
Localizing the Delaunay Triangulation

and its Parallel Implementation

Renjie Chen

Technion

Haifa, Israel

renjie.c@gmail.com

Craig Gotsman

Technion

Haifa, Israel

gotsman@cs.technion.ac.il

Abstract—We show how to localize the Delaunay triangulation

of a given planar point set, namely, bound the set of points

which are possible Delaunay neighbors of a given point. We

then exploit this observation in an algorithm for constructing

the Delaunay triangulation (and its dual Voronoi diagram) by

computing the Delaunay neighbors (and Voronoi cell) of each

point independently. While this does not lead to the fastest

serial algorithm possible for Delaunay triangulation, it does

lead to an efficient parallelization strategy which achieves

almost perfect speedups on multicore machines.

Delaunay triangulation; Voronoi diagram; parallel

computation

I. INTRODUCTION

The Delaunay triangulation (DT) of a set of planar point
sites and its dual, the Voronoi diagram (VD), are among the
most fundamental structures in computational geometry. DT
is the triangulation of the sites such that each triangle satis-
fies the empty circumcircle property, i.e. its circumcircle
contains none of the other sites, thus, intuitively, the DT has
the “fattest” triangles among all possible triangulations of
the sites. The VD is a partition of the plane into (possibly
unbounded) convex polygonal cells, one per site, such that
the points inside each cell are closer to the site correspond-
ing to that cell than any other site. Due to their many desira-
ble properties, DT and VD are widely used in many fields of
science.

Because of the duality relationship between them, DT
and VD can be converted to each other in linear time. The
classical algorithms for computing DT and VD in O(nlogn)
time are Dwyer’s divide and conquer algorithm [5], For-
tune’s plane sweep algorithm [6], incremental construction
[19] and variations based on randomization [4], lifting to
three dimensions and computing the convex hull [29]. Su et
al. [2] provide a thorough survey and comparison of these
algorithms.

Most of these serial algorithms achieve O(nlogn) time
complexity. When the input is drawn from a uniform spatial
distribution of sites, more efficient algorithms are possible.
Bentley et al. [1] first proposed a linear expected time algo-
rithm for the VD based on the idea of finding the Voronoi
cell of each site independently. Using a cell data structure
and a spiral search [1, 3] technique, the algorithm finds all

other sites in the vicinity of the given site, and builds its
Voronoi cell from these. A rough estimate for the region
that contains all the possible neighboring Voronoi sites of
each interior site is given. One of the traditional algorithms
is used both for finding the VD of the periphery of the point
set, and also as a last resort for the rare cases where the al-
gorithm fails on an interior point. Using the same data struc-
ture, Maus [3] proposed another linear expected time algo-
rithm for the DT of sites drawn from a uniform distribution
by greedily finding all the Delaunay edges starting from an
initial Delaunay edge list. In addition to the sites, this algo-
rithm requires the convex hull of the sites as input, which
serves as the initial Delaunay edge list.

Due to the increasing need to rapidly construct the DT in
many applications which may involve millions of points,
there has been much research on computing DT in parallel.
Many of these [16-28] are based on the state-of-the-art serial
algorithms, such as divide and conquer and incremental
construction. They achieve parallelism by partitioning the
set of sites into smaller subsets and using parallel processing
to construct the DT of each subset separately. The separate
triangulations are then combined by edge flipping where
needed. These algorithms make use of a “master” processor
which assigns tasks to “slave” processors, attempting to
balance well the load between processors. Thus the master
becomes a bottleneck at some stage, and the algorithms do
not scale well with the number of processors. Furthermore,
these algorithms do not fit well into the current model of
multi-core processors and general purpose graphics pro-
cessing units (GPU), in which no master process should be
present.

In this paper, we present a new algorithm to construct
the VD and DT. This is achieved by running an incremental
half-plane intersection method to compute the Voronoi cell
and Delaunay neighbors of each site independently. A key
Locality Lemma, which may be of independent interest,
allows us to limit the candidate set of the Delaunay neigh-
bors to be considered for each site, thus we drastically re-
duce the O(n

2
logn) time complexity of the naïve half-plane

intersection algorithm [30]. For sets of uniformly distributed
sites, the complexity is O(1) per site. The algorithm is ex-
tremely simple and easy to implement. Although this does
not result in a serial algorithm which is any faster than state-

of-the-art serial algorithms, it does, as opposed to other al-
gorithms, lend itself to easy and efficient parallelization.
With an extra (quite straightforward) optimization as de-
scribed in Section VI, the resulting parallel implementation
achieves almost perfect speedups.

