine ge-
ometry details on the base shape along with its texture, such that when a
mirror cup is placed on the saucer, the user-specified images are observed
as direct and reflected views. Through extensive experiments, we demon-
strate the effectiveness of our framework and the great design flexibility
that it offers to users. We further validate the produced art pieces by fabri-
cating the colored saucers using three-dimensional printing.

CCS Concepts: • Computing methodologies→ Shape modeling;

This research is supported by the National Key R&D Program of China
(2020YFC1523102), the National Natural Science Foundation of China (62072422,
62025207), and the Anhui Provincial Natural Science Foundation (2008085MF195).
Authors’ addresses: K. Wu, R. Chen (corresponding author), X.-M. Fu, and L. Liu,
School of Mathematics, University of Science and Technology of China, Hefei, An-
hui, China; emails: kang910042009@gmail.com, {renjiec, fuxm, lgliu}@ustc.edu.cn.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
© 2022 Association for Computing Machinery.
0730-0301/2022/07-ART174 $15.00
https://doi.org/10.1145/3517120

Additional Key Words and Phrases: Mirror cup and saucer art, differen-
tiable rendering, black-white shape enhancement, sparse spike movement

ACM Reference format:

Kang Wu, Renjie Chen, Xiao-Ming Fu, and Ligang Liu. 2022. Computational
Mirror Cup and Saucer Art. ACM Trans. Graph. 41, 5, Article 174 (July 2022),
15 pages.
https://doi.org/10.1145/3517120

1 INTRODUCTION

Anamorphic art [Baltrusaitis 1977] refers to an image or drawing
that is distorted so that it can only be recognized when viewed in
a particular way or using a special device. In mirror anamorphic
art, the viewer typically sees an object both directly and indirectly
through a mirror. Generally, the direct view, i.e., what the viewer
sees directly, is different from the reflected view, i.e., what the
viewer sees via a mirror. There are three factors in mirror anamor-
phosis, including the mirror, the viewer, and the locus where the
distorted object lays, which is referred to as the surface of distor-

tion [De Comite 2011].
Recently, artists Yul Cho and Sang-Ha Cho designed a variant of

mirror cup and saucer art (Figure 2). In their designs, the surface of
distortion is a wavy saucer, wherein some parts of the surface are
hidden in the direct view due to occlusion by other parts. Hence,
this art form is dubbed, “mirror cup and saucer.” This art is appeal-
ing as the two views are in harmony, rendering it a more integrated
art piece. Furthermore, the surface of distortion can be a more gen-
eral shape instead of repeating patterns like waves, making this art
more customizable.

However, it takes tremendous effort and is a tedious and error-
prone process for the artists to manually design and carefully tune
the saucer surface to distinguish the perceived images in both the

ACM Transactions on Graphics, Vol. 41, No. 5, Article 174. Publication date: July 2022.

https://orcid.org/0000-0001-8395-4392
mailto:permissions@acm.org
https://doi.org/10.1145/3517120
https://doi.org/10.1145/3517120

174:2 • K. Wu et al.

Fig. 2. Artists use wave-shaped saucers to generate mirrored cups where

the pattern on the saucer is still meaningful by itself. More examples can

be found at http://luycho.com/.

direct and reflected views. One general solution is to separate the
reflected area from the directly viewed area by using a corrugated
saucer; however, this implies that the saucer has a fixed corrugated

shape. Suppose one would like to specify the two images and the
shape of the saucer simultaneously. In this case, it is nearly impos-
sible to find a solution, since not all saucer shapes can adequately
resolve the conflict between the reflected and directly viewed ar-
eas. Thus, tailoring a new shape for each set of input images is not
an easy task, making it highly challenging to produce mirror cup
and saucer art with desired images and saucer surfaces.

Given two input images and a saucer shape, our goal is to gen-
erate a textured saucer mesh so that the reflected and direct views
match the two input images and the mesh surface is close to the in-
put saucer shape. To achieve our goal, we formulate a constrained
optimization problem, where the variables represent the positions
of mesh vertices and the texture colors are defined on the mesh.
The objective is to minimize the visual differences between input
images and images rendered with the specified camera position,
while simultaneously reducing the deviation between the input
surface and the deformed surface. Furthermore, we add the con-
straint that the shape deviation from the input surface to the de-
formed surface is bounded from above.

To solve our optimization problem, it is intuitively straightfor-
ward to resort to differentiable rendering technology, e.g., Liu et al.
[2019], Zhang et al. [2020], Li et al. [2018], and Zhang et al. [2019],
in place of the standard rendering pipeline for the direct and re-
flected images. Consequently, differentiable rendering technology
allows us to obtain the gradients of the rendered image and en-
ables the use of conventional numerical optimization algorithms.
Nevertheless, there are still two challenges in achieving low visual
differences as well as small deformation distortions. First, a stan-
dard ray tracer is needed to generate the reflected image, which
is what the viewer sees through the mirror cup; however, apply-
ing differentiable ray tracing rendering technology to our problem
is more computationally expensive compared to differentiable ras-
terization. Second, it is non-trivial to obtain a favorable tradeoff
between low visual differences and small surface deformation dis-
tortions. Generally, optimizing a surface to be spiky or corrugated
leads to low visual differences but large deformation distortions
(Figure 3(b)).

In this article, we present a novel computational framework
for mirror cup and saucer art designs. We solve the constrained
optimization problem using gradient-based methods to achieve

Fig. 3. (a) The input images (upper) and surface (bottom). (b) Optimized

visual differences without considering shape distortion. (c) Our result. In

(b) and (c), the upper image shows the saucer and cup rendered from the

viewer’s perspective, while the bottom shows a close-up bird’s-eye view of

the saucer.

Fig. 4. Left: The conflict region (red) contributes to both Ip

d
and Ip

r . Right:

A spike (red dot) separates the conflict area into two parts, each of which

contributes to one rendered image.

low visual difference while maintaining low shape distortion. Our
success relies on two key techniques. First, we develop a new
method to directly compute an image from a saucer surface in a
mirrored cup, which enables us to render reflected images highly
efficiently via rasterization. The second is a conflict-reduction
strategy for achieving a desirable tradeoff between low visual
differences and small shape deformations. We observe that main-
taining low shape deformation usually leads to a large conflict
area, which contributes to both the reflected and directly viewed
images, thereby preventing visual differences from being opti-
mized to a low level (Figures 4 and 7). To reduce this conflict while
retaining low deformation distortion, we develop a black-white
enhancement technique and a sparse spike strategy.

We apply the proposed computational tools for mirror cup and
saucer art design and construction with various images and shapes
as inputs. Extensive experiments and fabricated results by three-
dimensional (3D) printing demonstrate the feasibility and practi-
cability of our proposed technique.

2 RELATED WORK

2.1 Anamorphic Art

Anamorphosis is a type of visual art that utilizes the perspective
technique to produce art pieces that appear normal from a par-
ticular angle but distorted from other angles. Artists typically use
distorted lenses, mirrors, or other optical devices to devise com-
plex anamorphoses. The earliest known example of this technique
is Leonardo’s Eye by Leonardo da Vinci, included in the Codex

ACM Transactions on Graphics, Vol. 41, No. 5, Article 174. Publication date: July 2022.

http://luycho.com/

Computational Mirror Cup and Saucer Art • 174:3

Atlanticus. Then, it appeared mostly in 16th- and 17th-century
drawing manuals, where it was utilized in various ways. In the
late 16th century, a new kind of anamorphosis became popular in
England, wherein two different images are divided into strips and
painted onto different sides of a corrugated carrier. Both images
can be seen properly when viewed from a certain angle or through
a mirror. An illustration of this basic technique was first published
in a 1583 book on perspective drawing by Giacomo Barozzi da
Vignola and lgnazio Danti. In 1646, Athanasius Kircher invented
the latin phrase “Tabula scalata” to describe this kind of artwork.
Since then, these techniques have become increasingly popular for
artists to produce.

