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Abstract—We show how to localize the Delaunay triangulation 

of a given planar point set, namely, bound the set of points 

which are possible Delaunay neighbors of a given point. We 

then exploit this observation in an algorithm for constructing 

the Delaunay triangulation (and its dual Voronoi diagram) by 

computing the Delaunay neighbors (and Voronoi cell) of each 

point independently. While this does not lead to the fastest 

serial algorithm possible for Delaunay triangulation, it does 

lead to an efficient parallelization strategy which achieves 

almost perfect speedups on multicore machines.  

Delaunay triangulation; Voronoi diagram; parallel 

computation 

I. INTRODUCTION 

The Delaunay triangulation (DT) of a set of planar point 
sites and its dual, the Voronoi diagram (VD), are among the 
most fundamental structures in computational geometry. DT 
is the triangulation of the sites such that each triangle satis-
fies the empty circumcircle property, i.e. its circumcircle 
contains none of the other sites, thus, intuitively, the DT has 
the “fattest” triangles among all possible triangulations of 
the sites. The VD is a partition of the plane into (possibly 
unbounded) convex polygonal cells, one per site, such that 
the points inside each cell are closer to the site correspond-
ing to that cell than any other site. Due to their many desira-
ble properties, DT and VD are widely used in many fields of 
science.  

Because of the duality relationship between them, DT 
and VD can be converted to each other in linear time. The 
classical algorithms for computing DT and VD in O(nlogn) 
time are Dwyer’s divide and conquer algorithm [5], For-
tune’s plane sweep algorithm [6], incremental construction 
[19] and variations based on randomization [4], lifting to 
three dimensions and computing the convex hull [29]. Su et 
al. [2] provide a thorough survey and comparison of these 
algorithms.  

Most of these serial algorithms achieve O(nlogn) time 
complexity. When the input is drawn from a uniform spatial 
distribution of sites, more efficient algorithms are possible. 
Bentley et al. [1] first proposed a linear expected time algo-
rithm for the VD based on the idea of finding the Voronoi 
cell of each site independently. Using a cell data structure 
and a spiral search [1, 3] technique, the algorithm finds all 

other sites in the vicinity of the given site, and builds its 
Voronoi cell from these. A rough estimate for the region 
that contains all the possible neighboring Voronoi sites of 
each interior site is given. One of the traditional algorithms 
is used both for finding the VD of the periphery of the point 
set, and also as a last resort for the rare cases where the al-
gorithm fails on an interior point. Using the same data struc-
ture, Maus [3] proposed another linear expected time algo-
rithm for the DT of sites drawn from a uniform distribution 
by greedily finding all the Delaunay edges starting from an 
initial Delaunay edge list. In addition to the sites, this algo-
rithm requires the convex hull of the sites as input, which 
serves as the initial Delaunay edge list. 

Due to the increasing need to rapidly construct the DT in 
many applications which may involve millions of points, 
there has been much research on computing DT in parallel. 
Many of these [16-28] are based on the state-of-the-art serial 
algorithms, such as divide and conquer and incremental 
construction. They achieve parallelism by partitioning the 
set of sites into smaller subsets and using parallel processing 
to construct the DT of each subset separately. The separate 
triangulations are then combined by edge flipping where 
needed. These algorithms make use of a “master” processor 
which assigns tasks to “slave” processors, attempting to 
balance well the load between processors. Thus the master 
becomes a bottleneck at some stage, and the algorithms do 
not scale well with the number of processors. Furthermore, 
these algorithms do not fit well into the current model of 
multi-core processors and general purpose graphics pro-
cessing units (GPU), in which no master process should be 
present. 

In this paper, we present a new algorithm to construct 
the VD and DT. This is achieved by running an incremental 
half-plane intersection method to compute the Voronoi cell 
and Delaunay neighbors of each site independently. A key 
Locality Lemma, which may be of independent interest, 
allows us to limit the candidate set of the Delaunay neigh-
bors to be considered for each site, thus we drastically re-
duce the O(n

2
logn) time complexity of the naïve half-plane 

intersection algorithm [30]. For sets of uniformly distributed 
sites, the complexity is O(1) per site. The algorithm is ex-
tremely simple and easy to implement. Although this does 
not result in a serial algorithm which is any faster than state-



of-the-art serial algorithms, it does, as opposed to other al-
gorithms, lend itself to easy and efficient parallelization. 
With an extra (quite straightforward) optimization as de-
scribed in Section VI, the resulting parallel implementation 
achieves almost perfect speedups.  