II. RELATED WORK

Serial algorithms for computing the VD and the dual DT
are well known, so we will not survey them here. Instead,
we will concentrate on the lesser-known parallel algorithms.

Rong et al. [10] proposed a parallel algorithm to com-
pute the DT using the GPU and CPU in tandem. With the
GPU they compute the DT of a modified point set con-
structed by snapping each original input point to the nearest
grid point (“pixel”). After computing the DT of the grid
point set using the GPU, they move each point back to its
original coordinates and repair the triangulation by edge
flipping where necessary. Because of its inherent serial na-
ture, the edge flip step is done on the CPU, thereby making
the complete algorithm only partially parallel, with limited
speedup over serial algorithms. Very recently, Qi et al. [7]
improved this algorithm by implementing also the edge
flipping on the GPU, thus making the entire algorithm GPU-
based. They also extend the algorithm to a constrained DT.

It is well known that the DT contains the nearest neigh-
bor graph as a subgraph. Maus and Drange [9] generalized
this property to the k nearest neighbors, namely, they prove
that for any point x in the point set X with k nearest neigh-
bors {b1, b2 ... bk} (bi are sorted by their distances to x), the
j’th closest neighbor bj is a neighbor of x in the DT of X if it
is not contained in any of circles having the segment xbi
{i=1, 2,…j-1} as its diameter. Based on this and the nearest
neighbor graph property, they presented two algorithms for
constructing the DT in parallel. With the nearest neighbor
graph and k-nearest neighbor graph as starting points, they
use an incremental algorithm [3] and constrained DT algo-
rithm to find the Delaunay neighbors of each point inde-
pendently in the two algorithms respectively. However in
both algorithms, a serial algorithm is employed to compute
the convex hull of the point set, which is necessary for their
algorithm to construct the DT, therefore making these algo-
rithms also only partially parallel.

Very recently, Reem [15] adapted his ray-shooting-
based parallel algorithm for computing the approximate VD
in general settings [14] (general sites, and general normed
space) to compute the exact VD by carefully utilizing the
information along the rays. A formal proof is given to show
that the algorithm will always terminate with the correct
result within a finite number of steps. Experimental results
show that this algorithm, equipped with appropriate spatial
data structures for the sites, achieves almost linear expected
time complexity for uniform distributions. However, since
the VD is clipped to a rectangular domain, an important
component of the DT - the convex hull of the point set - will
be incomplete when transforming the VD into a DT.

Shewchuk [8] proposed the Star Splaying algorithm for
transforming a triangulation which is nearly DT into a DT.
The algorithm seeks to adjust the stars, the candidate De-
launay one-rings of all the vertices, so that they agree with

each other and therefore form a DT. Star Splaying is akin to
the Delaunay edge flip algorithm, and it requires (near DT)
connectivity in addition to the point set as input. In this pa-
per, we propose an algorithm which also seeks to find the
Delaunay one-rings for all the vertices. However, it does not
check the relation between different Delaunay one-rings,
rather computes the Delaunay one-rings of the vertices in-
dependently of each other, making it inherently paralleliza-
ble.

III. LOCALIZING THE DELAUNAY TRIANGULATION

First some terminology.
Delaunay edge: an edge xy is a Delaunay edge if it is con-
tained in the DT.
Delaunay neighbor: a vertex x is a Delaunay neighbor of y
if xy is a Delaunay edge.
Delaunay one-ring: the Delaunay one-ring of a vertex x is
the set of all Delaunay neighbors of x.
Voronoi vertex: a vertex of a Voronoi cell boundary
Half-plane: the half-plane between two points c and v is the
bisector of the points.

The terms point, vertex and site are interchangeable
through the paper.

In this section, we present a key Lemma, illustrated in
Fig. 1, that leads to the main algorithm of this paper. In gen-
eral, Delaunay edges are short, because they connect a site
to other sites in close proximity. However, there is no strict
upper bound on the length of Delaunay edges, and in some
extreme cases, edges can span the entire point set. Further-
more, there is no easy rule of thumb that can predict which
sites exactly will be the Delaunay neighbors of a given site.
Thus, there is value in a rule which localizes the Delaunay
triangulation, namely, strictly bounds the set of possible
Delaunay neighbors of a given site.

Local Delaunay Lemma
Let X be a set of points in the plane. If the ordered subset

P={p1, p2,…, pn}⊆X forms a simple polygon containing c∈

X, then the Delaunay neighbors of c are contained in the
union of the circumcircles of the n triangles formed by c and
every two consecutive points of P (irrespective of the trian-
gle orientation).