In modern times, many scholars have studied this art form.
Sánchez-Reyes and Chacón [2016, 2020] and Schüller et al. [2014]
proposed their own methods for generating anamorphic art, which
can only be viewed properly from a certain viewing position. For
anamorphic images that need to be viewed through a paramet-
ric mirror surface (e.g., cylinder), Hunt et al. [2000] and Rausch
et al. [2012] explored the connections between mathematical and
artistic formulations of anamorphosis. The problem they study is
simpler than ours, as the meaning of the directly viewed image is
not taken into account. In this manner, they draw patterns directly
based on the light path. Instead of creating anamorphic images,
Čučaković and Paunović [2015] and De Comite [2011] produced
anamorphic art by using three-dimensional objects; however, they
also did not consider the integrity of the directly viewed object it-
self, and their problem can also be solved by following the light
path.

Recently, computer graphics techniques have been applied in
this problem. Hansford and Collins [2007] created anamorphic
3D digital models, providing a tool for artists and architects. De
Comite and Grisoni [2015] proposed a deformation technique for
both surfaces and 3D shapes to generate catoptric anamorphosis
using raycasting. They back-project a target image onto the sur-
face of an object to generate anamorphic art. We solve a similar
problem in Section 3.4.2. Given a finished design piece, Stojakovic
and Tepavcevic [2016] identified and analyzed several problems
that cause distortion in Plane Geometric Anamorphosis due to
the dislocation of the viewpoint, and they provide suggested im-
age designs that are less prone to viewpoint changes. Jovanovic
et al. [2016] studied how to use an industrial robot to automati-
cally generate anamorphic structures on a curved wall by utilizing
modular bricklike elements. In this article, we study the computa-
tional model for designing a special type of anamorphic art, called
mirror cup and saucer art, which to our knowledge, has never been
investigated in the graphics community.

2.2 Computational Optics Art

For the past couple of decades, computer graphics technologies
have been successfully applied to the automatic design of var-
ious types of optical art, including caustics [Papas et al. 2011;
Schwartzburg et al. 2014], reflectance [Weyrich et al. 2009],
shadow [Mitra and Pauly 2009; Zhao et al. 2016], and so on. What’s
more, graphics-based approaches can be used for designing a wide
variety of optical art in which changes in viewpoint [Oliva et al.
2006], figure-ground organization [Kuo et al. 2016], illumination

from a certain direction[Alexa and Matusik 2010; Bermano et al.
2012], viewing directions [Keiren et al. 2009; Pjanic and Hersch
2015; Sakurai et al. 2018; Sela and Elber 2007; Snelgrove et al. 2013],
or casting shadows onto external planar surfaces [Hsiao et al. 2018;
Min et al. 2017] can change the viewer’s perception of an art piece.
This work is close to Mitra and Pauly [2009] and Hsiao et al. [2018],
where 3D volumes are computed such that their shadows best ap-
proximate multiple input binary images. This work also relates to
Sakurai et al. [2018]. In both works, the surface of an object is di-
vided into sets of areas, with each set showing a separate image
that can be appreciated from a specific viewing setup. The first
main difference in this work is that one of the images needs to be
observed via a curved mirror, and the viewing position is the same
for both images, while for Sakurai et al. the viewing position w.r.t.
the object changes between the images. The second difference is
that to generate the aforementioned area sets for multiple images,
we deform the input surface, while Sakurai et al. use microstruc-
tural stripe patterns.

2.3 Differentiable Rendering

The rendering pipeline can be seen as a function that turns input
3D objects into rendered images; hence given the derivatives of the
rendering pipeline, we relate the changes in the 3D objects with
those in the rendered images. To obtain the derivatives, Loper and
Black [2014] proposed an approximate differentiable renderer that
provides derivatives of pixel colors w.r.t. the 3D geometry parame-
ters. Kato et al. [2018] introduced a function to approximate the
backward gradient of rasterization to achieve differentiable ren-
dering. Liu et al. [2019] and Chen et al. [2019] replaced the non-
differentiable part of the standard rasterizer with smooth functions.
Li et al. [2018] and Zhang et al. [2019] proposed differentiable ray
tracers to make the rendering process differentiable. For some 3D
reconstruction tasks, such as 3D face reconstruction [Genova et al.
2018; Richardson et al. 2017; Tewari et al. 2018, 2017; Tran and Liu
2018], material inference [Deschaintre et al. 2018; Liu et al. 2017],
and others [Henderson and Ferrari 2018; Jimenez Rezende et al.
2016; Kundu et al. 2018; Zienkiewicz et al. 2016], differentiable
rendering layers were specially designed to obtain gradient flow
from image to vertex positions, materials, or other parameters us-
ing application-tailored neural networks.

Usually, raytracing is needed to render scenes with complex
lighting, such as reflections, and differentiable raytracing is used to
obtain the derivatives of the rendering parameters. However, dif-
ferentiable ray tracers generally require excessive computational
resources, including CPU runtime and memory consumption.
Nimier-David et al. [2019] proposed a versatile differentiable ren-
derer, Mitsuba 2, which has significantly reduced the required com-
putational resources. However, while conducting this research, we
found that it was still challenging to apply it to our problem setup.
To further lower the requirements and make our problem solvable,
we chose to generate a reflected shape of the saucer and use differ-
ential rasterization, in particular, Soft Rasterizer (SoftRas) [Liu
et al. 2019] to render the reflected image. SoftRas replaces the non-
differentiable part of the standard rasterization pipeline with a dif-
ferentiable one; thus, we directly differentiate the rendered images
and obtain derivatives of the 3D geometric parameters.

ACM Transactions on Graphics, Vol. 41, No. 5, Article 174. Publication date: July 2022.

174:4 • K. Wu et al.

Fig. 5. Input illustrations. The viewer at P sees an image Ip

d
directly on the

saucer Sd along the direction dd and another image Ip
r through mirror

cup C from the direction dr .

3 METHOD

3.1 Problem and Formulation

Problem. We denote the two input images as Id and Ir , and the
input saucer shape as S, represented by a heightfield. The output
is a textured surface Sd . From the specified viewing position P

and directions, the user sees an image Ip

d
on the surface Sd in the

direction dd and another image Ip
r on the mirror cup C reflecting

the textured surface Sd in the direction dr (Figure 5). The target
surface Sd should satisfy the following two requirements:

• Visual fidelity: the visual difference from Ip

d
(or Ip

r) to Id (or
Ir) is small.
• Shape preservation: the distortion of the deformation from S

to Sd is low.

Without loss of generality, we assume that the input mirror cup C
is a cylindrical surface, and S and Sd are triangulated heightfields.
For each vertex vi in S, we associate its 2D position (xi ,yi) ∈
R

2 with its height value zi ∈ R, and we denote the height of its
corresponding vertex in Sd as hi ∈ R. We denote h = {hi } as the
unknown height vector.

Generating Ip

d
and Ip

r . To build a computational tool that sat-
isfies the aforementioned two requirements, we adopt a differen-
tiable renderer to render the textured surface Sd to generate Ip

d

and Ip
r .

To make the rendering processing more efficient, we represent
Sd as a triangulated heightfield with colored triangle facets instead
of using texture mapping. We denote the color vectors for all tri-
angle facets as c = {(ri ,дi ,bi)}. Ip

d
and Ip

r are functions of h and

c, denoted as Ip

d
(h, c) and Ip

r (h, c).

Naïve formulation. To find theSd value that satisfies both of the
visual fidelity and the shape preservation requirements, we formu-
late a constrained optimization problem as follows:

min
h,c

Evisual (h, c) +wEdeform (h)

s.t. |zi − hi | < δ ,∀i,
0 ≤ r j , дj , bj ≤ 1,∀j,

(1)

where Evisual (h, c) measures the color difference between the input
and the rendered images. Edeform (h) denotes the deformation dis-
tortion, and w is a positive weight. In the inequality constraints,

the movement of each vertex is bounded to be less than a given
threshold δ , while the color is constrained within the range [0, 1].