II. RELATED WORK 

Serial algorithms for computing the VD and the dual DT 
are well known, so we will not survey them here. Instead, 
we will concentrate on the lesser-known parallel algorithms. 

Rong et al. [10] proposed a parallel algorithm to com-
pute the DT using the GPU and CPU in tandem. With the 
GPU they compute the DT of a modified point set con-
structed by snapping each original input point to the nearest 
grid point (“pixel”). After computing the DT of the grid 
point set using the GPU, they move each point back to its 
original coordinates and repair the triangulation by edge 
flipping where necessary. Because of its inherent serial na-
ture, the edge flip step is done on the CPU, thereby making 
the complete algorithm only partially parallel, with limited 
speedup over serial algorithms. Very recently, Qi et al. [7] 
improved this algorithm by implementing also the edge 
flipping on the GPU, thus making the entire algorithm GPU-
based. They also extend the algorithm to a constrained DT. 

It is well known that the DT contains the nearest neigh-
bor graph as a subgraph. Maus and Drange [9] generalized 
this property to the k nearest neighbors, namely, they prove 
that for any point x in the point set X with k nearest neigh-
bors {b1, b2 ... bk} (bi are sorted by their distances to x), the 
j’th closest neighbor bj is a neighbor of x in the DT of X if it 
is not contained in any of circles having the segment xbi 
{i=1, 2,…j-1} as its diameter. Based on this and the nearest 
neighbor graph property, they presented two algorithms for 
constructing the DT in parallel. With the nearest neighbor 
graph and k-nearest neighbor graph as starting points, they 
use an incremental algorithm [3] and constrained DT algo-
rithm to find the Delaunay neighbors of each point inde-
pendently in the two algorithms respectively. However in 
both algorithms, a serial algorithm is employed to compute 
the convex hull of the point set, which is necessary for their 
algorithm to construct the DT, therefore making these algo-
rithms also only partially parallel. 

Very recently, Reem [15] adapted his ray-shooting-
based parallel algorithm for computing the approximate VD 
in general settings [14] (general sites, and general normed 
space) to compute the exact VD by carefully utilizing the 
information along the rays. A formal proof is given to show 
that the algorithm will always terminate with the correct 
result within a finite number of steps. Experimental results 
show that this algorithm, equipped with appropriate spatial 
data structures for the sites, achieves almost linear expected 
time complexity for uniform distributions. However, since 
the VD is clipped to a rectangular domain, an important 
component of the DT - the convex hull of the point set - will 
be incomplete when transforming the VD into a DT. 

Shewchuk [8] proposed the Star Splaying algorithm for 
transforming a triangulation which is nearly DT into a DT. 
The algorithm seeks to adjust the stars, the candidate De-
launay one-rings of all the vertices, so that they agree with 

each other and therefore form a DT. Star Splaying is akin to 
the Delaunay edge flip algorithm, and it requires (near DT) 
connectivity in addition to the point set as input. In this pa-
per, we propose an algorithm which also seeks to find the 
Delaunay one-rings for all the vertices. However, it does not 
check the relation between different Delaunay one-rings, 
rather computes the Delaunay one-rings of the vertices in-
dependently of each other, making it inherently paralleliza-
ble. 

III. LOCALIZING THE DELAUNAY TRIANGULATION 

First some terminology. 
Delaunay edge: an edge xy is a Delaunay edge if it is con-
tained in the DT. 
Delaunay neighbor: a vertex x is a Delaunay neighbor of y 
if xy is a Delaunay edge. 
Delaunay one-ring: the Delaunay one-ring of a vertex x is 
the set of all Delaunay neighbors of x. 
Voronoi vertex: a vertex of a Voronoi cell boundary 
Half-plane: the half-plane between two points c and v is the 
bisector of the points. 

The terms point, vertex and site are interchangeable 
through the paper. 

