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PCDNF: Revisiting Learning-based Point Cloud
Denoising via Joint Normal Filtering
Zheng Liu, Yaowu Zhao, Sijing Zhan, Yuanyuan Liu, Renjie Chen†, Ying He

Abstract—Point cloud denoising is a fundamental and challenging problem in geometry processing. Existing methods typically involve
direct denoising of noisy input or filtering raw normals followed by point position updates. Recognizing the crucial relationship between
point cloud denoising and normal filtering, we re-examine this problem from a multitask perspective and propose an end-to-end network
called PCDNF for joint normal filtering-based point cloud denoising. We introduce an auxiliary normal filtering task to enhance the
network’s ability to remove noise while preserving geometric features more accurately. Our network incorporates two novel modules.
First, we design a shape-aware selector to improve noise removal performance by constructing latent tangent space representations
for specific points, taking into account learned point and normal features as well as geometric priors. Second, we develop a feature
refinement module to fuse point and normal features, capitalizing on the strengths of point features in describing geometric details and
normal features in representing geometric structures, such as sharp edges and corners. This combination overcomes the limitations of
each feature type and better recovers geometric information. Extensive evaluations, comparisons, and ablation studies demonstrate
that the proposed method outperforms state-of-the-art approaches in both point cloud denoising and normal filtering.

Index Terms—Point cloud denoising, normal filtering, 3D deep learning, point cloud processing

✦

1 INTRODUCTION

POINT clouds are widely used in various fields, including
computer graphics, 3D computer vision, photogram-

metry, autonomous driving, simultaneous localization, and
mapping (SLAM), among others. With the rapid develop-
ment of modern 3D digital acquisition devices, such as
LiDAR and depth cameras, more and more 3D models
are routinely obtained and stored as point clouds in shape
repositories. However, due to physical measurement and re-
construction errors, the acquired point clouds are inevitably
corrupted by noise [1]. Noise not only degrades the visual
quality of 3D models but also causes unexpected problems
in downstream applications [2], [3]. Therefore, point cloud
denoising is highly desired and often considered the first
step in geometry processing. Due to the high-frequency
nature of both noise and geometric features, it is challenging
to distinguish and recover features while removing noise
from point clouds. Point cloud denoising has been a topic of
extensive research in the past two decades. While significant
progress has been made, traditional denoising methods [4],
[5], [6], [7], [8], [9], [10] typically require numerous param-
eters and tedious parameter tuning. The tuning process
is not only time-consuming but also crucial for achieving
promising results.

The success of deep neural networks in image processing
has recently led to the adoption of data-driven approaches
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for various tasks in point cloud processing, including de-
noising. Deep learning methods are automatic and eliminate
the need for parameter tuning, making them suitable for
a wider range of 3D models than traditional methods.
Existing deep denoising methods can generally be classified
into one- and two-stage methods.

One-stage methods, such as PointCleanNet [11], Point-
filter [3], RePCD-Net [2], typically use point feature repre-
sentations to regress a displacement per noisy point and
adjust its position to the ground-truth directly. Due to a
lack of consideration of normal information, PointCleanNet
[11] and RePCD-Net [2] blur sharp features. Pointfilter [3],
which incorporates normal information in its loss function,
can better preserve sharp features but may oversmooth
geometric details.

Two-stage methods, which filter normals followed by
updating their locations, have gained widespread atten-
tion due to their ability to incorporate local geometry in-
formation [1], [12]. The main difference among the two-
stage methods is in their normal filtering networks. Similar
to Pointfilter [3], small-scale geometric features including
fine details may get blurred when using only the learned
normal-based features to update point positions. To recover
detailed features accurately, the method in [12] relies on the
additional feature detection network, while GeoDualCNN
[1] needs the guidance of geometry expertise and a feature-
preserving position updating algorithm.

The aforementioned learning-based methods either di-
rectly smooth noisy points or filter raw normals followed
by updating point positions, making them unsuitable for
joint denoising and normal filtering. However, denoising
and normal filtering tasks are intrinsically intertwined, in-
fluencing and benefiting each other. If better normals can be
estimated from the noisy point cloud, the performance of
the denoising task can be significantly improved, and vice

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2023.3292464

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.



2

versa. To date, no existing work can perform denoising and
normal filtering tasks jointly.

This observation has led us to develop a point-normal
feature interaction network within a joint task paradigm,
which can be regarded as a special category of multitask
learning. For the rest of this paper, we refer to our multitask
learning specifically to joint task learning. Unlike previous
work, we present a unified architecture for jointly learning
point cloud denoising and normal filtering. The proposed
network comprises two branches — one for point cloud
denoising and the other for normal filtering — that can
mutually benefit each other. The combined technique lever-
ages the best properties of each task while attempting to
overcome their respective weaknesses.

Specifically, the proposed network consists of four mod-
ules: the multiscale feature extractor, shape-aware selector,
feature refinement, and the decoder. The feature extractor
utilizes DGCNN [13] as the backbone for learning point
and normal feature representations in a multiscale manner.
Next, the learned point and normal features, combined with
geometric priors, are fed into the shape-aware selector to
construct the latent tangent space for the specific point,
which helps reduce the negative impact of points not within
the tangent space.

Following this, we design a feature refinement module
consisting of two units — feature augmentation and fusion
— to enhance the network’s ability to accurately recover ge-
ometric features. The feature augmentation unit aggregates
neighboring features to obtain richer point and normal fea-
ture representations, while the feature fusion unit integrates
the augmented point and normal features to better preserve
both structural and detailed geometric features. Finally, the
integrated features are fed into the decoder to predict the
denoised point coordinates and filtered normals.

To summarize, the main contributions of this work in-
clude the following:

• We introduce a novel architecture for jointly learning
point cloud denoising and normal filtering. To the best
of our knowledge, this is the first end-to-end frame-
work for point cloud denoising that adopts a multitask
perspective.

• We develop a shape-aware selecting module to enhance
denoising performance by reducing the adverse effects
of neighboring points outside the latent tangent space
of the specific point. This module represents the tangent
space using learned point and normal features com-
bined with geometric priors.

• We design a feature refinement module to boost the net-
work’s ability for preserving geometric features. This
module first expands the receptive fields of learned
features and subsequently integrates the learned point
and normal features to better recover various geometric
features, such as structural and detailed features.

• Qualitative and quantitative experiments on both syn-
thetic and scanned data demonstrate that our network
outperforms state-of-the-art methods in both denoising
and normal filtering tasks.

2 RELATED WORK

2.1 Point Cloud Denoising

As a fundamental geometry processing problem, point
cloud denoising has garnered significant attention over the
past few decades. Given the vast amount of literature on
denoising techniques, providing an exhaustive review is
beyond the scope of this paper. We refer interested readers
to [14] for a comprehensive review. In this section, we
briefly discuss traditional methods before focusing on recent
learning-based techniques.