Visual fidelity term. We define Evisual (h, c) as the sum of the
squared Frobenius norm of the color difference between the input
images and the rendered images:

Evisual (h, c) = ‖Id − I
p

d
(h, c)‖2F + ‖Ir − I

p
r (h, c)‖2F . (2)

Shape-preservation term. Sorkine et al. [2004] propose editing
surfaces using the Laplacian coordinates, as this captures the geo-
metric details. This technique inspired us to define Edeform (h) as
the squared L2 distance between the Laplacians of the heightfields:

Edeform (h) =
∑
vi

(Lzi − Lhi)2, (3)

where L is the discrete Laplace operator.

Reformulation as an unconstrained optimization problem. It is
easy to obtain a set of initial h and c values that satisfies the hard
constraints, e.g., hi = zi ,∀i and r j = дj = bj = 0.5,∀j. Hence, we
propose using barrier functions to keep variables inside the feasi-
ble region. We apply popular log barriers to ensure that variables
are positive:

ϕ (x) =

{−log(x), ifx > 0,

+∞, otherwise.
(4)

Then, our hard constraints are converted into an energy term:

Ebarrier (h, c) =
∑
vi

(ϕ (δ − (zi − hi)) + ϕ (δ + (zi − hi)))

+
∑
fj

∑
c j ∈{r j ,дj ,bj }

(
ϕ (c j) + ϕ (1 − c j)

)
,

(5)

where fj indicates the jth triangle facet. Then, Problem (1) is refor-
mulated as an unconstrained optimization problem:

min
h,c

E (h, c) = Evisual (h, c) +wEdeform (h) + Ebarrier (h, c). (6)

Log barriers prevent color values from being exactly equal to 0 or
1. Fortunately, we resolve this issue using the texturing technique
presented in Section 3.4.

Challenges. With differentiable rendering technology, we easily
obtain gradients of E (h, c) w.r.t. h and c. Hence, gradient-based
numerical optimizers can be applied to E (h, c). However, two chal-
lenges remain. First, the reflected image Ip

r typically needs to be
rendered with ray tracing; however, a differentiable ray tracer is
computationally expensive and prohibitive. Second, the visual fi-
delity requirement and the shape-preserving requirement are gen-
erally mutually exclusive. In fact, we achieve high visual fidelity
by simply ignoring deformation distortion (Figure 3). Thus, it is
challenging to achieve a good tradeoff between these two require-
ments.

3.2 Reflected Shapes

Key idea. Instead of using ray tracing to obtain the reflected im-
age Ip

r , we first compute the reflected shape Sr of Sd , i.e., the
shape formed as a reflection of Sd in the mirror cup C. Then, Sr

is rendered into Ip
r using the rasterization technique. Note that

straight line segments become curves after reflection. However,

ACM Transactions on Graphics, Vol. 41, No. 5, Article 174. Publication date: July 2022.

Computational Mirror Cup and Saucer Art • 174:5

Fig. 6. Given a point Q outside the cylindrical reflector C , the viewer at

P sees its reflection R at point T ∈ C . For each point Q , the position of

point R can be found by solving a planar geometry problem.

with the high-resolution meshes that we use, we can approximate
each relfected mesh edge as a straight line segment. Therefore, we
only need to compute the reflected positions for vertices.

Problem conversion. Since the mirror cup C is assumed to be a
cylindrical surface, each point Q in 3D must have the same height
as its reflection R in C. Hence, we reformulate this problem as a
2D geometry problem: Given a camera position P , a point Q , and
a circle C with radius r in the plane, we want to find the reflection
of Q , denoted as R (Figure 6).

Eberly [2008] derived an analytic solution to this problem by
equivalently solving for T , which is the point on C where the ray
from P reflects and then hits Q . Assuming points P , Q , and O are
not colinear, then T can be expressed as T = xP + yQ , with x and
y being coefficients to be solved for. LetQ ′ be the point symmetric
to Q w.r.t. the normal at T , which should fall on the line of OP ;
therefore,

(P −T) × (Q ′ −T) = 0 = (2〈Q,T 〉 − 1)y − 1 + x)P ×Q,

leads to the following quadratic equation in x and y,

2〈Q, P〉xy + 2|Q |2y2 − y − 1 + x = 0.

However, since T falls on the unit circle (W.L.O.G.),

|T |2 = 1 = |P |2x2 + 2〈Q, P〉xy + |Q |2y2.

Then, x can be found by solving a quartic equation, and y follows.
One problem with the above analytic solution is that it becomes

numerically unstable when OP and OQ are close to being parallel.
In the following, we propose a simple alternative method that triv-
ially generalizes to other types of mirrored surfaces as long as they
are convex.

If we denote the tangent line passing through T as lt , then R
and Q are symmetric w.r.t. lt . Thus, if we know the angle value of
∠POT , then lt can be obtained and R follows. Hence, we focus on
the computation of ∠POT in the following.

Computing ∠POT . Note that when ∠PTV = ∠QTV , ∠POT is
as desired. According to this condition, we seek ∠POT to satisfy
∠PTV = ∠QTV . We limit our discussion to the top left quarter
circle, as shown in Figure 6.

Proposition 3.1. When ∠POT increases from 0 to min{∠POQ,
∠POG}, where G ∈ C is such that PG⊥OG, ∠PTV strictly increases

ALGORITHM 1: Mirror Cup and Saucer Optimization

Input : A triangulated heightfield S and two images, Id and Ir
Output : A textured mesh Sd

Initialize Sd ← S and color each triangle in gray (0.5, 0.5, 0.5);

Sd ← Black-WhiteOptimization(Sd) via solving Equation (8);

Sd ← SparseSpikeStragey(Sd) via solving Equation (10);

Sd ← Texturing(Sd);

while ∠QTV strictly decreases, and ∠PTV − ∠QTV strictly increases

from negative values to positive values.

We provide a proof of this proposition in appendix A. According
to Proposition 3.1, we use a binary search to find ∠POT such that
∠PTV = ∠QTV .

3.3 Optimization

With the reflected shape, we render Ip

d
and Ip

r using the SoftRas
framework [Liu et al. 2019], which replaces the non-differentiable
steps of the standard rasterizer with smooth functions. This allows
us to easily obtain the derivatives of Ip

d
and Ip

r w.r.t. the vari-
ables h and c. As a feasible initialization, we set hi = zi ,∀i and
r j = дj = bj = 0.5,∀j. We optimize the objective function of Equa-
tion (6) using a gradient descent method. Specifically, we first use
the Adamax algorithm [Kingma and Ba 2014] to compute a descent
direction. Then, a backtracking line search is performed to deter-
mine the step size to ensure that the hard constraints are satisfied.
We terminate the optimization algorithm when the relative change
of the objective energy is less than the threshold (10−4 in our ex-
periments). We dub our optimization method DR solver.

3.4 Our Algorithm

Conflict areas. We observed that, after performing the aforemen-
tioned optimization via DR solver, the rendered images Ip

d
and

Ip
r contain significant visual artifacts compared to the input im-

ages (Figure 7(b)). Furthermore, we found that these artifacts are
caused by the conflict areas that contribute to both Ip

d
and Ip

r

(Figure 4, left). We analyze this behavior and conjecture that there
are two causes for these conflict areas. First, since the objective
of Equation (6) is a weighted sum of the visual fidelity term and
the shape-preservation term, a small visual difference somewhere
is not likely to trigger sufficient deformation in the relevant area
and resolve the conflict. Consequently, when pixels in Id and Ir
corresponding to the conflict area share similar colors, the visual
difference is small and the conflict area remains as a result. Sec-
ond, the shape-preservation term preserves the shape similarity
between the input and output shapes; hence, smooth regions in
the input surface are prone to induce conflict areas. These causes
of conflict areas indicate that it is difficult to achieve a favorable
tradeoff between visual fidelity and shape-preservation.

Two-stage algorithm. To better balance visual fidelity and
shape-preservation, we propose a two-stage strategy. In the first
stage, we reduce as many conflict areas as possible to mitigate
the occurrence of visual artifacts while maintaining low geomet-
ric distortion (Section 3.4.1). In the second stage, we perform
texturing to match the input images for better visual fidelity

ACM Transactions on Graphics, Vol. 41, No. 5, Article 174. Publication date: July 2022.

174:6 • K. Wu et al.