In this section, we present a key Lemma, illustrated in 
Fig. 1, that leads to the main algorithm of this paper. In gen-
eral, Delaunay edges are short, because they connect a site 
to other sites in close proximity. However, there is no strict 
upper bound on the length of Delaunay edges, and in some 
extreme cases, edges can span the entire point set. Further-
more, there is no easy rule of thumb that can predict which 
sites exactly will be the Delaunay neighbors of a given site. 
Thus, there is value in a rule which localizes the Delaunay 
triangulation, namely, strictly bounds the set of possible 
Delaunay neighbors of a given site. 

 
Local Delaunay Lemma 
Let X be a set of points in the plane. If the ordered subset 

P={p1, p2,…, pn}⊆X forms a simple polygon containing c∈

X, then the Delaunay neighbors of c are contained in the 
union of the circumcircles of the n triangles formed by c and 
every two consecutive points of P (irrespective of the trian-
gle orientation). 

 

Figure 1.  The Local Delaunay Lemma. Only the blue sites, inside or on 

the red circumcircles, can be the Delaunay neighbors of the site c.  

 

 

 
 

p1 

p2 p4 

p5 

p3 

c 



Proof: Let CC=⋃     , where cci is the circumcircle of 

△cpipi+1. 

For any point v CC, since P is closed and contains c, v 
must be contained in some (at least one) closed sector de-
fined by c and an edge on P, say pipi+1. The sector is defined 
as the unbounded region inside the angle         , and a 
closed sector includes the two defining rays,  cpi and cpi, as 
shown in Figure 2. 

 

Figure 2.  Proof of the Local Delaunay Lemma. 

Assume cv is a Delaunay edge. This implies that there 
exists a circle through c and v which does not contain any 
other point of X, including pi and pi+1 [11]. Obviously, cv 
cannot be at the boundary of the sector, as this would imply 
that either pi or pi+1 is inside this circle. Therefore pi and pi+1 
are on opposite sides of the chord cv that divides this circle 
into two arcs, as shown in Fig. 2. So, on the one hand, for 
any point v1 on the arc which is on the same side of cv as pi, 
we have            . Similarly for any point v2 on the 
complementary arc, we have              . Therefore 

                          

Since v is outside the circumcircle of △cpipi+1, we have 

                
which leads to 

                            
On the other hand, since v1 and v2 are on the two com-

plementary arcs of the chord cv: 
              

which is a contradiction. Thus cv cannot be a Delaunay 

edge. □ 
Note that by including the point at infinity, the Local 

Delaunay lemma can be generalized to the case that the pol-
ygon P is unbounded, as is the case for points on the convex 

hull. Consider the “closed” polygon P∪∞, any point inside 

the unbounded sector of P falls inside either or both of the 
circumcircles of the two infinite triangles, which are essen-
tially two halfspaces.  

We also note an important special case of the Local De-
launay Lemma. If P is exactly the set of Delaunay neighbors 
of c, then the union of the circumcircles will contain no oth-
er points, as expected. The Local Delaunay Lemma allows 
us to significantly limit the number of points we need to 
consider when searching for the Delaunay neighbors of a 
point x. Indeed, none of the points outside the union of the 
circumcircles of triangles incident to c can be a Delaunay 
neighbor of c. Therefore it suffices to consider only the 
points inside this union.  

IV. DELAUNAY TRIANGULATION 

Based on the Local Delaunay Lemma, we now outline 
an algorithm for computing the Delaunay neighbors (and 
Voronoi cell) of a given point c. 

Algorithm 1.  

1. Find a (simple) polygon P0={p1, p2,.., pk}, containing 

c.  

2. Initialize c’s candidate Delaunay one-ring: P=P0. 

3. Initialize c’s candidate Voronoi cell: Q={q1, q2,.., qk}, 

where qi is the circumcenter of △cpipi+1. 

4. Construct the list of Delaunay neighbor candidates 
                             

5. for each v∈V 

6.         Compute the half-plane Hv defined by the bisector  

        of v and c, containing c.  

7.         Q  Hv  Q 

8.         Update P, based on Q (See Algorithm 2) 

9. end 

To find the complete DT of a point set X, Algorithm 1 is 
run for each point c in X.  