Figure 1. The Local Delaunay Lemma. Only the blue sites, inside or on

the red circumcircles, can be the Delaunay neighbors of the site c.

p1

p2 p4

p5

p3

c

Proof: Let CC=⋃ , where cci is the circumcircle of

△cpipi+1.

For any point v CC, since P is closed and contains c, v
must be contained in some (at least one) closed sector de-
fined by c and an edge on P, say pipi+1. The sector is defined
as the unbounded region inside the angle , and a
closed sector includes the two defining rays, cpi and cpi, as
shown in Figure 2.

Figure 2. Proof of the Local Delaunay Lemma.

Assume cv is a Delaunay edge. This implies that there
exists a circle through c and v which does not contain any
other point of X, including pi and pi+1 [11]. Obviously, cv
cannot be at the boundary of the sector, as this would imply
that either pi or pi+1 is inside this circle. Therefore pi and pi+1
are on opposite sides of the chord cv that divides this circle
into two arcs, as shown in Fig. 2. So, on the one hand, for
any point v1 on the arc which is on the same side of cv as pi,
we have . Similarly for any point v2 on the
complementary arc, we have . Therefore

Since v is outside the circumcircle of △cpipi+1, we have

which leads to

On the other hand, since v1 and v2 are on the two com-

plementary arcs of the chord cv:

which is a contradiction. Thus cv cannot be a Delaunay

edge. □
Note that by including the point at infinity, the Local

Delaunay lemma can be generalized to the case that the pol-
ygon P is unbounded, as is the case for points on the convex

hull. Consider the “closed” polygon P∪∞, any point inside

the unbounded sector of P falls inside either or both of the
circumcircles of the two infinite triangles, which are essen-
tially two halfspaces.

We also note an important special case of the Local De-
launay Lemma. If P is exactly the set of Delaunay neighbors
of c, then the union of the circumcircles will contain no oth-
er points, as expected. The Local Delaunay Lemma allows
us to significantly limit the number of points we need to
consider when searching for the Delaunay neighbors of a
point x. Indeed, none of the points outside the union of the
circumcircles of triangles incident to c can be a Delaunay
neighbor of c. Therefore it suffices to consider only the
points inside this union.

IV. DELAUNAY TRIANGULATION

Based on the Local Delaunay Lemma, we now outline
an algorithm for computing the Delaunay neighbors (and
Voronoi cell) of a given point c.

Algorithm 1.

1. Find a (simple) polygon P0={p1, p2,.., pk}, containing

c.

2. Initialize c’s candidate Delaunay one-ring: P=P0.

3. Initialize c’s candidate Voronoi cell: Q={q1, q2,.., qk},

where qi is the circumcenter of △cpipi+1.

4. Construct the list of Delaunay neighbor candidates

5. for each v∈V

6. Compute the half-plane Hv defined by the bisector

 of v and c, containing c.

7. Q  Hv  Q

8. Update P, based on Q (See Algorithm 2)

9. end

To find the complete DT of a point set X, Algorithm 1 is
run for each point c in X.

The core of the algorithm is half-plane intersection in the
loop described in Steps 5-9. Note that the candidate Voronoi
cell changes (actually, shrinks) between iterations, therefore
the halfspace corresponding to a vertex in V may not inter-
sect it, thus not change it. This can be checked by inspecting
whether the candidate vertex v is inside any of the circum-
circles defined by the current P (or, equivalently, the current
Q). Actually, for each candidate v, we can find the sector
picpi+1 that v resides in, then by comparing the distance ||qi -
v|| with the distance ||qi - c||, we can tell if v is inside the
current union of circumcircles. Since the vertices in P are
ordered (CCW), we can find the sector containing v in O(log
d) time, where d is the length of P. The intersection with
half-plane Hv is now done easily, since, starting from the
sector, we can find the two edges on Q that Hv intersects in
constant time, as shown in Fig. 3. Then we can simply keep
the vertices of Q that are closer to c than v is, and replace
the other vertices of Q with the centers of the new circum-
circles.

 Before After

Figure 3. Intersecting the (solid red) candidate Voronoi cell of c with

(blue) halfplane Hv associated with the candidate v. After the intersection,

the previous (purple) circumcircle is replaced with two new (purple)
circumcircles, and v is added to the (blue) candidate Delaunay one-ring of

c. The relevant sector is shaded.

c

v
pi

pi+1

v1

v2

c

v

Hv

c

v

Some of the initial triangles incident to c could be very
skinny and have large circumcircles, which results in the list
of Delaunay candidates V constructed in Steps 1-4 contain-
ing many points. Since the Local Delaunay Lemma holds
for any polygon containing c, we can optimize the routine
by implementing the loop of Algorithm 1 in an incremental
manner. Starting from the initial candidate Delaunay poly-
gon P, in each iteration we deal with one of its edges, pipi+1.
We check whether the circumcircle of the corresponding

triangle △cpipi+1 contains a point. Only if it does do we run

the half-plane intersection routine and update P and Q. Al-
gorithms 2 shows the pseudo-code for the incremental up-
date of P and Q.