Fig. 7. (a) The input images (upper) and their black-white enhanced im-

ages (bottom). (b) The result generated by optimizing Problem (6). (c) The

result obtained by using the black-white enhanced images as our target

images, i.e., solving Equation (8). (d) After the black-white enhanced opti-

mization, the sparse spike strategy is further applied to improve the result.

We run the texturing step in all three methods.

(Section 3.4.2). Figure 8 shows an example, and the pseudocode is
shown in Algorithm 1.

3.4.1 Reducing Conflict Areas. We propose two ways to reduce
conflict areas based on their cause to eliminate as many visual ar-
tifacts as possible.

• Black-white enhancement: Enhance the visual fidelity energy
to allow more necessary deformation so that conflicts are mit-
igated (Figure 7(c)). Intuitively, this step tries to separate the
saucer into two sets of areas; one set is directly seen by the
viewer, while the other is indirectly seen by the viewer via a
reflection in the mirror.
• Sparse spike strategy: Limit spikes in the surface so that the

conflict area is further reduced (Figure 7(d)).

Black-white enhancement. To avoid small visual differences that
cause visual artifacts, we replace the input images Id and Ir with
images containing contrasting colors (denoted as Ie

d
and Ie

r) as
follows:

(1) Detect foreground regions in both Id and Ir .
(2) Ie

d
andIe

r are obtained by filling the foreground regions ofId
and Ir with black and white accordingly, and the background
regions are filled with light blue, i.e., RGB value (0, 0.5, 1),
(Figure 8(a), upper right).

The reason for choosing these colors is that black and white
have the largest difference in RGB values, which enhances visual
differences, in particular magnifying where visual differences are
small. For the same reason, we choose to recolor the background
in light blue, as it has the largest difference in RGB value from both
black and white.

We then define the new visual fidelity term as follows:

Enew
visual (h, c) = |Ie

d
− Ip

d
(h, c) |2F + |I

e
r − I

p
r (h, c) |2F . (7)

Replacing Evisual (h, c) in Equation (6) with Enew
visual

(h, c) in Equation
(7) leads to a new optimization problem:

min
h,c

Enew
visual (h, c) +wEdeform (h) + Ebarrier (h, c), (8)

which is optimized using DR solver (Figure 7(c)).

Sparse spike strategy. As the right side of Figure 4 shows, spikes
on the surface help separate the conflict areas. However, these
spikes imply high geometric distortion, so we allow only a few
spikes, which are formed by moving as few vertices as possible.
We propose the following sparse spike energy term:

Esparse (h) =
∑
vi

|hi − he
i |, (9)

where he
i denotes the height of the resulting vertex vi after the

black-white enhanced optimization step (Equation (8)). This sparse
spike energy term keeps the number of moving vertices as small
as possible. As a result it tends to encourage spikes rather than
general deformations. Then, our optimization objective becomes

Ê (h, c) = Enew
visual (h, c) + λEsparse (h) + Ebarrier (h, c), (10)

where λ is a positive weight.
We optimize Ê (h, c) iteratively, by combining the Adamax algo-

rithm with the proximal gradient method [Parikh and Boyd 2014].
Ê (h, c) can be rewritten in the following separated form:

Ê (h, c) = φ (h, c) +ψ (h), (11)

where

φ (h, c) = Enew
visual (h, c) + Ebarrier (h, c),

ψ (h) = λEsparse (h).
(12)

We denote the variables h and c at the kth iteration as h
k and c

k ,
respectively. Given h

k−1 and c
k−1, we propose the following pro-

cedure for computing h
k and c

k :

(1) Use Adamax to compute a descent direction forφ (hk−1, ck−1),
denoted as (dh

φ , d
c
φ).

(2) Apply the proximal gradient to compute d
h , the descent di-

rection for h:

d
h = h

k−1 − proxαψ

(
h

k−1 − αd
h
φ

)
, (13)

where α > 0 is a step size, and proxαψ denotes the proximal
mapping of the functionψ :

proxαψ (x) = arg min
h

(ψ (h) +
1

2α
‖h − x‖22). (14)

With ψ (h) = λ‖h − h
e ‖1, Equation (14) has a closed form

solution:

(proxαψ (x))i =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪
⎩

xi − he
i − λα if xi − he

i > λα ,

0 if |xi − he
i | ≤ λα ,

xi − he
i + λα if xi − he

i < −λα .
(15)

Throughout our experiments, we set α = 0.2.
(3) d

h and d
c
φ form the descent direction. A backtracking line

search uses this direction to determine a suitable step size
β to suffliciently decrease the objective Ê, while ensuring
that the hard constraints are not violated. Finally, we update
h

k = h
k−1 − βd

h and c
k = c

k−1 − βd
c
φ .

As an initialization for Problem (10), we use h and c from the
black-white enhanced optimization (Equation (8)). The optimiza-
tion process terminates as soon as the relative change of Ê (h, c)
is less than 10−4. As Figure 7(d) shows, the visual artifacts are sig-
nificantly reduced after performing the black-white enhancement
and applying the sparse spike strategy.

ACM Transactions on Graphics, Vol. 41, No. 5, Article 174. Publication date: July 2022.

Computational Mirror Cup and Saucer Art • 174:7

Fig. 8. (a) The input images (top left) and surface (bottom), and the black-white enhanced images (top right). (b) Top: the rendered images after the black-

white enhancement. Bottom: color-coded absolute height change relative to the input. (c) The rendered images after applying the sparse spike strategy (top)

and the height changes relative to the input (bottom). (d) Top: the final rendered images after texturing. Bottom: the resulting textured surface.

3.4.2 Texturing. We have replaced Id and Ir with Ie
d

and Ie
r

to reduce conflict areas, and as a result, the renderings of the per-
face colored heightfield (h, c) do not match the input images. To
produce the target views, we need to apply coloring to the height-
field.

Problem definition. During this step, the surface Sd is fixed,
since the conflict areas have been optimized. In general, we can eas-
ily work with texture images in a much higher resolution than that
of the heightfield. Therefore, to obtain rich texture details, we rep-
resentSd as a texture-mapped triangular heightfield, which means
we need to specify both the texture coordinates of each vertex and
the texture image.

We combine the input images Id and Ir as the texture image.
Then, what remains are the texture coordinates of Sd , denoted as
t. Note that Ip

d
and Ip

r are functions of t, denoted as Ip

d
(t) and

Ip
r (t). We define an objective function of t as the visual fidelity
Evisual (t) = |Id − I

p

d
(t) |2

F
+ |Ir − I

p
r (t) |2

F
.

Computing texture coordinates t. As the texture coordinates of
each triangle in Sd are mutually independent, we solve them sep-
arately. For a triangle fj , we first determine the view in which it
is visible and then compute its texture coordinates. There are four
different cases for the perspective projection of fj :

(1) visible only in the direct view;
(2) visible only in the reflected view;
(3) visible in both the direct and reflected views;
(4) visible in neither the direct view nor the reflection view.

Triangle fj is then projected into the 2D image space using rasteri-
zation. For the first and second cases, the transformed coordinates
are the resulting texture coordinates. For the third case, we use the
transformed coordinates in the reflected imageIr as the texture co-
ordinates. Then, the pixel colors are modified at the transformed
positions of Ir to the average of the colors at the transformed co-

ordinates in Id and Ir . For the fourth case, triangle fj is invisible;
therefore, the texture coordinates are arbitrary.

3.5 Implementation Details and Discussions

The parameter σ in SoftRas. SoftRas [Liu et al. 2019] uses the
probability map and aggregate functions to make the standard ras-
terization pipeline differentiable. In the probability map computa-
tion, a parameter (denoted as σ) is used to control the influence
range of each triangle in the image plane for evaluating derivatives.
The rendered image gets more and more blurred as σ increases. A
large σ significantly blurs the rendered images, leading to large vi-
sual differences (Figure 9(b)). In contrast, we observe that a small
σ causes the optimization to be trapped early by a local minimum
due to the small influence range (Figure 9(c)).