The core of the algorithm is half-plane intersection in the 
loop described in Steps 5-9. Note that the candidate Voronoi 
cell changes (actually, shrinks) between iterations, therefore 
the halfspace corresponding to a vertex in V may not inter-
sect it, thus not change it. This can be checked by inspecting 
whether the candidate vertex v is inside any of the circum-
circles defined by the current P (or, equivalently, the current 
Q). Actually, for each candidate v, we can find the sector 
picpi+1 that v resides in, then by comparing the distance ||qi - 
v|| with the distance ||qi - c||, we can tell if v is inside the 
current union of circumcircles. Since the vertices in P are 
ordered (CCW), we can find the sector containing v in O(log 
d) time, where d is the length of P. The intersection with 
half-plane Hv is now done easily, since, starting from the 
sector, we can find the two edges on Q that Hv intersects in 
constant time, as shown in Fig. 3. Then we can simply keep 
the vertices of Q that are closer to c than v is, and replace 
the other vertices of Q with the centers of the new circum-
circles. 

 
 

                  Before                After 

Figure 3.  Intersecting the (solid red) candidate Voronoi cell of c with 

(blue) halfplane Hv associated with the candidate v. After the intersection, 

the previous (purple) circumcircle is replaced with two new (purple) 
circumcircles, and v is added to the (blue) candidate Delaunay one-ring of 

c. The relevant sector is shaded. 
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Some of the initial triangles incident to c could be very 
skinny and have large circumcircles, which results in the list 
of Delaunay candidates V constructed in Steps 1-4 contain-
ing many points. Since the Local Delaunay Lemma holds 
for any polygon containing c, we can optimize the routine 
by implementing the loop of Algorithm 1 in an incremental 
manner. Starting from the initial candidate Delaunay poly-
gon P, in each iteration we deal with one of its edges, pipi+1. 
We check whether the circumcircle of the corresponding 

triangle △cpipi+1 contains a point. Only if it does do we run 

the half-plane intersection routine and update P and Q. Al-
gorithms 2 shows the pseudo-code for the incremental up-
date of P and Q. 

Algorithm 2. 

1. LocDT(c, P, Q) 

2. i = 1; 

3. while i <= length(P) 

4.                              
5.      if V is empty 
6.            i++ 
7.      else /* half-plane intersection */ 
8.            v = any vertex in V 
9.                j = index of first vertex of Q inside Hv  

10.            m =index of last vertex of Q inside Hv 

11.            o1 = circumcenter(pm+1, v, c) 
12.            o2 = circumcenter(v, pj-1, c) 
13.            Q = { q1,…qm, o1, o2, qj-1,…qend} 
14.            P = { p1,…pm+1,v, pj-1,…pend} 
15.            i = m+1 
16.      end 

17. end 

In Algorithm 2, m+1 and j-1 are computed modulus 
length(P). 

For the algorithm to have good performance, we need a 
data structure that supports efficient disk range queries on a 
set of points. We use the standard cell/bucket data structure 
proposed by Bentley et al. [1] and Maus [3]: the domain, the 
bounding box of the point set, is partitioned into boxes of 
the same size, and an index array is used to store the indices 
of the points inside each box. The points inside each box 
can be retrieved in constant time, and the index of the box 
containing any point can also be computed in constant time. 
For point sets containing n points, we partition the domain 

into √  √  boxes. Then each box contains a single point 
on the average, and we found that for uniformly-distributed 
point sets it takes less than 10 half-plane intersections to 
find the exact Voronoi polygon and Delaunay one-ring. To 
make the following operations simpler, we scale the (square) 
domain to be the unit square. 

It remains to provide the details of Steps 1-3 in Algo-
rithm 1, i.e. building an initial candidate Delaunay polygon 
P0 and candidate Voronoi cell Q0 for c. Obviously, we 
would like Q0 to be as tight as possible. Also, these steps 
should be as fast as possible. 

We use the “spiral” search technique to find a fixed 
number, say 6, of non-empty cells around c, and then sort all 
the points inside these cells in CCW order around c to ob-

tain the initial polygon P0. The dark red spiral in Fig. 4 
shows the procedure of the “spiral” search. However in 
some cases, this initial polygon will not contain c. Worse 
still, when c is on the convex hull of the point set, there ex-
ists no polygon containing it at all. Luckily, as mentioned in 
the previous section, we can always include the infinite 
point into P0, and make it “closed”.  