Algorithm 2.

1. LocDT(c, P, Q)

2. i = 1;

3. while i <= length(P)

4.
5. if V is empty
6. i++
7. else /* half-plane intersection */
8. v = any vertex in V
9. j = index of first vertex of Q inside Hv

10. m =index of last vertex of Q inside Hv

11. o1 = circumcenter(pm+1, v, c)
12. o2 = circumcenter(v, pj-1, c)
13. Q = { q1,…qm, o1, o2, qj-1,…qend}
14. P = { p1,…pm+1,v, pj-1,…pend}
15. i = m+1
16. end

17. end

In Algorithm 2, m+1 and j-1 are computed modulus
length(P).

For the algorithm to have good performance, we need a
data structure that supports efficient disk range queries on a
set of points. We use the standard cell/bucket data structure
proposed by Bentley et al. [1] and Maus [3]: the domain, the
bounding box of the point set, is partitioned into boxes of
the same size, and an index array is used to store the indices
of the points inside each box. The points inside each box
can be retrieved in constant time, and the index of the box
containing any point can also be computed in constant time.
For point sets containing n points, we partition the domain

into √ √ boxes. Then each box contains a single point
on the average, and we found that for uniformly-distributed
point sets it takes less than 10 half-plane intersections to
find the exact Voronoi polygon and Delaunay one-ring. To
make the following operations simpler, we scale the (square)
domain to be the unit square.

It remains to provide the details of Steps 1-3 in Algo-
rithm 1, i.e. building an initial candidate Delaunay polygon
P0 and candidate Voronoi cell Q0 for c. Obviously, we
would like Q0 to be as tight as possible. Also, these steps
should be as fast as possible.

We use the “spiral” search technique to find a fixed
number, say 6, of non-empty cells around c, and then sort all
the points inside these cells in CCW order around c to ob-

tain the initial polygon P0. The dark red spiral in Fig. 4
shows the procedure of the “spiral” search. However in
some cases, this initial polygon will not contain c. Worse
still, when c is on the convex hull of the point set, there ex-
ists no polygon containing it at all. Luckily, as mentioned in
the previous section, we can always include the infinite
point into P0, and make it “closed”.

Figure 4. (Black) Candidate Delaunay one-ring polygon P and

corresponding (red) dual candidate Voronoi cell Q constructed from the

points inside the cells inside the blue rectangles. The purple quadrilateral

is the initial candidate Delaunay polygon formed by 4 virtual “infinite”
points. The right portion shows a candidate Delaunay one-ring containing

one virtual “infinite” point. Circumcircles involving the “infinite” point

are actually (dashed purple) halfplanes.

The initial candidate Voronoi cell Q0 can be constructed
as the “dual” of the site c by taking the i'th vertex of Q0 to

be the circumcenter of △cpipi+1 (the circumcenter of infinite

triangle is the infinite point). Unfortunately, this does not
always result in a simple polygon, as the triangulation inside
the polygon P0 is not always Delaunay itself. This will inter-
fere with the later half-plane intersecting procedure, since
the initial candidate Voronoi cell must be valid (simple and
convex) for it to be correct. Thus we must prune the poly-
gon P0 in order to make Q0 valid. Obviously, this can be
achieved by intersection of all the half-planes defined by c
and all the vertices of P0. To simply this process, we first
construct P0 to be the square formed by 4 virtual points, {(-
1/2, -1/2), (3/2, -1/2), (3/2, 3/2), (-1/2, 3/2)}, outside the
domain (the unit square), and take the candidate Voronoi
cell Q0. to be the dual of P0.Then for each vertex of P0

(without the infinite point), we run the same half-plane in-
tersection routine as in Step 5-9 of Algorithm 1, to update P
and Q.

After this step, we will usually be left with a very tight
containing polygon P. This will rule out the majority of the
point set from the Delaunay neighbor candidate list V, In
fact, quite a few of the circumcircles are already empty, as
shown in Fig. 4, therefore the core of Algorithm 1, Steps 5-9,
needs to process only a very small number of candidate
neighbors.

Thanks to the introduction of virtual (infinite) points, we
do not need to take special care of the points on the convex
hull. However, note that the circumcircles of the triangles
containing the virtual points are actually halfspaces, there-
fore the Delaunay neighbor candidates list V should be con-
structed slightly differently. The point-in-circumcircle test
in Algorithm 1 should also be replaced with a point-in-
halfplane test.