To effectively reduce visual distortion, we develop a two-step
procedure by first using a large σ parameter for optimization un-
til convergence and then switching to a small σ for refinement
(Figure 9(d)). Since the visual fidelity term does not play a key role
in the sparse spike strategy, this two-step strategy is only applied
in the black-white enhanced optimization, and the sparse spike
strategy uses the small σ . In practice, we set large and small values
for σ as 10−5 and 10−7 accordingly.

Target images for optimization. Through construction, images
rendered by SoftRas are blurrier compared to those from stan-
dard rasterizers. Therefore, if we directly use the input images
and the black-white enhanced images as the target images in Prob-
lems (6), (8), and (10), respectively, then the differences in sharp-
ness introduce additional errors. Thus, we generate a temporary
textured shape by first choosing Id , the image viewed directly on
the saucer by the observer, as the texture image of the saucer shape
S. Then, the texturing step is used to compute the texture coordi-
nates. Next, we use SoftRas to render the temporary textured shape

to produce an image Îd . When the parameter σ of SoftRas changes,

image Îd is re-rendered using the new σ . We use the same process

ACM Transactions on Graphics, Vol. 41, No. 5, Article 174. Publication date: July 2022.

174:8 • K. Wu et al.

Fig. 9. Optimization results using different values for parameter σ .

to generate image Îr for Ir , the image viewed on the mirror cup,

but with a different shape, i.e., the reflected shape of S. Finally, Îd
and Îr are used as the target images in Problem (6), replacing Id
and Ir . For black-white enhancement images Ie

d
and Ie

r , we per-

form the same procedure to generate Îe
d

and Îe
r to replace Ie

d
and

Ie
r in Problems (8) and (10).

Balance weights. It is difficult to find universal balance weights
w in Equation (8) and λ in Equation (10) for different inputs, as
they have drastically different visual fidelity energies and shape-
preserving energies. Therefore, we propose an input-relevant
scheme to automatically set balance weights. First, we measure the
compatibility between the input images and the input surface as
follows:

(1) Texture the input mesh S temporarily with Ie
d

by reversing
the perspective projection process. Then, the reflection of the
mesh in the mirror is rendered to produce a reflected image,
denoted as Ic

r .
(2) Generate another temporary textured surface by projecting
Ie

r onto the reflected shape of S and render the temporary
textured shape to obtain a directly viewed image, denoted as
Ic

d
.

(3) The compatibility score is computed as ρ = ‖Îe
d
− Ic

d
‖2

F
+

‖Îe
r − Ic

r ‖2F .

After extensive testing, we empirically set w = 0.08ρ when σ =
10−5 and w = 0.2ρ. When σ = 10−7 in the black-white enhanced
optimization, λ = 6 × 10−5ρ for the sparse spike strategy. These
weights are fixed throughout our experiments.

Different solvers. The Adamax solver used in our method could
be replaced by other gradient-based optimizers, such as LBFGS.
We test four gradient-based optimization solvers for our problem
(Figure 10), including LBFGS [Liu and Nocedal 1989],
SGD [Qian 1999], RMSprop [Tieleman and Hinton 2012],
and Adamax [Kingma and Ba 2014]. We use the implementations
provided by Pytorch [Paszke et al. 2019] in the experiments. The
experimental results show that LBFGS and SGD do not converge,
while Adamax converges to a smaller value than RMSprop. Hence,
we adopt the Adamax solver provided by Pytorch in all of our
experiments.

Cylindrical mirror cups. Our algorithm can be extended to any
other cylindrical mirror cups with convex directrix and vertical

Fig. 10. We test four different solvers and compare how the three loss func-

tions progress on the example in Figure 13(d). Our algorithm consists of

three stages. At about 700 seconds, we change the δ value to enter the

second stage. At about 1400 seconds, we replace the deformation energy

Edeform with the sparse energy Esparse to enter the last stage.

generatrix, e.g., elliptical cylinders and regular n-gonal prisms
(Figure 19). For these cups, our method for computing reflected
shapes is still applicable. If a mirror cup has a non-convex direc-
trix, then a point on the saucer may yield multiple reflections on
the cup. If a mirror cup does not have a vertical generatrix, then
a point will not necessarily have the same height as its reflection.
Since these two situations are not the focus of our work, we take
them as future subjects of study.

4 EXPERIMENTAL RESULTS

We tested our method with various input images and saucer sur-
faces. We implemented our method in Python and performed all
the experiments on a desktop PC with a 4.2-GHz Intel Core i7-
7700K processor with 32 GB memory and a Nvidia GTX 1080Ti
GPU.

Experimental setting. The radius of the cylindrical mirror cup C
is 0.4. The origin is placed at the center of the bottom of the mir-
ror cup, and we specify the z-axis direction as the vertical upward
direction. The saucer is placed on the negative y-axis. The xy-size
of our saucer shape (Sd) is 1 × 1, and its resolution is 150 × 150
(Figure 14 shows the results of inputs with some other resolutions).
The height values of the saucer vary from 0 to 1.5, and we set the
threshold δ value of the height offset to be 0.05. The viewer/camera
is placed at (0,−5.5, 5). To ensure that the rendered images cover

ACM Transactions on Graphics, Vol. 41, No. 5, Article 174. Publication date: July 2022.

Computational Mirror Cup and Saucer Art • 174:9

Fig. 11. An ablation study with six different settings. (a) Without any de-

formation energy. (b) Using Laplacian deformation energy without black-

white enhanced images. (c) Using Laplacian deformation energy with

black-white enhanced images. (d) Only using sparse deformation energy.

(e) Using sparse deformation energy to refine the result in (b). (f) Using

sparse deformation energy to refine the result in (c).

the heightfield, we set the target viewing positions for the direct
view and the reflected view at (0, 0,−0.8) and (0, 0, 0.1), respec-
tively. The viewing angles are set to 4.5◦ and 3◦ accordingly. The
rendered images (Ip

d
(h, c) and Ip

r (h, c)) has resolution 512 × 512.

Quality metrics. We use two objective metrics to measure the
quality of the results. Evisual, as defined in Equation (2), measures
the visual fidelity, while Edeform (h), defined in Equation (3), mea-
sures the geometric distortion. In addition, we also visualize the
change in height using color coding.

Ablation tests. There are three main components of our method
that may affect the resulting quality: (1) the black-white enhance-
ment; (2) the deformation energy Edeform (h) in Equation (3), and (3)
the sparse spike energy Esparse (h) in Equation (9). We performed a
thorough ablation study to show the necessity of each component.
Ideally, these experiments should be performed on fabricated arti-
facts, as when viewed in real life, some of the color and height dif-
ferences might appear more or less significant. However, the fabri-
cation process is likely to introduce errors due to imperfections in
the manufacturing process, and the viewing position may not per-
fectly match the specified position due to practical misalignments;
therefore, we choose to use rendered results for these experiments.
There are six different settings as follows.

In the first setting, we discard the deformation energy
Edeform (h) and the sparse spike energy Esparse (h). Only the black-
white enhanced optimization is performed to deformS. The result-
ing surface is extremely spiky, as shown in Figure 11(a).

Fig. 12. Different initializations of c. (c) We generate c using the texturing

procedure. (d) We set (ri , дi , bi) = (0.5, 0.5, 0.5), ∀i . From top to bottom,

we show the initial c, the resulting rendered images, and the absolute val-

ues of the resulting height changes.

Fig. 13. Four different background colors in black-white enhancement.

The second setting does not use the deformation energy
Edeform (h), i.e., only Equation (10) is solved. As Figure 11(d) shows,
even though the geometric distortion is concentrated in a small
portion of the saucer, large distortion is still present.

In the third and fourth settings, we do not apply the black-
white enhancement. The third setting only solves Equation (6)
(Figure 11(b)). The fourth setting first solves Equation (6) and then
applies the sparse spike strategy, where Enew

visual
(h, c) is replaced by

Evisual (h, c) (Figure 11(e)).
The fifth setting does not use Esparse (h), i.e., only Equation (8) is

solved (Figure 11(c)). Our method is the sixth setting (Figure 11(f)).
The texturing step is performed for all six settings. In compar-

ing Figure 11(b) (or Figure 11(e)) with Figure 11(c) (or Figure 11(f)),
we see that the black-white enhancement significantly reduces
visual distortion. From the comparison between Figures 11(b) (or
Figure 11(c)) and Figure 11(e) (or Figure 11(f)), we see that the
sparse spike energy also helps reduce visual artifacts.