Traditional methods. Moving Least Squares (MLS)-
related methods [4], [15], [16], [17] project the input point
set onto the approximated underlying surface iteratively.
Originally designed for reconstructing noise-free surfaces,
these classical methods assume piecewise smooth priors for
the underlying surface, which can result in the smoothing of
geometric features. Later on, Lipman et al. [18] proposed the
pioneering Locally Optimal Projection (LOP) method, which
has been proven successful for point cloud consolidation.
LOP and its variants [5], [19], [20], [21] aim to generate
a point set that describes the underlying surface while
maintaining a uniform distribution. Despite their ability
to robustly remove noise and produce uniformly sampled
results, LOP-related methods struggle to preserve geometric
features in the presence of large noise. Optimization-based
methods, on the other hand, formulate the denoising pro-
cess as optimization problems with suitable priors. Among
them, sparse optimization methods, such as [9], [22], [23],
[24], effectively preserve geometric features (particularly
sharp ones) by leveraging the sparsity of geometric features
over underlying surfaces. Recently, low-rank and dictionary
learning techniques [6], [8], [25], [26], [27] have gained
attention due to their ability to preserve structural repe-
tition on underlying surfaces by exploiting self-similarity
characteristics. Hu et al. [28] proposed a feature graph learn-
ing approach and employed it for point cloud denoising
with points’ positions and normals as features, leading to
impressive denoising results. Although optimization-based
methods excel in preserving certain geometric features, their
reliance on geometric priors may hinder their performance
in preserving other types of features. In general, traditional
methods involve complex computations or optimization
problems and necessitate a tedious trial-and-error process
to achieve satisfactory results.

Learning-based methods. Recently, with the develop-
ment of neural networks [13], [29], [30], [31], [32], deep
learning techniques have been introduced into point cloud
denoising extensively and achieved impressive results.
Roveri et al. [33] proposed PointProNet, a fully differen-
tiable denoising architecture based on 2D CNN, which con-
verts unordered points to regularly sampled height maps.
EC-Net [34] and DMRDenoise [35] mainly focus on up-
sampling and consolidating techniques over point clouds.
EC-Net designs an edge-aware consolidation network to
denoise point clouds. This method preserves sharp geo-
metric features but retains noise to some extent. Although
DMRDenoise can remove noise successfully during the
downsampling stage, it may blur geometric features. To-
talDenoising, developed by Hermosilla et al. [36], intro-
duces a spatial prior that steers converge to underlying
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surfaces without supervision. However, as an unsupervised
method, TotalDenoising is sensitive to large noise and may
suffer shrinkage artifacts. GPDNet [37] uses the graph-
convolutional neural network for denoising. Luo and Hu
[38] proposed a paradigm of denoising by exploiting the
distribution model of noisy point clouds. Most of the above
learning-based methods cannot effectively preserve geomet-
ric features, especially sharp features. Moreover, the noise
removal performance of these methods decreases evidently
as the noise level increases.

More recently, some techniques belonging to the two-
stage paradigm [1], [12] - normal filtering followed by up-
dating point coordinates - have been developed for feature-
preserving denoising. Lu et al. [12] classified the noisy
input as feature points and non-feature points and then pre-
dicted multi-normal on the feature points to preserve sharp
features. Wei et al. [1] proposed a geometry-supporting
dual convolutional neural network (GeoDualCNN) to fil-
ter normals and then updated point coordinates to match
the filtered normals. Although GeoDualCNN can produce
promising results, the requirement of computing the extra
homogeneous neighborhood for each point limits its end-to-
end applicability. Luo and Hu [38] proposed to first estimate
the gradient for the noisy point cloud and then perform
denoising via gradient ascent. Chen et al. [39] proposed
a global and continuous gradient field model, which can
resample degraded point clouds via gradient ascent with
the introduced graph Laplacian regularizer.

Compared to these two-stage methods, an alternative
paradigm involves developing networks that directly pre-
dict displacements of the noisy point cloud and then ap-
ply the predicted displacements to reposition point co-
ordinates. Several methods have been developed follow-
ing this paradigm [2], [3], [11]. PointCleanNet [11] first
excludes outliers and then predicts displacement vectors
for the remaining noisy points. This method may retain
extra noise on the denoised results and tends to smooth
sharp features to varying degrees. To address this issue,
Pointfilter [3] introduces a loss function preserving features
with an encoder-decoder framework. Although Pointfilter
can preserve sharp features, it cannot recover small-scale
geometric features well. Later, Chen et al. [2] proposed a
feature-aware recurrent architecture to learn more repre-
sentative features for recovering multiscale geometric fea-
tures effectively. However, in the case of large noise, their
method seems to be difficult to keep a balance between
noisy removal and geometric feature recovery. More re-
cently, Edirimuni et al. [40] introduced a contrastive learning
framework to generate effective patch-wise representations
with noise corruption as augmentation, which can infer both
displacements and normals simultaneously.

2.2 Point Cloud Normal Filtering

Point normals, which indicate the orientation of the scanned
surface, are essential signals that have been widely applied
in various practical problems, such as surface reconstruction
[41], [42], 3D descriptors [43], and registration [44]. How-
ever, accurately estimating point normals is challenging, as
captured point clouds are inevitably corrupted by noise and
outliers. Consequently, normal filtering has been extensively

studied over the past decades. Due to the vast amount of
literature on normal filtering, we only review the learning-
based methods related to our work.

Since the pioneering work of Qi et al. [29], numerous
studies have extended and applied the PointNet architec-
ture to point cloud processing problems. PCPNet [47] was
the first to apply the PointNet architecture for estimating
normals from noisy point clouds, addressing the normal
filtering task. Zhou et al. [48] proposed a plane constraint
mechanism to divide neighborhood points into main plane
points and error points, using only the learned features of
the main plane points to regress normals. Their method
is robust to noise and neighborhood scales. To overcome
the oversmoothing artifacts, Nesti-Net [49] introduces mix-
tures of experts to predict the optimal neighborhood scale
instead of simply concatenating multiple scales together.
Their multiscale strategy can improve performance effec-
tively but leads to evident time consumption. Zhou et al.
[50] proposed a normal filter based on multipatch stitching.
Thanks to their patch-level architecture, their method can
reduce computational costs and improve the robustness of
noise removal. Instead of directly predicting normals from
the learned features, some methods [51], [52], [53] estimate
the normal for a specific point by fitting a local underlying
surface through its neighboring points and then compute
the normal from the fitting surface. These methods are based
on the weighted least squares surface fitting of the local
geometric neighborhood, which can improve the general-
ization ability of their networks on real scanning data [52].
Cao et al. [54] learned a latent tangent space representation
with a lightweight network and then utilized a differentiable
RANSAC to estimate normals of the underlying surface.
Zhou et al. [46] deployed a multi-feature scheme to capture
geometric information from multiple feature representations
and then updated normals in a refinement system. Sharma
et al. [55] proposed a normal estimation network with
point upsampling for robust surface reconstruction. Unlike
these existing methods, we present a unified architecture for
jointly learning point cloud denoising and normal filtering.
The combined technique is able to apply the best properties
of each of the two tasks, and try to overcome the weakness
of both. Thus, it performs well in preserving geometric
features and removing noise, and at the same time avoids
the artifacts in the results.

3 METHOD

This section starts with an overview of our framework of
point cloud denoising with joint normal filtering. Then, we
present our network architecture, followed by elaborating
on each module of the network. Finally, an end-to-end joint
loss function is introduced.