 
Figure 4.   (Black) Candidate Delaunay one-ring polygon P and 

corresponding (red) dual candidate Voronoi cell Q constructed from the 

points inside the cells inside the blue rectangles. The purple quadrilateral 

is the initial candidate Delaunay polygon formed by 4 virtual “infinite” 
points. The right portion shows a candidate Delaunay one-ring containing 

one virtual “infinite” point. Circumcircles involving the “infinite” point 

are actually (dashed purple) halfplanes. 

The initial candidate Voronoi cell Q0 can be constructed 
as the “dual” of the site c by taking the i'th vertex of Q0 to 

be the circumcenter of △cpipi+1 (the circumcenter of infinite 

triangle is the infinite point). Unfortunately, this does not 
always result in a simple polygon, as the triangulation inside 
the polygon P0 is not always Delaunay itself. This will inter-
fere with the later half-plane intersecting procedure, since 
the initial candidate Voronoi cell must be valid (simple and 
convex) for it to be correct. Thus we must prune the poly-
gon P0 in order to make Q0 valid. Obviously, this can be 
achieved by intersection of all the half-planes defined by c 
and all the vertices of P0. To simply this process, we first 
construct P0 to be the square formed by 4 virtual points, {(-
1/2, -1/2), (3/2, -1/2), (3/2, 3/2), (-1/2, 3/2)}, outside the 
domain (the unit square), and take the candidate Voronoi 
cell Q0. to be the dual of P0.Then for each vertex of P0 

(without the infinite point), we run the same half-plane in-
tersection routine as in Step 5-9 of Algorithm 1, to update P 
and Q.  

After this step, we will usually be left with a very tight 
containing polygon P. This will rule out the majority of the 
point set from the Delaunay neighbor candidate list V, In 
fact, quite a few of the circumcircles are already empty, as 
shown in Fig. 4, therefore the core of Algorithm 1, Steps 5-9, 
needs to process only a very small number of candidate 
neighbors. 

 
  

  

  

  



Thanks to the introduction of virtual (infinite) points, we 
do not need to take special care of the points on the convex 
hull. However, note that the circumcircles of the triangles 
containing the virtual points are actually halfspaces, there-
fore the Delaunay neighbor candidates list V should be con-
structed slightly differently. The point-in-circumcircle test 
in Algorithm 1 should also be replaced with a point-in-
halfplane test. 

The top row of Fig. 7 shows the evolution of P and Q in 
a typical scenario. 

Note that our algorithm does not take degenerate cases 
into account. When such situations exist in the given point 
set, i.e. more than 3 points form an empty circle, then the 
Delaunay one-rings of these points, as found by our algo-
rithm, may not agree with each other, rendering the com-
plete DT invalid. In such cases, we can slightly modify the 
algorithm by perturbing each point randomly so that the 
degeneracy disappears while the DT is preserved. 

V. PARALLEL DELAUNAY TRIANGULATION 

The Delaunay triangulation algorithm can be parallel-
ized in a straightforward manner. In fact, since the same 
procedure is applied to each point, and the processing of 
each point is independent of the others, we can simply paral-
lelize the loop applying Algorithm 1 to all input points. Be-
fore running the main algorithm, we need to partition the 
point set into uniform cells/buckets and build the data struc-
ture. Due to its regularity and simplicity, this can also be 
parallelized using standard thread synchronization tech-
niques, such as atomic operations. In any case, this prepro-
cessing accounts for less than 0.1% of the serial processing 
time. 

A. Avoiding redundancy 

Each Delaunay triangle features in each of the three De-
launay one-rings of its vertices, therefore simply applying 
Algorithm 1 to each point independently will compute each 
Delaunay triangle three times. A similar analysis reveals 
that each Delaunay edge will be computed four times. When 
running the serial version of the algorithm, some of this can 
be saved in an obvious manner by updating the Delaunay 
neighbor information for each pi after finding P - the Delau-
nay one-ring of c - and then skipping the Delaunay neigh-
bors already found when applying Algorithm 1 on pi. Alas, 
it is difficult to apply this simple strategy when running the 
algorithm in parallel, as this requires too much coordination 
between processors when updating the Delaunay neighbor 
information. 