Different initializations of c. The initialization for c in Sd can
affect the results of the optimization problem (Equation (8)). We

ACM Transactions on Graphics, Vol. 41, No. 5, Article 174. Publication date: July 2022.

174:10 • K. Wu et al.

Fig. 14. Results with heightfields of different resolutions.

tested three different types of initializations: (1) random values
(Figure 12(b)), (2) c generated by the texturing step (Figure 12(c)),
and (3) uniform gray color initialization, (ri ,дi ,bi) = (0.5, 0.5, 0.5)
(Figure 12(d)). For the second initialization, we use the black-white
enhanced images Ie

d
and Ie

r in the texturing step.
For the results in Figure 12, (Evisual,Edeform) in (b), (c), and (d),

are (3330, 0.22), (2401, 0.18), and (2405, 0.16), respectively. As both
the visual comparison and the quantitative quality comparison
show, the first initialization leads to the lowest quality, and the
other two initializations lead to comparable results. Therefore, we
choose the third initialization throughout our experiments for its
simplicity.

Background color for black-white enhancement. In Figure 13,
we show an example of the black-white enhancement, where
we fill the non-salient background regions with four different
colors: (1) gray (0.5, 0.5, 0.5), (2) orange (1, 0.5, 0), (3) light green
(0.5, 1, 0), and (4) light blue (0, 0.5, 1). It is apparent that the
latter three colors lead to visual results that are almost identical.
Furthermore, they produce lower visual distortion (2596, 2585,
and 2540, respectively) and geometric distortion (0.2 for all three
colors), compared to the first choice (gray), where the visual
distortion and geometric distortion are 2798 and 0.22 accordingly.

The black-white enhancement mitigates the emergence of con-
flict areas by magnifying visual distortions. Therefore, in general,
better results can be obtained if there is high contrast between
the background color and the foreground color (black or white).
In this experiment, the gray color has lower contrast with black
(or white), compared to the other three colors. As a result, gray
produces less favorable results, so we use light blue in all our
experiments.

Resolution of the heightfield. We use heightfields with three dif-
ferent resolutions as input for optimization, as shown in Figure 14.
Unsurprisingly, low-resolution heightfields lead to artifacts (see
the zoomed-in views in Figure 14(b)). Figure 14(c) and (d) show
that comparable results can be obtained for resolutions 150 × 150
and 200 × 200. However, compared to a resolution of 150 × 150,
it takes twice the time to optimize with a resolution of 200 × 200.
The reason is that the differential rendering has a time complexity
that is nearly linear to the number of triangles in S. To balance
the running time and the visual quality, we set the resolution of
our heightfield surface to 150 × 150 by default.

Fig. 15. Different shapes and one input image. From left to right, we show

the input shapes, the resulting rendered images, and the absolute values

of the resulting height changes. From top to bottom, the visual distortions

are 2100, 2480, 2541, 2388, and 2563.

Varying input surfaces. In Figure 15, we test five different input
surfaces S for one given pair of images. Our method generates
visually comparable results, and the visual distortions are simi-
lar. This indicates that our algorithm produces suitable deforma-
tions that adapt to the input surface S. Thus, our method is robust
enough to handle various input surfaces in practice.

Varying input images. In Figure 16, we produce five results using
different input images with the same surface. It can be seen that
our method is capable of dealing with different input images, as
it manages to reduce the visual error to a low level and generate
high-quality output.

Stress test. We perform a stress test of our method with three
typical input surfaces S, along with three different input images.
The results in Figure 18 demonstrate the robustness of our algo-
rithm. The second column shows, given either a planar or a ran-
dom heightfield as the input shape, our algorithm manages to
produce a high quality result instead of getting stuck in a sub-
optimal local solution. The third row shows that when the input

ACM Transactions on Graphics, Vol. 41, No. 5, Article 174. Publication date: July 2022.

Computational Mirror Cup and Saucer Art • 174:11

Fig. 16. Different input images and one saucer shape. From left to right,

we show the input images, the resulting rendered images, and the abso-

lute values of the resulting height changes. From top to bottom, the visual

difference errors are 3218, 2824, 2387, 3157, and 2422.

shape is sufficient, our algorithm can optimize only the texture of
the saucer while the shape remains fixed. As seen in these exam-
ples, our framework does not enforce any constraints on the input
shape, instead it takes any shape (in the form of a heightfield) as
input. Although the resulting shape can be very different from the
input in certain cases, such as the plane.

Multiple reflection images. When the mirror cup C is a regular n-
gonal prism, we can obtain multiple reflected images. As Figure 17
shows, the area on the saucer S that is reflected onto the cup C
does not cover the entire surface of the saucer S. In general, there
are two options for where to place C to produce two reflected ar-
eas that are nearly non-overlapping (Figure 17). Consequently, we
are able to generate two reflected images and each of them corre-
sponds to one reflection area.

When generating two reflected images, some algorithmic de-
tails are different from our default cylinder case. First, two re-

Fig. 17. When the mirror cup C is a regular n-gonal prism, only the colored

part of the saucer surface S can be seen on the mirror. With these two

placement options for C, the green areas (left) and the blue areas (right)

hardly overlap.

Fig. 18. Three examples of stress tests. From left to right, we show the in-

put shapes, the resulting rendered images, the absolute values of the result-

ing height changes, and the resulting rendered images from an offset view-

point. The camera is placed at (0.0, −4.5, 6.0) and looks at (0.0, 0.0, −0.5).
From top to bottom, the input shapes are a plane, a random heightfield,

and tabula scalata.

flected shapes must be computed. Second, the visual fidelity energy
contains three terms, two for the reflections and one for the direct
view. Third, the black-white enhanced images become solid-color
enhanced images, i.e., we fill in the colored regions of the three
input images with red, green, and blue, respectively, and the other
regions are filled in with white. Figure 19 shows four examples.

More examples. We collect twenty three different images and
five surface shapes as inputs for our method. Figure 20 shows the
results with 18 combinations. For the five remaining examples, we
use 3D printing technology to manufacture them, as shown in
Figure 21. These results show that our method is indeed robust
for different input images and saucer shapes in practice.

Runtime. Typically, each iteration of our algorithm takes about
0.72 seconds for a heightfield with a resolution of 150 × 150 and
the rendered images with 512 × 512 resolution. Due to the slow
convergence, it can take thousands of iterations for our optimizer

ACM Transactions on Graphics, Vol. 41, No. 5, Article 174. Publication date: July 2022.

174:12 • K. Wu et al.

Fig. 19. Four examples with two reflected images. In the left and middle

columns, the resulting rendered images with two different reflected im-

ages are shown. We show the textured saucers in the right column.

to converge. In all our tests, we observed that none of the exam-
ples took more than 30 minutes. In future work, we believe that
substantial increases in speed are possible, as our code is not yet
optimized.

5 CONCLUSION

We propose a computational tool for automatically designing mir-
ror cup and saucer artwork. To reduce visual differences while
limiting geometric distortion, we develop a method for conflict-
area minimization followed by a texturing step. Two essential
techniques are proposed to minimize conflict areas: (1) black-white
enhancement and (2) sparse spike strategy. To effectively and ef-
ficiently perform these two techniques, we propose first comput-
ing the reflected surfaces for the reflected images and then using
differentiable rendering technology to compute the objective func-
tion gradients for optimization. We have demonstrated the capa-
bility and practicality of our method on an extensive set with forty
six examples. Our system allows users to adjust the weights in
Problems (8) and (10), to balance the tradeoff between visual fi-
delity and shape preservation; for example, large weightsw and λ,
one can reduce surface deformation while allowing greater image
difference.

Visual distortion. In practice, real users’ perspectives may not
exactly match a specified viewing position and direction, which
causes apparent visual distortions. We believe that this can be

alleviated by adding visual distortion for some offset viewing po-
sitions into the visual fidelity energy term; this allows actual per-
spectives to slightly deviate from the specified viewing positions.