3.1 Problem Statement

Point cloud denoising is nontrivial due to the ill-posed
nature of the problem. Many learning-based methods [2],
[3], [11] cast the noise as pointwise residuals (i.e., a displace-
ment vector per input point), and try to predict the residual
vectors in order to smooth the input point cloud. How-
ever, given only the point positions, it is still challenging
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Fig. 1: An overview of our joint point cloud denoising and normal filtering network, coined as PCDNF. PCDNF
consists of four main modules: the multiscale feature extractor, shape-aware selector, feature refinement (including feature
augmentation and fusion units), and the decoder. Given a noisy patch of a point (along with the corresponding raw normals
of the patch), PCDNF is capable of concurrently predicting the coordinate and filtered normal of the specific point.

to achieve satisfactory denoising results while preserving
geometric features. Note that, high-quality normals can im-
prove denoising performance; conversely, accurate normals
can be computed from high-quality point clouds. Thus, as
an alternative to directly predict the displacement vectors
from the noisy input, we propose to perform point cloud
denoising by combining position correction and normal
filtering, which is stated as follows

(D̂, N̂) = F(P,N), P = P̂ + D̂, (1)

where P and P̂ are the noisy point cloud and its correspond-
ing denoised point cloud, D̂ denotes the predicted displace-
ment vectors, N denotes the raw normals of the noisy input
and N̂ denotes the corresponding predicted normals. Our
method aims to learn a mapping F : (P,N) → (D̂, N̂) for
predicting displacement vectors and filtered normals simul-
taneously. Then, the denoised point cloud can be derived
from (1) straightforwardly.

3.2 Network Architecture

Based on the problem statement (1), we design a multi-
task network, dubbed PCDNF, for joint point cloud de-
noising and normal filtering. Fig. 1 shows the architecture
of PCDNF. Our network consists of four modules: the
multiscale feature extractor, shape-aware selector, feature
refinement, and decoder.

Specifically, given a noisy patch and its corresponding
raw normals, the multiscale feature extractor embeds the
inputs into the coarse representations of point and normal
features. Then, the shape-aware selector selects the points
highly related to the specific point in terms of geometric in-
formation and coarse representations. These selected points
form a latent tangent space of the specific point, making
noise removal more effective. The feature refinement mod-
ule first encodes local spatial information to augment the
similarity representations and then fuses the augmented
representations for better geometric feature preservation. Fi-
nally, the coordinate and filtered normal of the specific point
can be predicted by the coordinate and normal regressors of
the decoder.

3.2.1 Multiscale feature extractor

Given a point pi of the noisy point cloud P, a patch centered
at pi is defined as

Pi = {pj | ∥pj − pi∥ < r} ∈ RM×3.

M is the number of points within the patch and r is the
patch radius. The corresponding raw normals of Pi can
be denoted as Ni = {nj} ∈ RM×3. It is known that the
features learned from a single-scale receptive field cannot
faithfully describe the local shape of the underlying surface.
To address this issue, we propose a multiscale feature ex-
tractor using a series of EdgeConv operations [13], which
can learn multiscale discriminative representations in both
the Euclidean and the feature spaces.

Given an input patch with coordinates Pi and normals
Ni, our multiscale feature extractor learns a coarse point fea-
ture FPi

= {fpj
| ∀pj ∈ Pi} ∈ RM×128 from Pi, and a coarse

normal feature FNi
= {fnj

| ∀nj ∈ Ni} ∈ RM×128 from
Ni. Fig. 2a provides details on our feature embeddings. We
elaborate on the process of extracting the coarse point fea-
ture FPi

. The normal feature embedding is done similarly.
For any point pj ∈ Pi, to extract its pointwise feature fpj

,
we first construct two k-nearest neighbors (kNN) graphs
of different sizes in order to capture multiscale geometric
information around pj . Then, we compute the features of pj
using the EdgeConv operation [13] with graph sizes k1, k2
in the 1-st layer as

f1,k1
pj

= max
q∈Nk1

(pj)
hθ(pj , q − pj),

f1,k2
pj

= max
q∈Nk2

(pj)
hθ(pj , q − pj),

where Nk1(pj) and Nk2(pj) denote the neighbors of point
pj in the graphs with sizes k1 and k2, hθ denotes the multi-
layer perception (MLP) parameterized by θ, max denotes
the max pooling operation. To make the pointwise feature
more discriminative, we concatenate features f1,k1

pj
and

f1,k2
pj

, followed by MLP as

f1
pj

= MLP(concat(f1,k1
pj

, f1,k2
pj

)),

where concat is the concatenation operation. To further
enlarge receptive fields and object relations in the feature
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Fig. 2: Illustration of (a) feature embedding and decoder consisting of (b) coordinate regression and (c) normal regression.

space, we perform EdgeConv in the feature space followed
by MLP as

fpj = MLP

(
max

q∈Nk3
(pj)

hθ(f
1
pj
, q − f1

pj
)

)
,

where fpj
is the pointwise feature of pj with graph size k3.

Thus, the coarse point feature FPi
of patch Pi can be derived

easily. Similarly, we can learn the pointwise normal feature
fnj

, and obtain the coarse normal feature FNi
of the patch.

𝒑𝒑𝒊𝒊

𝒓𝒓

(a)

𝒑𝒑𝒊𝒊

𝒓𝒓

(b)

Fig. 3: Illustration for selecting similar points to the specific
point pi plotted in red. The selected similar points in the
same latent space of pi are plotted in green, and the negative
points are plotted in blue. The solid line is the latent tangent
space of pi. The dashed line is the patch radius.

3.2.2 Shape-aware selector
The extracted coarse representations FPi and FNi for point
pi can roughly describe the overall shape of patch Pi. How-
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Fig. 4: Illustration of the shape-aware selector.

ever, outliers, different scales and types of noise, and sam-
pling anisotropy may be contained in the noisy patch. These
defects of the patch inevitably hurt network performance
and lead to unsatisfactory denoising results. For example,
suppose the patch of pi contains outliers and heavy-noise
points; see Fig. 3a. In this case, these points negatively influ-
ence the representations of the patch, which may degrade
denoising results, causing problems such as residual noise
or shape collapsing. Furthermore, if the patch contains sharp
features, the neighbors outside the same tangent space of pi
have negative influences on feature representations of the
patch, which may blur geometric features in the denoising
results; see Fig. 3b.

In order to address the above problems, we design a
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shape-aware selector to choose points similar to the spe-
cific point within the patch, which can greatly reduce the
influences of negative points. Fig. 4 shows the detailed
structure of the shape-aware selector. As we can see, the
selector leverages the guidance of four types of information,
including the coarse point and normal features learned by
our feature extractor and two geometry information (dis-
tance and angle information). Specifically, we first apply
fully connected layers to extract the feature from the four
types of information, respectively. Then, we calculate the
similarity score between point pj and pi using the following
score function:

wpj
= score

(
concat(FC(angj),FC(distj),FC(fpj

),

FC(fnj
))
)
, ∀pj ∈ Pi,∀nj ∈ Ni,

(2)

where FC denotes fully connected layers. angj and distj
represent angle and distance information of pj defined as

angj = ∠(pj − pi, nj), distj = exp(−∥pj − pi∥2).

The implementation of score function (2) is shown in Fig.
4. It produces a similarity vector WPi

= {wpj
} ∈ RM×1,

recording the degree of similarity between point pj and pi.
Then, the points within the patch that have top-K scores are
retained, while the others are discarded as follows:

PK
i = {pl|l ∈ topK(WPi

)} ∈ RK×3,

where topK is the function that extracts the indices of the K
largest elements of the given input, and PK

i is the similarity
point set to the specific point. As a result, we can obtain the
similarity representation for point and normal vectors from
the similarity point set within the patch as

F1
Pi

= {fpl
} ∈ RK×128, F1

Ni
= {fnl

} ∈ RK×128,

where fpl
and fnl

are pointwise coordinate and normal
features of point pl ∈ PK

i . Fig. 5 shows examples of selecting

Fig. 5: Illustration of similar points selected from three
different shaped patches. From top to bottom: patches cor-
rupted with 0%, 0.25%, 0.5% noise, respectively. From left
to right: for each patch, we show the front and side views
of the patch to demonstrate the selected points (plotted in
dark blue) similar to the specific point (plotted in red). The
negative points to the specific point are plotted in light blue.

similar points from different shapes of patches using our
shape-aware selector. Consistent with our intuition, our
selector is robust against noise and can choose similar points
distributed on the tangent space of the specific point.