Fortunately, it is still possible to reduce the redundant 
computation also in the parallel case. Since a triangle is al-
ways intersected by one of the three vertical lines through 
its vertices, we can construct the entire DT by computing 
only the two Delaunay triangles that intersect the vertical 
line through each point. As shown in Fig. 5, only the two 
gray Delaunay triangles need to be found for point c. To 
implement this optimization, we modify Algorithm 1 and 2 
accordingly. In Algorithm 1, we build the initial candidate 
Delaunay one-ring using only four points (including virtual 
points if necessary); one in each of c’s four quadrants. In 

Algorithm 2 we process only the two edges of the Delaunay 
polygon which intersect the vertical through c. The bottom 
row of Fig. 7 shows the evolution of P and Q in this opti-
mized version of the DT algorithm, which may be compared 
to the evolution in the serial version of the algorithm in the 
top row of that figure. 

 
Figure 5.  Reducing the DT computation by computing only the two 

Delaunay triangles incident on c that intersect the red vertical through c. 

B. Load balancing  

To achieve the best performance of a parallel algorithm, 
it is important to balance the workload of the parallel tasks, 
since the overall performance is determined by the slowest 
processor. However, Algorithm 1 performs quite differently 
for interior points and for boundary points, even in a uni-
formly distributed point set. For most interior points, Algo-
rithm 1 has constant time complexity w.r.t. n, the size of the 
point set, while for points on the convex hull and some inte-

rior points nearby, the time complexity is O(√ ). This is 
because the Delaunay polygon P contains the infinite point, 
which indicates that the circumcircle of some triangle is a 

half-space, meaning that O(√ ) cells of points must now be 
checked. So although the serial version of the algorithm 
treated all points equally, the parallel version must be wary 
of points on the convex hull.  

Since it is difficult to tell apriori which points are on the 
convex hull, we adopt a strategy which  disguises these 
points as interior points. This is done by using a periodic 
DT [36], which is the DT of a point set which is replicated 
in tiles over the plane. Thus each point in the periodic DT 
may be considered an interior point and the time complexity 
of Algorithm 1 will then always be constant. Based on this, 
we may adjust Step 1 and 4 in Algorithm 1 by replacing the 
virtual (infinite) points with replicas of c in different periods 
and build the Delaunay neighbor candidate list in periodic 
space. Fig 6. shows an example of a periodic DT.  

It remains to describe a method to transform a periodic 
DT into a regular DT in linear time. First we remove the 
triangles crossing the boundary of the domain in the period-
ic DT, and find the resulting triangulation boundary vertices 
by checking whether their Delaunay one-ring is closed. 
Since no new triangles are introduced, all the existing trian-
gles stay Delaunay, and we need only to find the Delaunay 
edges between the triangulation boundary and the convex 

 

c 



hull. The latter can be traced from the boundary vertices in 
time linear in the number of boundary vertices [31]. Then, 
as shown in Fig. 6, the region between the (blue) boundary 
and the (red) convex hull is the union of simple closed poly-
gons, which may be identified by “walking” along the 
boundary. A simplified version of our Algorithm 1 may be 
used to triangulate these polygons by running on their verti-
ces in parallel. For each vertex c on any of these simple pol-

ygons G, we replace c∈G with the infinite point, to obtain 

the initial candidate Delaunay one-ring P, and construct the 
Delaunay neighbor candidate list V as all the vertices of P. 

 

Figure 6.  Transforming a periodic DT to a regular DT. The green square 

marks the original domain of the input point set and the red polygon its 

convex hull. Four periods are shown. The blue polygon marks the 
boundary of the DT after removing all triangles of the periodic DT 

crossing the original (green) domain boundary. Only the region between it 

and the (red) convex hull, which consists of the union of simple polygons, 
such as the blue polygon, need to be triangulated. 

VI. EXPERIMENTAL RESULTS  

In this section, we demonstrate the efficiency of our DT 
algorithm, both serial and parallel, for point sets drawn from 
a uniform distribution, and analyze the complexity of the 
algorithm. Our experiments were run on a PC with an Intel 
i7-i2720QM@2.2 GHZ 4-core CPU and 8GB RAM. 