3D printed examples. It can be seen from Figure 21 that the real
examples fabricated by 3D printing are visually not as perfect as
in the simulation. The quality of fabricated objects depends on the
printer’s precision and accuracy in both geometry and color. In our
experiments, we used a SLA 3D printer (Stratasys J55) to fabricate
all our examples. We observed that the printed color is blurred due
to the penetration of differently colored printing material at the
surface edges. Recently, Elek et al. [2017], Sumin et al. [2019], and
Nindel et al. [2021] have developed solutions to this very problem.
In the future, we would like to integrate these solutions into our
system.

User interactions. Due to the long running time of our method,
it is currently infeasible to provide an interactive user interface
for design. Consequently, it is challenging to incorporate user’s
design intention into the resulting mirror cup art. In the future,
we wish to speed up our system, using more efficient differentiable
rendering technologies and numerical solvers, thereby enabling an
interactive user interface.

Shape preservation term. We measure shape deviation using the
difference in the Laplacian coordinates of the heightfields. How-
ever, other geometric features, such as edge absence, curvature,
extrimities, and so on, can be equally important. In the future, we
hope to incorporate these factors to allow better preservation of
the input saucer shape.

Uncolored areas. In this work, we choose not to color the areas
of the saucer surface that are invisible in the input viewing direc-
tion, and this can make the saucer less appealing as an art piece. In
general, viewers tend to prefer a saucer surface with overall con-
tinuous and smooth texture, which makes it look more pleasant
when viewed from other directions. In future work, it is worth
considering the smoothness of color transitions over the saucer
surface, specifically, between neighboring colored areas, given that
the saucer’s aesthetic quality is important.

APPENDIX

A PROOF FOR PROPOSITION 3.1

Proof. Suppose that ∠TPO decreases as ∠POT increases. Then
the slope of the moving direction of T should be less than the
slope of PT , which means the slope of lt should be less than
that of PT . Hence, ∠POT > ∠POG, which is impossible, since
∠POT ≤ min{∠POQ, ∠POG}. Therefore ∠PTV = ∠TOP + ∠TPO
is strictly increasing. Similarly, ∠QTV is strictly decreasing, and
∠PTV − ∠QTV is strictly increasing in that range.

When ∠POT = 0, we have ∠PTV = 0 and ∠QTV > 0, hence
∠PTV − ∠QTV < 0. When ∠POT = ∠POQ < ∠POG, we have
∠PTV > 0 and ∠QTV = 0, hence ∠PTV − ∠QTV > 0. When
∠POT = ∠POG < ∠POQ , we have ∠PTV = 90◦. If ∠QTV > 90◦,
then QT will intersect with C, and therefore ∠QTV ≤ 90◦, and
∠PTV − ∠QTV ≥ 0. In summary, ∠PTV − ∠QTV changes from
negative to positive, when ∠POT increases from 0 to ∠POQ . �

ACM Transactions on Graphics, Vol. 41, No. 5, Article 174. Publication date: July 2022.

Computational Mirror Cup and Saucer Art • 174:13

Fig. 20. Eighteen mirror cup art examples generated by our method.

ACM Transactions on Graphics, Vol. 41, No. 5, Article 174. Publication date: July 2022.

174:14 • K. Wu et al.

Fig. 21. A gallery of five mirror cup art pieces physically fabricated with 3D printing.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their constructive sugges-
tions and valuable comments.

REFERENCES
Marc Alexa and Wojciech Matusik. 2010. Reliefs as images. ACM Trans. Graph. 29, 4

(2010), 60–1.
Jurgis Baltrusaitis. 1977. Anamorphic Art. Chadwyck-Healey Translated by WJ Stra-

chan. Cambridge, England.
Amit Bermano, Ilya Baran, Marc Alexa, and Wojciech Matusk. 2012. Shadowpix: Mul-

tiple images from self shadowing. In Computer Graphics Forum, Vol. 31. Wiley
Online Library, 593–602.

Wenzheng Chen, Huan Ling, Jun Gao, Edward Smith, Jaakko Lehtinen, Alec
Jacobson, and Sanja Fidler. 2019. Learning to predict 3d objects with an
interpolation-based differentiable renderer. In Advances in Neural Information
Processing Systems. 9609–9619.

Aleksandar Čučaković and Marijana Paunović. 2015. Cylindrical mirror anamorphosis
and urban-architectural ambience. Nexus Netw. J. 17, 2 (2015), 605–622.

Francesco De Comite. 2011. A new kind of three-dimensional anamorphosis. In
Bridges 2011: Mathematics, Music, Art, Architecture, Culture. 33–38.

Francesco De Comite and Laurent Grisoni. 2015. Numerical anamorphosis: An artistic
exploration. In SIGGRAPH ASIA 2015 Art Papers. 1–7.

Valentin Deschaintre, Miika Aittala, Fredo Durand, George Drettakis, and Adrien
Bousseau. 2018. Single-image svbrdf capture with a rendering-aware deep net-
work. ACM Trans. Graph. 37, 4 (2018), 1–15.

D. Eberly. 2008. Computing a point of reflection on a sphere. Retrieved from http:
//www.geometrictools.com.

Oskar Elek, Denis Sumin, Ran Zhang, Tim Weyrich, Karol Myszkowski, Bernd Bickel,
Alexander Wilkie, and Jaroslav Krivanek. 2017. Scattering-aware texture repro-
duction for 3D printing. ACM Trans. Graph. 36, 6 (2017).

Kyle Genova, Forrester Cole, Aaron Maschinot, Aaron Sarna, Daniel Vlasic, and
William T. Freeman. 2018. Unsupervised training for 3d morphable model regres-
sion. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recog-
nition. 8377–8386.

Dianne Hansford and Daniel Collins. 2007. Anamorphic 3D geometry. Computing 79,
2–4 (2007), 211–223.

Paul Henderson and Vittorio Ferrari. 2018. Learning to generate and reconstruct 3D
meshes with only 2D supervision. In Proceedings of the 29th British Machine Vision
Conference (BMVC’18).

Kai-Wen Hsiao, Jia-Bin Huang, and Hung-Kuo Chu. 2018. Multi-view wire art. ACM
Trans. Graph. 37, 6 (2018), 242–1.

James L. Hunt, B. G. Nickel, and Christian Gigault. 2000. Anamorphic images. Ameri-
can J. Phys. 68, 3 (2000), 232–237.

Danilo Jimenez Rezende, S. M. Eslami, Shakir Mohamed, Peter Battaglia, Max
Jaderberg, and Nicolas Heess. 2016. Unsupervised learning of 3d structure from
images. Adv. Neural Inf. Process. Syst. 29 (2016), 4996–5004.

Marko Jovanovic, Vesna Stojakovic, Bojan Tepavcevic, Dejan Mitov, and Ivana Bajsan-
ski. 2016. Generating an anamorphic image on a curved surface utilizing robotic
fabrication process. In Complexity and Simplicity": Proceedings of the 34th eCAADe
Conference. 185–191.

Hiroharu Kato, Yoshitaka Ushiku, and Tatsuya Harada. 2018. Neural 3d mesh renderer.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
3907–3916.

Jeroen Keiren, Freek van Walderveen, and Alexander Wolff. 2009. Constructability of
trip-lets. In Proceedings of the 25th European Workshop on Computational Geome-
try. 251–254.

Diederik P. Kingma and Jimmy Ba. 2014. Adam: A method for stochastic optimization.
arXiv:1412.6980. Retrieved from https://arxiv.org/abs/1412.6980.

Abhijit Kundu, Yin Li, and James M. Rehg. 2018. 3d-rcnn: Instance-level
3d object reconstruction via render-and-compare. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition. 3559–
3568.

Ying-Miao Kuo, Hung-Kuo Chu, Ming-Te Chi, Ruen-Rone Lee, and Tong-Yee Lee. 2016.
Generating ambiguous figure-ground images. IEEE Trans. Vis. Comput. Graph. 23,
5 (2016), 1534–1545.