Remark 1. We provide an intuitive interpretation of

the shape-aware selector. To effectively preserve geometric
features for denoising and normal filtering tasks, our selec-
tor chooses neighboring points that do not span geometric
features (residing on the same tangent space). Our method
relies solely on the prior information and feature-preserving
loss function for the two related tasks to ensure the co-
planarity of the selector, eliminating the need to label these
co-planar points. In future work, we plan to investigate the
use of the selector for weakly supervised plane segmenta-
tion.

𝑘𝑘4

K × 128 K × 128 K × 384

MLP
(128,128)

Average

𝐾𝐾 × 128

Concatenate

Add

𝐾𝐾 × 128

C
Max, repeat K

Augmentation Fusion

refined point feature

similarity point
feature

similarity normal 
feature

coarse point
feature

𝑀𝑀 × 128

C

Fig. 6: Illustration of the feature refinement module consist-
ing of feature augmentation and fusion units, using point
cloud denoising network branch as an example.

3.2.3 Feature refinement
Due to the unavoidable trade-off between noise removal
and preservation of geometric features, we can remove
the noise effectively but inevitably blur some small-scale
geometric features through the previous two modules (the
multiscale feature extractor and shape-aware selector). To
address this issue, we propose a feature refinement module
to facilitate the feature-preserving ability of the overall
network. Fig. 6 shows the proposed module consisting of
two units: feature augmentation and feature fusion, which
will be detailed in the following.

(a) (b)

Fig. 7: (a) Illustration of the feature augmentation unit,
which enlarges receptive fields (dotted circles) of similar
points plotted in green. Thus, the specific point (plotted in
red) can obtain a more representative feature from those
augmented features of similar points, illustrated in (b).

Feature augmentation. After the stage of similar point selec-
tion, we sequentially augment the learned features of similar
points by enlarging the receptive fields for discovering more
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(a) (b) (c)

Fig. 8: (a) Noisy input. (b) Denoising result without the
feature augmentation unit. (c) Denoising result with the
feature augmentation unit.

locally geometric details; see Fig. 7 for illustration. To learn
more representative features, for each similar point (to the
specific point within the patch), we first search KNN neigh-
bors of it and gather the features of the neighbors according
to the similarity scores. Then, the augmented point and
normal features of each similar point are computed as

f2
pl

= MLP

fpl
+

(
1

k4

∑
q∈Nk4

(pl)

wqfq

) ,

f2
nl

= MLP

fnl
+

(
1

k4

∑
q∈Nk4

(pl)

wqfnq

) ,

where k4 is the neighboring number of pl, and wq is the
similarity score obtained with (2). Fig. 8 shows the capability
of the feature augmentation unit. Fig. 8c shows that the
proposed unit plays a key role in recovering local geometric
features. Without this unit, some geometric details and
shallow structures are blurred in the result; see Fig. 8b.

(a) (b) (c)

Fig. 9: Illustration of the feature fusion unit. (a) Noisy input.
(b) Denoising and normal filtering results without the fea-
ture fusion unit. (c) Denoising and normal filtering results
with the feature fusion unit. The second row visualizes the
normal error maps, measured as the angular differences
between the filtered normals and the ground truth.

Feature fusion. The feature fusion unit is motivated by
the following observation. The point features are more
instrumental in recovering local geometric features, while
the normal features are more suitable for recovering sharp
edges, corners, and smooth transition regions. Thus, the

fusion of point and normal features can help better recover
various types of geometric features. In addition, the global
feature can better describe the whole shape of the patch.
Specifically, for each similar point within the patch, we
concatenate the three types of features together (including
point and normal features and the global feature) to obtain
the fused features as

f3
pl

= concat(f2
pl
, f2

nl
, fg

Pi
),

f3
nl

= concat(f2
nl
, f2

pl
, fg

Ni
),

where f3
pl

, f3
nl

are the refined point and normal features of
the similar point. fg

Pi
and fg

Ni
are global features of the patch

which are obtained by feeding the coarse features Fpi
and

FNi
into the max-pooling operator, respectively. We validate

the effectiveness of our feature fusion unit in Fig. 9. As Figs.
9b and 9c show, incorporating normal features into point
features allows the denoising task to better preserve sharp
geometric features and smooth regions while incorporating
point features into normal features can yield a more satis-
factory normal filtering result, see the normal error maps in
the second row of Figs. 9b and 9c.

3.2.4 Decoder
Given a point pi, the feature refinement module gener-
ates refined point and normal features of the patch Pi,
F3
Pi

= {f3
pl
} ∈ RK×384 and F3

Ni
= {f3

nl
} ∈ RK×384, which

are inputs to our decoder. Our decoder includes two re-
gressors: coordinate and normal regression. For coordinate
regression, we apply MLP and FC layers to predict the
displacement vector from the refined point feature F3

Pi
, and

then obtain the denoised point by adding the predicted
displacement vector to the original coordinate; see Fig. 2b.
For normal regression, we use ResNet-like operations [56]
to obtain the filtered normal from the refined normal feature
F3
Ni

; see the details in Fig. 2c.

3.3 Training Losses

To train our network in an end-to-end manner, we design
three types of losses as our optimization objectives: a point-
denoise loss, a normal-filter loss, and an orthogonality loss.
The joint loss function is formulated as

L = λ1Lpoint + λ2Lnormal + λ3Lortho, (3)

where λ1, λ2, and λ3 are three hyperparameters that balance
the importance of each term. We empirically set λ1 = 100,
λ2 = 10 and λ3 = 10 for training.
Point-denoise loss. To ensure that the denoising result can
approximate the underlying surface while preserving sharp
features well, we apply a bilateral mechanism proposed in
[3] to compute the project distance between the denoised
point and its neighboring points within the ground-truth
patch. To further improve the distribution of the denoising
result, we follow [2], [3], [18] and adopt a repulsive term to
penalize those points that are too close to each other. Thus,
our two-term point denoising loss is defined as follows:

Lpoint = α

∑
p̄j∈Pi

|(p̂i − p̄j) · n̄j | · ϕ (∥p̂i − p̄j∥) θ (n̄i, n̄j)∑
p̄j∈Pi

ϕ (∥p̂i − p̄j∥) θ (n̄i, n̄j)

+ (1− α) max
p̄j∈Pi

∥p̂i − p̄j∥ ,
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where α is a parameter that balances the denoising and uni-
form distribution terms. α is set to 0.97 referring to [3]. Pi is
the ground-truth patch centered at the denoised point p̂i, n̄i

is the ground-truth normal of the clean point which is near-
est to the denoised point p̂i, n̄j is the ground-truth normal
of p̄j . ϕ and θ are two monotonically decreasing functions
in terms of distance and normal deviation. ϕ is the Gaussian
function, and θ is given as θ(n̄i, n̄j) = exp(− 1−n̄i·n̄j

1−cos(15◦) ).
Normal-filter loss. For the denoised point p̂i, we simply use
the Euclidean distance between its filtered normal n̂i and
the ground truth n̄i as our normal-filter loss:

Lnormal = ∥n̂i − n̄i∥2.

Orthogonality loss. To encourage the denoised point to
move in the direction of its filtered normal while ensuring
the orthogonality between the filtered normal and the edges
connecting the denoised point and its neighboring points,
we propose the following orthogonality loss that can con-
strain the denoising and normal filtering branches at the
same time:

Lortho =
∑

p̄j∈Pi

(
wpj |(p̂i − p̄j) · n̂i|

)2
.