For a uniformly distributed point set, the algorithm takes 
constant average time to compute the Voronoi cell and the 

Delaunay one-ring for most interior points and O(√ ) for 
each point on the convex hull and a very few points near the 
convex hull. Since the number of points on the convex hull 
is O(    ) on the average [33], the overall time complexity 

of the algorithm is O((n-logn)+ √ logn) = O(n). Our serial 
implementation confirms this. As for the space complexity, 
our algorithm needs to build and use the cell/bucket data 
structure, which takes O(n) space. As discussed in Section V, 
we only need to output two triangles for each vertices, there-
fore we need O(n) space to store the results. For each paral-
lel thread, we need to maintain both the candidate Delaunay 
one-ring polygon and the candidate dual Voronoi cell for 

current vertex. Let the largest valence of the DT be k and the 
number of parallel threads be p, then the overall space com-
plexity is O(n)+O(n)+O(kp)=O(n+kp). 

Fig. 8 shows the runtime of our DT algorithm with 1 to 
4 CPU cores in comparison with Qhull [37], CGAL [35] 
and Triangle [32] - the best (and most popular) serial algo-
rithms that we are aware of - and GPU-DT [8], for uniform-
ly distributed point sets of different sizes (between 10

5
 and 

10
6
 points). Triangle and CGAL have similar performance, 

and the serial implementation of our DT algorithm is ap-
proximately 2-2.5 times slower.  

The DT algorithm was parallelized on a multi-core CPU 
using OpenMP [34]. The atomic directive is used to build 
the cell data structure in parallel. Only the point set and cor-
responding spatial data structure are shared among all the 
threads. Fig 8. shows that the parallel DT gives an almost 
perfect speedup over the serial version, thus our parallel 
implementation on 3 cores and above outperforms Triangle 
and CGAL, and the same implementation on 4 cores outper-
forms GPU-DT. Fig 9. shows the speedup using different 
numbers of  CPU cores for different point sets. This particu-
lar experiment was run on a Linux server containing two 
Intel Xeon E5420@2.5 GHZ 4-core CPUs with 32GB RAM. 
As can be seen, our parallel implementation gives an almost 
perfect speedup over the serial version for point sets under 
either uniform or non-uniform distribution. 

Our algorithm is designed primarily for uniformly dis-
tributed point sets. Although it can also be used for non-
uniform distributions, its performance will not be as good. 
Table I shows the timing of the algorithm run on some point 
sets having irregular distributions. For point sets having 
“reasonable” distributions, such as the Gradient and Leaf 
examples, our algorithm still achieves reasonable perfor-
mance. However for point sets having extreme distributions, 
such as the Ring example, our algorithm performs poorly. 
The reason is that most cells in the underlying grids are ei-
ther empty or very dense, causing the Delaunay neighbor 
candidate sets V constructed in Algorithm 1 to be either very 
large or empty. This significantly damages the load balance, 
increasing the complexity of Algorithm 1. 

VII. CONCLUSION 

We have presented a Local Delaunay lemma which al-
lows to localize the Delaunay triangulation, namely, bound 
the points in a set which may be Delaunay neighbors of a 
given point. This localization may be used to design an al-
gorithm to construct the Delaunay triangulation and Voronoi 
diagram, which may easily be parallelized, since the Delau-
nay neighbors of any point may be found independently and 
relatively quickly by process of elimination. Our experi-
ments show that speedup is linear in the number of proces-
sors, which means that Delaunay triangulations may be 
computed arbitrarily quickly by adding computing power. 

Future work includes implementation on modern graphic 
hardware (GPU), extending the algorithm to 3D space, op-
timizations for point sets with non-uniform distributions and 
generalization to power diagrams and regular triangulations. 

 



 
Figure 7.  Evolution of the (black) Delaunay one-ring P and (red) Voronoi cell Q as Algorithms 1 and 2 are running. (Top) Serial version. (Bottom) Parallel 

version optimized to eliminate redundancy. 

 
Figure 8.  Runtime of parallel DT with different configurations compared 

to Qhull [37], CGAL [35] and Triangle [32] - the state-of-the-art serial 

algorithms, and GPU-DT [7]. 

 

 

Figure 9.  Speedup of parallel DT using multi-core CPU. 

TABLE I.  RUNTIME (SEC) OF PARALLEL DT ON NON-UNIFORM 

POINT SETS. 

Point set 

(51,200 

points) 

Ring

 

Gradient 

 

Leaf

 
Parallel DT 
on 4 cores 

0.516 0.036 0.048 

CGAL [35] 0.091 0.089 0.091 

Triangle [32] 0.055 0.055 0.057 
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