Tzu-Mao Li, Miika Aittala, Frédo Durand, and Jaakko Lehtinen. 2018. Differentiable
monte carlo ray tracing through edge sampling. ACM Trans. Graph. 37, 6 (2018),
1–11.

Dong C. Liu and Jorge Nocedal. 1989. On the limited memory BFGS method for large
scale optimization. Math. Program. 45, 1 (1989), 503–528.

ACM Transactions on Graphics, Vol. 41, No. 5, Article 174. Publication date: July 2022.

http://www.geometrictools.com
https://arxiv.org/abs/1412.6980

Computational Mirror Cup and Saucer Art • 174:15

Guilin Liu, Duygu Ceylan, Ersin Yumer, Jimei Yang, and Jyh-Ming Lien. 2017. Material
editing using a physically based rendering network. In Proceedings of the IEEE
International Conference on Computer Vision. 2261–2269.

Shichen Liu, Tianye Li, Weikai Chen, and Hao Li. 2019. Soft rasterizer: A differentiable
renderer for image-based 3d reasoning. In Proceedings of the IEEE International
Conference on Computer Vision. 7708–7717.

Matthew M. Loper and Michael J. Black. 2014. OpenDR: An approximate differentiable
renderer. In European Conference on Computer Vision. Springer, 154–169.

Sehee Min, Jaedong Lee, Jungdam Won, and Jehee Lee. 2017. Soft shadow art. In Pro-
ceedings of the Symposium on Computational Aesthetics. 1–9.

Niloy J. Mitra and Mark Pauly. 2009. Shadow art. ACM Trans. Graph. 28, 5 (2009), 1–7.
Merlin Nimier-David, Delio Vicini, Tizian Zeltner, and Wenzel Jakob. 2019. Mitsuba

2: A retargetable forward and inverse renderer. ACM Trans. Graph. 38, 6 (2019),
1–17.

Thomas Klaus Nindel, Tomáš Iser, Tobias Rittig, Alexander Wilkie, and Jaroslav
Křivánek. 2021. A gradient-based framework for 3D print appearance optimiza-
tion. ACM Trans. Graph. 40, 4 (2021), 1–15.

Aude Oliva, Antonio Torralba, and Philippe G. Schyns. 2006. Hybrid images. ACM
Trans. Graph. 25, 3 (2006), 527–532.

Marios Papas, Wojciech Jarosz, Wenzel Jakob, Szymon Rusinkiewicz, Wojciech Ma-
tusik, and Tim Weyrich. 2011. Goal-based caustics. In Computer Graphics Forum,
Vol. 30. Wiley Online Library, 503–511.

Neal Parikh and Stephen Boyd. 2014. Proximal algorithms. Found. Trends Optim. 1, 3
(2014), 127–239.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. 2019.
Pytorch: An imperative style, high-performance deep learning library. Adv. Neu-
ral Inf. Process. Syst. 32 (2019), 8026–8037.

Petar Pjanic and Roger D. Hersch. 2015. Color changing effects with anisotropic
halftone prints on metal. ACM Trans. Graph. 34, 6 (2015), 1–12.

Ning Qian. 1999. On the momentum term in gradient descent learning algorithms.
Neural Netw. 12, 1 (1999), 145–151.

Kimberly Rausch et al. 2012. The mathematics behind anamorphic art. In Proceedings
of Bridges 2012: Mathematics, Music, Art, Architecture, Culture. Tessellations Pub-
lishing, 513–514.

Elad Richardson, Matan Sela, Roy Or-El, and Ron Kimmel. 2017. Learning detailed
face reconstruction from a single image. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. 1259–1268.

Kaisei Sakurai, Yoshinori Dobashi, Kei Iwasaki, and Tomoyuki Nishita. 2018. Fabri-
cating reflectors for displaying multiple images. ACM Trans. Graph. 37, 4 (2018),
1–10.

Javier Sánchez-Reyes and Jesús M. Chacón. 2016. Anamorphic free-form deformation.
Comput. Aid. Geom. Des. 46 (2016), 30–42.

Javier Sánchez-Reyes and Jesús M. Chacón. 2020. How to make impossible objects
possible: Anamorphic deformation of textured NURBS. Comput. Aid. Geom. Des.
78 (2020), 101826.

Christian Schüller, Daniele Panozzo, and Olga Sorkine-Hornung. 2014. Appearance-
mimicking surfaces. ACM Trans. Graph. 33, 6 (2014), 1–10.

Yuliy Schwartzburg, Romain Testuz, Andrea Tagliasacchi, and Mark Pauly. 2014.
High-contrast computational caustic design. ACM Trans. Graph. 33, 4 (2014),
1–11.

Guy Sela and Gershon Elber. 2007. Generation of view dependent models using free
form deformation. Vis. Comput. 23, 3 (2007), 219–229.

Xavier Snelgrove, Thiago Pereira, Wojciech Matusik, and Marc Alexa. 2013. Parallax
Walls: Light fields from occlusion on height fields. Comput. Graph. 37, 8 (2013),
974–982.

O. Sorkine, D. Cohen-Or, Y. Lipman, M. Alexa, C. Rössl, and H.-P. Seidel. 2004. Lapla-
cian surface editing. In Proceedings of the 2004 Eurographics/ACM SIGGRAPH Sym-
posium on Geometry Processing (SGP’04). 175–184.

Vesna Stojakovic and Bojan Tepavcevic. 2016. Distortion minimization: A framework
for the design of plane geometric anamorphosis. Nexus Netw. J. 18, 3 (2016), 759–
777.

Denis Sumin, Tobias Rittig, Vahid Babaei, Thomas Nindel, Alexander Wilkie, Piotr
Didyk, Bernd Bickel, J. KŖivánek, Karol Myszkowski, and Tim Weyrich. 2019.
Geometry-aware scattering compensation for 3D printing. ACM Trans. Graph. 38,
4 (2019).

Ayush Tewari, Michael Zollhöfer, Pablo Garrido, Florian Bernard, Hyeongwoo Kim,
Patrick Pérez, and Christian Theobalt. 2018. Self-supervised multi-level face
model learning for monocular reconstruction at over 250 hz. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition. 2549–2559.

Ayush Tewari, Michael Zollhofer, Hyeongwoo Kim, Pablo Garrido, Florian Bernard,
Patrick Perez, and Christian Theobalt. 2017. Mofa: Model-based deep convo-
lutional face autoencoder for unsupervised monocular reconstruction. In Pro-
ceedings of the IEEE International Conference on Computer Vision Workshops.
1274–1283.

Tijmen Tieleman and Geoffrey Hinton. 2012. Lecture 6.5-rmsprop, coursera: Neural
networks for machine learning. Technical Report, University of Toronto.

Luan Tran and Xiaoming Liu. 2018. Nonlinear 3d face morphable model. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern Recognition. 7346–7355.

Tim Weyrich, Pieter Peers, Wojciech Matusik, and Szymon Rusinkiewicz. 2009. Fab-
ricating microgeometry for custom surface reflectance. ACM Trans. Graph. 28, 3
(2009), 1–6.

Cheng Zhang, Bailey Miller, Kai Yan, Ioannis Gkioulekas, and Shuang Zhao. 2020.
Path-space differentiable rendering. ACM Trans. Graph. 39, 4 (2020), 143.

Cheng Zhang, Lifan Wu, Changxi Zheng, Ioannis Gkioulekas, Ravi Ramamoorthi, and
Shuang Zhao. 2019. A differential theory of radiative transfer. ACM Trans. Graph.
38, 6 (2019), 1–16.

Haisen Zhao, Lin Lu, Yuan Wei, Dani Lischinski, Andrei Sharf, Daniel Cohen-Or, and
Baoquan Chen. 2016. Printed perforated lampshades for continuous projective
images. ACM Trans. Graph. 35, 5 (2016), 1–11.

Jacek Zienkiewicz, Andrew Davison, and Stefan Leutenegger. 2016. Real-time
height map fusion using differentiable rendering. In Proceedings of the IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS’16). IEEE,
4280–4287.

Received July 2021; revised January 2022; accepted February 2022

ACM Transactions on Graphics, Vol. 41, No. 5, Article 174. Publication date: July 2022.