Remark 2. Our method employs several mechanisms
and modules, including multitasking and a shape-aware
selecting module, to achieve high-quality results. Even in
the presence of high levels of noise, our method can pro-
gressively improve the filtered normal (used in the orthog-
onality loss), and make it to be consistent with the ground-
truth normal (used in the point-denoise loss). Our multitask
network can be iteratively performed to enhance the results
(denoising and normal filtering) gradually. The selecting
module reduces the negative impact of large noise, resulting
in high-quality results. Additionally, our normal-filter loss
optimizes the filtered normal to closely match the ground-
truth normal.

4 EXPERIMENTS AND DISCUSSIONS

We evaluate our method for denoising and normal filtering
tasks visually and numerically and show its superiority
compared to the SOTA denoising and normal filtering meth-
ods. We further modify our method and conduct ablation
studies to validate the effectiveness of each design choice
made in our method.

4.1 Experimental Settings
Dataset. To train our end-to-end network for denoising and
normal filtering tasks, we adopt the dataset provided by [3].
The training set contains 11 CAD and 11 non-CAD models
(clean data without noise). The ground truth point clouds
with normal information can be obtained by randomly
sampling the clean models. The number of sample points
for each model is set uniformly as 100K. For these ground
truth point clouds, we corrupt each of them by Gaussian
noise with standard deviations of 0.25%, 0.5%, 1%, 1.5%,
and 2.5% to the diameter of the bounding box. Thus, the
final training set contains 110 noisy point clouds (normals
are estimated with PCA) and the corresponding 22 ground
truth point clouds (with normals).

To conduct comparisons more effectively for both tasks,
we construct a test set consisting of synthetic point clouds
and raw scanned data. For synthetic data, we rely on the
synthetic dataset released in [3] including three categories:
simple, medium, and complicated, in which there are 7, 6,
and 7 clean models, respectively. The raw scanned data will
be introduced in the following experimental section. Again,
the number of sampled points for each model is unified
to 100K. Each of the clean point clouds is perturbed by
Gaussian noise with standard deviations of 0.25%, 0.5%, 1%,
1.5%, and 2.5% to the diagonal of the bounding box.

Network inference. Our multitask network excels at
producing feature-preserving denoising results and satisfac-
tory normal filtering results simultaneously. Additionally,
our method can be iteratively applied to further refine the
results when the noise level is high. In this process, the de-
noised points and filtered normals from previous iterations
can serve as inputs to our method for further refinement.
It is important to note that this iterative process is only
performed during the inference phase.

Implementation details. In our implementation, the
patch radius r is set to 5% of the diagonal length of
the bounding box by default. We also set the number of
points within each patch as M = 512. If the patch has
insufficient points (< 512), we pad the origin, and if it
has sufficient points (> 512), we randomly select a subset.
Our feature extractors employ three scales, two based on
Euclidean distance (k1 = 8, k2 = 16) and one in feature
space (k3 = 16). For the topK strategy of the shape-aware
selector, we set K = 1

2M = 256. The neighborhood size
in the feature augmentation unit is set to k4 = 10. Our
network is implemented in PyTorch and trained on a single
NVIDIA GTX 2080Ti GPU for 45 epochs using the SGD
optimizer. The learning rate decreased from 1e-4 to 1e-8.
Upon publication, we will release our source code and pre-
trained models on GitHub.

4.2 Experiments for Point Cloud Denoising

We present visual and numerical comparisons between our
method and SOTA denoising methods, including WLOP
[19], RIMLS [4], EC-Net [34], DMRDenoise (DMR) [35],
PointCleanNet (PCN) [11], and Pointfilter (PF) [3]. For
WLOP and RIMLS, we perform the code provided by
their authors and carefully tune the parameters to produce
denoised results. For DMR and PCN, we use the code
released by their authors to retrain new models over our
training set. For EC-Net and PF, we use the pretrained
models provided by the authors. Sometimes, we reconstruct
the denoised results produced by the tested methods for
enhancing visual effects via RIMLS (provided by Meshlab
for feature-preserving reconstruction).

Synthetic data. Fig. 10 demonstrates comparisons of
CAD surfaces including sharp features and smooth regions.
The tested CAD surfaces are corrupted by a significant
amount of noise. As depicted in Fig. 10, WLOP and EC-
Net exhibit excessive noise in their results when the noise
level is high. DMR is effective at removing the noise, but
it distorts the overall shapes of the surfaces, as illustrated
in Fig. 10e. While RIMLS and PCN recover smooth regions
well, they blur sharp features to varying degrees, as shown
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(a) Noisy (b) WLOP (c) RIMLS (d) EC-Net (e) DMR (f) PCN (g) PF (h) Ours

Fig. 10: Denoising results of synthetic data with CAD models. From left to right: noisy input, results produced by WLOP,
RIMLS, EC-Net, DMR, PCN, PF, and our method, respectively. The first and third rows show the denoised results with 1%
noise and their zoomed views. The second and fourth rows show the corresponding surface reconstruction results. Our
method better removes noise and preserves sharp features.

in Figs. 10c and 10f. Additionally, PCN may induce some
artifacts in the smooth regions of the results at the tested
noise level. In contrast, our method and PF effectively
preserve sharp features. Compared to PF, our method more
accurately recovers sharp features, as shown in Figs. 10g and
10h. As a result, our method is superior to the compared
methods in preserving sharp features and smooth regions
simultaneously.

Fig. 11 gives comparisons of a non-CAD surface cor-
rupted by considerable noise. WLOP and EC-Net fail to
remove noise entirely in this example. Although DMR does
a good job of noise removal, it causes shape distortion and
induces bumps in the result, as shown in Fig. 11e. As Figs.
11c and 11f show, RIMLS and PCN seem to have difficulty
balancing the performance of noise removal and feature
recovery. PF and our method can generate visually better
results than the other tested methods. However, from the
zoomed views of 11g and 11h, we observe that the trunk of
the elephant in the result of PF is swelling; in contrast, our
result does not induce this artifact. Therefore, our method
visually yields the best result for faithfully preserving geo-
metric features.

Fig. 12 shows comparisons of a non-CAD surface with

multiscale geometric features. The tested non-CAD surface
is corrupted by moderate noise. Except for WLOP, all the
other methods can remove noise effectively. DMR flattens
medium- and small-scale features and induces distortion
and swelling in the ear regions of the bunny surface, as
depicted in Fig. 12e. RIMLS and PF oversmooth small-scale
features to varying degrees, and PF makes this situation
even worse; as illustrated in Figs. 12c and 12g. Furthermore,
although EC-Net and PCN can preserve different levels of
geometric features in a better manner, they induce some
artifacts in the ear regions of the results. These artifacts
degrade the visual quality of the denoised results and
further affect the reconstruction results; see the zoomed
views and reconstruction results of Figs. 12d and 12f. In
contrast, our method outperforms the other methods in
terms of recovering most geometric features and preventing
inducing annoying artifacts.

Scanned data. To further validate the efficacy of our
method, we conducted experiments on real scanning data
without retraining the method. Fig. 13 shows the results
for Kinect scanning data. The first and second rows reveal
that for CAD surfaces, the other methods retained addi-
tional bumps on the denoised results, while our method
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(a) Noisy (b) WLOP (c) RIMLS (d) EC-Net (e) DMR (f) PCN (g) PF (h) Ours

Fig. 11: Denoising results of synthetic data with 1% non-CAD models. From left to right: noisy input, results produced by
WLOP, RIMLS, EC-Net, DMR, PCN, PF, and our method, respectively. The zoomed views, shown in the first row, highlight
that our method better preserves detailed features.

(a) Noisy (b) WLOP (c) RIMLS (d) EC-Net (e) DMR (f) PCN (g) PF (h) Ours

Fig. 12: Denoising results of synthetic data with 0.5% non-CAD models. From left to right: noisy input, results produced by
WLOP, RIMLS, EC-Net, DMR, PCN, PF, and our method, respectively. The zoomed views, shown in the first row, highlight
that our method better preserves multiscale features.

effectively prevents visible artifacts, demonstrating superior
performance in preserving geometric features and recover-
ing smooth regions. For the non-CAD surface (David) in the
third row of Fig. 13, RILMS, PF, and our method generated
more natural results than other methods. Yet, numerical
metrics in Table 1 indicate that our method outperforms
RIMLS and PF in dealing with these scanned surfaces which
contain complex surface characteristics.

To evaluate our method’s effectiveness further, we tested
it on laser-scanned data. As the zoomed views in Figure
14 indicate, while all the tested methods can remove noise
and preserve geometric features to some extent, our method
produces more appealing results, preserving neat structural
features and recovering clean smooth regions. Finally, we
tested our method on raw outdoor scenes from the Paris-
rue-Madame Database, as illustrated in Fig. 15. Compared to

the other methods, our approach produces better denoised
results, with fewer outliers while removing large noise in
the scene.

Robustness tests. To further verify the robustness of our
method, we demonstrate the performance of our method
against irregular sampling, different noise levels, and out-
liers in the following. We show the effectiveness of our
method against non-uniform sampling in Fig. 16. Although
the noisy surface suffers from irregular sampling, our
method is noticeably better than all other compared meth-
ods, which can produce a compelling result that preserves
sharp edges and corners. Fig. 17 shows the robustness of
our method against different noise levels. As we can see
in Figs. 17a, 17b, and 17c, our method can remove noise
while preserving sharp features well when the noise level
is increased. However, when the noise level is larger than
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(a) Noisy (b) WLOP (c) RIMLS (d) EC-Net (e) DMR (f) PCN (g) PF (h) Ours

Fig. 13: Denoising results of data captured by Kinect. From left to right: noisy input, results produced by WLOP, RIMLS,
EC-Net, DMR, PCN, PF, and our method.

(a) Noisy (b) WLOP (c) RIMLS (d) EC-Net (e) DMR (f) PCN (g) PF (h) Ours

Fig. 14: Denoising results of the laser scanned point cloud. From left to right: noisy input, results produced by WLOP,
RIMLS, EC-Net, DMR, PCN, PF, and our method. The zoomed views, highlight that our method better keeps geometrical
features.

the geometric feature sizes, our method may blur some geo-
metric features and cannot produce satisfactory results; see
Fig. 17d. Since our method takes into account the handling
of outliers, it can deal with the surface corrupted by a larger
number of outliers effectively; see Fig. 18.

Quantitative evaluation. We observe from the afore-
mentioned qualitative comparisons that our method can
generate visually better denoised results than competing
methods. Here, we compare them numerically. We utilize
Chamfer distance (CD) and Point-to-surface distance (P2S)
to measure the fidelity of the denoised result to the ground
truth point cloud. The evaluation metrics are widely used
in work [2], [3], [11]. We first compare the examples in Figs.
10, 11, 12 and 13 and list the evaluation results in Table

1. As we can see, our method outperforms the competing
ones because our CD and P2S errors are significantly smaller
than all the other compared methods. Then we further com-
pare our method to those learning-based methods (EC-Net,
DMR, PCN, and PF) in the test set and show the evaluation
results in Table 2. Our method (PCA) takes low-quality
initial normals estimated by PCA as input, and our method
(AdaFit) takes the better normals estimated by AdaFit as
input. We observe that, except for under the noise level 2.5%,
our method (PCA) produces the second-best results on CD
and P2S metrics. Moreover, our method (AdaFit) achieves
the best results on both metrics in most cases, which show
the superiority of our method.

Computational time. We also record the running time
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(a) Real scanned outdoor scene

(b) Noisy (c) WLOP (d) RIMLS (e) EC-Net

(f) DMR (g) PCN (h) PF (i) Ours

Fig. 15: Denoising results of a real scanned point cloud scene. The zoomed views highlight that our method better removes
heavy noise and avoids introducing additional artifacts.

(a) Noisy (b) WLOP (c) RIMLS (d) EC-Net (e) DMR (f) PCN (g) PF (h) Ours

Fig. 16: Denoising results of irregular sampling data. From left to right: noisy input, results produced by WLOP, RIMLS,
EC-Net, DMR, PCN, PF, and our method.

TABLE 1: Quantitative evaluation of results in Figs. 10, 11, 12, and 13. For each result, we list CD (×10−5 ) and P2S (×10−3

) errors and running time (in seconds).

Model WLOP RIMLS EC-NET DMR PCN PF Ours

PartLp 18.09, 10.10; 89.0 2.78, 2.66; 708.2 4.15, 5.96; 51.1 3.32, 3.18; 14.3 1.84, 1.34; 704.0 1.02, 1.02; 152.1 0.93, 0.96; 311.1
Boxunion 4.80, 3.71; 94.7 2.57, 2.31; 669.3 4.29, 5.93; 49.8 2.98, 3.11; 20.6 1.98, 1.94; 726.0 1.29, 1.11; 170.2 1.21, 1.06; 303.5
Elephant 35.10, 8.20; 107.3 11.42, 5.40; 551.7 9.83, 4.73; 52.2 7.01, 5.41; 14.7 3.65, 3.11; 726.5 4.48, 2.86; 163.9 2.87, 2.78; 310.9

Bunny Hi 1.29, 1.82; 56.2 1.06, 1.64; 187.7 0.90, 2.16; 52.2 1.87, 2.40; 15.2 1.03, 1.32; 736.1 0.81, 1.00; 155.4 0.70, 0.82; 311.3
Cone 20.97, 7.50; 10.7 18.04, 5.73; 27.2 19.74, 7.17; 6.7 28.19, 6.90; 2.4 19.47, 6.92; 47.9 17.54, 5.71; 29.5 17.08, 5.71; 34.1

Pyramid 20.18, 6.60; 9.1 17.26, 5.77; 21.8 19.86, 7.04; 8.6 22.21, 7.07; 2.8 20.16, 6.84; 56.3 18.20, 5.90; 20.4 17.17, 5.66; 45.1
David 15.78, 5.56; 13.8 19.03, 5.45; 40.0 15.27, 6.02; 9.7 26.47, 6.96; 2.9 15.30, 5.87; 67.9 16.37, 5.51; 26.2 15.01, 5.41; 49.1

of all the tested methods in Table 1. As seen, DMR is the
fastest method, while PCN is the slowest one. Our method
ranks fourth in speed among the learning-based methods.
In particular, the traditional methods (WLOP, RIMLS) re-
quire trial-and-error efforts to tune parameters to produce
satisfactory results in practice; thus, we only discuss the
inference time of the deep learning methods (EC-Net, DMR,
PCN, PF, and ours). DMR and EC-Net are faster than the
other deep learning methods (PCN, PF, and ours). The rea-
son is that DMR and EC-Net have an analogous upsampling
process and only use a few patches of the noisy point cloud
as input. In contrast, the PCN, PF, and our method use a
pointwise manner to deal with the noisy input; thus, the
inference times of these three methods are higher. Moreover,

due to the network complexity, our method takes less time
than the PCN and more time than the PF. In summary,
although the inference time of our method seems to be
slightly computationally intensive, it can generate more
appealing results in terms of visual quality and error metrics
in most examples.

4.3 Experiments for Normal Filtering
The normal filtering task also plays an important role in
our method. We compare our method with state-of-the-art
normal filtering methods, including the traditional method
of Jet [58] and the deep learning methods of PCPNet [47],
DeepFit [51] and AdaFit [52]. We retrain PCPNet, DeepFit,
and AdaFit over our training set. For PCPNet and AdaFit,
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TABLE 2: Quantitative comparisons for learning-based denoising methods on the synthetic dataset. Bold represents the
best results, and underline denotes the second-best results.

CD (×10−5), P2S (×10−3)

Noise Level EC-Net DMR PCN PF Ours (PCA) Ours (AdaFit)

0.25% 0.67, 0.88 2.12, 2.16 0.96, 1.15 0.70, 0.55 0.61, 0.52 0.60, 0.43
0.5% 1.08, 1.61 2.33, 2.32 1.33, 1.48 0.92, 0.78 0.80, 0.65 0.78, 0.68
1% 4.47, 4.56 3.49, 3.27 2.11, 2.25 1.62, 1.36 1.31, 1.30 1.24, 1.24

1.5% 12.90, 8.38 5.70, 4.90 3.73, 3.54 2.77,2.32 2.76, 2.05 1.86, 1.88
2.5% 51.05, 16.66 19.96, 9.97 20.16, 8.92 5.11, 3.40 5.62, 3.73 4.96, 3.38

(a) 1% (b) 2% (c) 3% (d) 4%

Fig. 17: Denoising results of Cylinder corrupted by different
levels of noise. The first row shows noisy point clouds (1%,
2%, 3%, and 4% noise), while the second row shows the
corresponding denoising results produced by our method.

Fig. 18: Denoising result of Trim star with outliers. Noisy
input (left) and the corresponding denoising result (right).

we retrain the multi-scale version of the network provided
by the authors.

Qualitative comparisons. Fig. 19 visualizes the error
map for normals, where the error is defined as the angular
deviations between the filtered normals and the ground
truth normals. As we can see, Jet and PCPNet produce
higher errors in geometric feature regions. DeepFit can deal
with smoothly curved regions well, but it blurs small-scale
features. AdaFit effectively recovers small-scale features and
fine details but slightly oversmoothes sharp features. In
contrast, our method produces the desired results in terms
of preserving sharp and detailed features. To test the gen-
eralization capability of our method, we also present Fig.
20 for comparisons between our method and four other
methods applied to real indoor scenes acquired by Kinect

sensors (NYU Depth V2 dataset [57]). Note that we do not
train all the tested methods on scanned scenes. For a fair
comparison, we only use the filtered normals produced by
our method instead of retaining denoised point coordinates.
As we can see in Fig. 20, Jet retains considerable noise in the
results. PCPNet can smooth noisy surfaces effectively but
flatten medium- and small-scale geometric features. DeepFit
and AdaFit preserve geometric features well even for small-
scale and detailed features, although they induce some
bumps in the results. The reason for inducing the bumpy
artifacts may be as follows. Since both noise and geometric
details are high-frequency information, DeepFit and Adafit
may erroneously restore some high level noise as geometric
features. Compared to DeepFit and AdaFit, our method can
better preserve structure features, although some geometric
details are flattened slightly. Moreover, our method tends to
produce visually cleaner results without noticeable artifacts.

TABLE 3: Quantitative comparisons for normal estima-
tion for classical geometric and learning-based methods.
Bold represents the best results, and underline denotes the
second-best results.

RMSE (×10−3)

Noise level PCA Jet PCPNet DeepFit AdaFit Ours Ours
(PCA) (AdaFit)

0.25% 13.48 13.10 12.59 11.69 11.09 10.97 10.68
0.5% 16.54 16.29 15.48 15.01 14.92 14.78 14.27
1% 25.82 22.96 21.72 21.54 21.15 21.38 19.36

1.5% 32.87 28.58 26.66 27.25 25.76 26.04 25.41
2.5% 42.95 37.97 35.86 36.29 32.81 33.32 31.67

Quantitative Comparisons. We adopt the root mean
squared error of the angle difference (abbreviated as RMSE)
to quantify normal filtering results [47], [52]. Lower RMSE
values indicate better results. The results of our method
(PCA) have the lowest RMSE values for all the tested
examples, as shown in Fig. 19. We also compare our method
with the other four on the test set introduced in subsec-
tion 4.1. Our method (PCA) can produce the second-best
results when the noise is low and moderate (0.25%, 0.5%
noise). AdaFit achieves the second-best results as the noise
level increases (1.0%, 1.5%, and 2.5% noise), but our results
are comparable to those of AdaFit. Furthermore, by using
better initial normals as input, our method (AdaFit) can
significantly outperform the other compared methods and
achieves the smallest RMSE values at all noise levels, as
shown in Table 3.

4.4 PCDNF versus DR
To further demonstrate the effectiveness of PCDNF, we
compare it to DR, a method recently proposed by Chen et
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17.28

8.92

23.60

(a) Jet

18.04

7.42

21.78

(b) PCPNet

17.01

7.08

22.29

(c) DeepFit

17.53

6.97

22.12

(d) AdaFit

16.51

4.14

21. 30

(e) Ours

>90

0

Fig. 19: Visualization of normal error for synthetic data with 0.5% noise. From left to right: Jet, PCPNet, DeepFit, AdaFit,
and our method. The point clouds are color-coded based on angular difference, with a color map given by the color bar on
the right. The numerical value denotes RMSE (×10−3), and a lower error is better.

TABLE 4: Quantitative comparisons of DR, CL, and our
PCDNF. We list CD and P2S for the denoising task and
RMSE for the normal filtering task.

CD (×10−5), P2S (×10−3); RMSE (×10−3)

Noise Level DR CL Ours (PCA)

0.25% 1.03, 0.54; – 0.64, 0.48; 12.65 0.61, 0.52; 10.97
0.5% 1.28, 0.82; – 0.85, 0.73; 15.51 0.80, 0.65; 14.78
1% 1.92, 1.46; – 1.36, 1.32; 21.40 1.31, 1.30; 21.38

1.5% 3.22, 2.31; – 2.89, 2.54; 25.45 2.76, 2.05; 26.04
2.5% 10.66, 6.12; – 6.27, 4.14; 32.14 5.62, 3.73; 33.32

TABLE 5: Ablation analysis: quantitative comparisons of
different network versions. For each version, we list CD for
the denoising task and RMSE for the normal filtering task.

CD (×10−5), RMSE (×10−3)

Noise Level V1 V2 V3 V4 Full

0.25% 0.64, 15.27 0.62, 13.42 0.63, – –, 10.95 0.61, 10.97
0.5% 0.87, 18.15 0.81, 16.30 0.82, – –, 15.18 0.80, 14.78
1% 1.52, 22.81 1.33, 21.58 1.39, – –, 21.60 1.31, 21.38

1.5% 2.99, 27.84 2.88, 26.62 2.80, – –, 26.68 2.76, 26.04
2.5% 7.23, 35.41 6.46, 34.53 6.40, – –, 34.58 5.62, 33.32

al. [39]. DR uses gradient fields to model the distribution
of degraded point clouds, which can predict the gradient
field over the point cloud that converges points toward
the underlying surface. Quantitative comparisons of results

produced by DR and our method are listed in Table 4. As we
can see, our method yields lower CD and P2S values than
the competing method DR for the denoising task, indicating
that our results are more faithful to the ground truth.

4.5 PCDNF versus CL

During the final stages of the paper’s completion, we be-
came aware of a concurrent work proposed by Edirimuni et
al. [40], which also addresses the challenges of point cloud
denoising and normal filtering. Although both methods
share similar goals, they differ in approaches: CL uses a con-
trastive learning mechanism to tackle both tasks, whereas
PCDNF takes a multitask perspective. Specifically, PCDNF
utilizes two network branches for denoising and normal
filtering, respectively. This design allows the two tasks to
benefit each other mutually. In contrast, CL uses only a
single network branch to predict the combined vector (point
position offset and normal vector) for denoising points and
smoothing normals. Therefore, CL does not consider the
association and interaction of the two tasks (denoising and
normal filtering), which is the main difference between our
method and CL.

Table 4 presents the evaluation results of our method
and CL using the CD and RMSE metrics to assess the
performance of denoising and normal filtering. We observe
that our method outperforms CL in the denoising task for
most cases except for the 0.25% noise level. For the normal
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(a) RGB image (b) Jet (c) PCPNet (d) DeepFit (e) AdaFit (f) Ours

Fig. 20: Visual comparison of normal estimation results on scanned point clouds from the NYU Depth V2 dataset [57].
From left to right: RGB image (noisy input), Jet, PCPNet, DeepFit, AdaFit, and our method.

filtering task, our method also achieves better results at the
noise levels 0.25%, 0.5%, and 1.0%. However, CL achieves
lower MSAE values when the noise level is high, specifically
at 1.5% and 2.5%. Therefore, we believe that PCDNF and
CL are complementary approaches, each offering unique
advantages within their respective paradigms.

4.6 Ablation Studies

We verify the individual contributions of the major modules
in our network by conducting the following four ablation
studies.

• Removing feature selection and refinement modules (V1).
• Removing feature refinement module (V2).
• The normal filtering network branch is removed (V3).
• The denoising network branch is removed (V4).
For each ablated variant, we evaluate it in the valida-

tion set to choose the best hyperparameters. We perform
quantitative comparisons of our method and four ablated
variants in the test set and record the evaluation in Table 5.
From the table, we have the following observations. All four
variants show lower performance than our full pipeline.
Each pipeline module is necessary to ensure high-quality
denoising and normal filtering results. More specifically,
by comparing V1 with V2, it can be seen that the feature
selection module is necessary for removing noise by select-
ing those feature points with similar characteristics to the
denoised point. By comparing V2 with our full pipeline,
we can see that the additional feature refinement module
positively impacts denoising accuracy. The feature refine-
ment module consists of two units (feature augmentation
and fusion). The roles of these two units are demonstrated
in Figs. 8 and 9, and are explained in subsection 3.2.3.
We use a two-branch network structure for point cloud
denoising and normal filtering tasks. To demonstrate the

positive interaction between these two tasks, we design
two variants (V3 and V4) that perform only the denoising
task and normal estimation task. As we can see, our full
network can achieve the best quantitative results in terms of
CD and RMSE. Specifically, comparing variant V3 with our
full network, our additional normal filtering branch helps
our method produce the best denoising results. Comparing
variant V4 with our full network, our denoising branch can
help our method yield the best normal filtering results. The
above ablation studies confirm the effectiveness of the major
modules in our network and the mutual promotion of the
two tasks (point cloud denoising and normal filtering).

4.7 Limitations

To some extent, the quality of the initial normals has an
impact on the results of our method. Our method (with
PCA) outperforms AdaFit at lower noise levels but is less
effective at higher noise levels, as Table 3 shows. The reason
for this is that our method prioritizes denoising and treats
normal estimation as a secondary task. Consequently, our
subnet for smoothing raw normals lacks the complexity
needed to accurately estimate normals in the presence of
large noise. In order to maintain the simplicity and gener-
ality of input, we choose to use raw normals estimated by
PCA, which can negatively affect the performance of our
method in the presence of high noise levels. Nonetheless,
due to our multitask and iteration mechanisms, our method
can incrementally enhance denoising and normal filtering
results, making them comparable to state-of-the-art meth-
ods. Furthermore, when better initial normals (estimated
by AdaFit) are used as input, our method can concurrently
achieve the best denoising and normal filtering results, as
demonstrated in Tables 2 and 3.
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4（default） 0 2 6Input

Fig. 21: The screened Poisson surface reconstruction (sPSR) algorithm balances smoothness and accuracy via an interpola-
tion weight α. The top row shows the surfaces produced by applying sPSR directly to the noisy input with weight α = 4, 0,
2, 6. The second row shows the reconstructed surfaces, which are computed by applying sPSR (with the same interpolation
weight as the top row) to the denoised input. Our reconstructed surfaces are not sensitive to the perturbation of α.

(a) (b) (c)

Fig. 22: Application of point cloud registration. (a) Noisy
input. (b) Registration result of (a). (c) Registration result
after applying our denoising method to (a).

(a) (b) (c)

Fig. 23: Application of RANSAC plane fitting. (a) Clean
point cloud. (b) The corresponding noisy point cloud. (c)
Plane segmentation result produced after applying our
method to (b).

4.8 Applications

To demonstrate the effectiveness of our method across vari-
ous applications, we utilize our denoised outputs as inputs
for surface reconstruction [41], point cloud registration [59],
and plane fitting [60] tasks. In Fig. 21, we observe that
the reconstruction results from noisy point clouds exhibit

significant artifacts, whereas those from our denoised input
are high-quality and preserve features. Fig. 22 demonstrates
that our denoising method can enhance the accuracy of the
point cloud registration task, as outputs after applying our
method are more precise than those from raw inputs. We
perform plane fitting [60] on an indoor scene point cloud.
As Fig. 23 shows, using our denoised output as input for
the RANSAC algorithm [60] results in a more reliable plane
segmentation outcome, which is closer to the segmentation
outcome from the corresponding clean point cloud.

5 CONCLUSION

We have proposed a learning method for denoising point
clouds via joint normal filtering. Our key insight is that
denoising and normal filtering tasks are inseparably in-
tertwined. Our method takes the noisy point cloud and
corresponding initial normals as input and uses an end-to-
end approach to predict denoised points and filtered nor-
mals simultaneously. Our method comprises two innovative
modules: the shape-aware selector and feature refinement.
The shape-aware selector reduces the negative effects of
noise and outliers on feature learning, thereby enhancing
denoising and filtering performance. The feature refine-
ment has advantages in recovering structure and detailed
features. Our experiments demonstrate that incorporating
normal filtering improves the denoising performance signif-
icantly. Our method achieves a new SOTA for the denoising
task, with substantial improvements in visual quality and
quantitative evaluation. Although our method is not specif-
ically designed for normal filtering, it performs favorably
against most SOTA normal filtering methods.

To our knowledge, this is the first work to couple the
interdependent tasks of point cloud denoising and normal
filtering within a single deep neural network. We believe
that there is a wealth of opportunity for exploring future
directions. For instance, we can improve the normal filtering
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subnet to obtain more accurate normal estimations, espe-
cially in situations with large noise. Moreover, we can fur-
ther improve the subnet to address the normal orientation
ambiguity problem. As a pointwise denoising approach, our
method incurs high computational costs for training and
inference. To address this, we plan to develop a patchwise
framework to improve runtime performance.
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