The top row of Fig. 7 shows the evolution of P and Q in
a typical scenario.

Note that our algorithm does not take degenerate cases
into account. When such situations exist in the given point
set, i.e. more than 3 points form an empty circle, then the
Delaunay one-rings of these points, as found by our algo-
rithm, may not agree with each other, rendering the com-
plete DT invalid. In such cases, we can slightly modify the
algorithm by perturbing each point randomly so that the
degeneracy disappears while the DT is preserved.

V. PARALLEL DELAUNAY TRIANGULATION

The Delaunay triangulation algorithm can be parallel-
ized in a straightforward manner. In fact, since the same
procedure is applied to each point, and the processing of
each point is independent of the others, we can simply paral-
lelize the loop applying Algorithm 1 to all input points. Be-
fore running the main algorithm, we need to partition the
point set into uniform cells/buckets and build the data struc-
ture. Due to its regularity and simplicity, this can also be
parallelized using standard thread synchronization tech-
niques, such as atomic operations. In any case, this prepro-
cessing accounts for less than 0.1% of the serial processing
time.

A. Avoiding redundancy

Each Delaunay triangle features in each of the three De-
launay one-rings of its vertices, therefore simply applying
Algorithm 1 to each point independently will compute each
Delaunay triangle three times. A similar analysis reveals
that each Delaunay edge will be computed four times. When
running the serial version of the algorithm, some of this can
be saved in an obvious manner by updating the Delaunay
neighbor information for each pi after finding P - the Delau-
nay one-ring of c - and then skipping the Delaunay neigh-
bors already found when applying Algorithm 1 on pi. Alas,
it is difficult to apply this simple strategy when running the
algorithm in parallel, as this requires too much coordination
between processors when updating the Delaunay neighbor
information.

Fortunately, it is still possible to reduce the redundant
computation also in the parallel case. Since a triangle is al-
ways intersected by one of the three vertical lines through
its vertices, we can construct the entire DT by computing
only the two Delaunay triangles that intersect the vertical
line through each point. As shown in Fig. 5, only the two
gray Delaunay triangles need to be found for point c. To
implement this optimization, we modify Algorithm 1 and 2
accordingly. In Algorithm 1, we build the initial candidate
Delaunay one-ring using only four points (including virtual
points if necessary); one in each of c’s four quadrants. In

Algorithm 2 we process only the two edges of the Delaunay
polygon which intersect the vertical through c. The bottom
row of Fig. 7 shows the evolution of P and Q in this opti-
mized version of the DT algorithm, which may be compared
to the evolution in the serial version of the algorithm in the
top row of that figure.

Figure 5. Reducing the DT computation by computing only the two

Delaunay triangles incident on c that intersect the red vertical through c.

B. Load balancing

To achieve the best performance of a parallel algorithm,
it is important to balance the workload of the parallel tasks,
since the overall performance is determined by the slowest
processor. However, Algorithm 1 performs quite differently
for interior points and for boundary points, even in a uni-
formly distributed point set. For most interior points, Algo-
rithm 1 has constant time complexity w.r.t. n, the size of the
point set, while for points on the convex hull and some inte-

rior points nearby, the time complexity is O(√). This is
because the Delaunay polygon P contains the infinite point,
which indicates that the circumcircle of some triangle is a

half-space, meaning that O(√) cells of points must now be
checked. So although the serial version of the algorithm
treated all points equally, the parallel version must be wary
of points on the convex hull.

Since it is difficult to tell apriori which points are on the
convex hull, we adopt a strategy which disguises these
points as interior points. This is done by using a periodic
DT [36], which is the DT of a point set which is replicated
in tiles over the plane. Thus each point in the periodic DT
may be considered an interior point and the time complexity
of Algorithm 1 will then always be constant. Based on this,
we may adjust Step 1 and 4 in Algorithm 1 by replacing the
virtual (infinite) points with replicas of c in different periods
and build the Delaunay neighbor candidate list in periodic
space. Fig 6. shows an example of a periodic DT.

It remains to describe a method to transform a periodic
DT into a regular DT in linear time. First we remove the
triangles crossing the boundary of the domain in the period-
ic DT, and find the resulting triangulation boundary vertices
by checking whether their Delaunay one-ring is closed.
Since no new triangles are introduced, all the existing trian-
gles stay Delaunay, and we need only to find the Delaunay
edges between the triangulation boundary and the convex

c

hull. The latter can be traced from the boundary vertices in
time linear in the number of boundary vertices [31]. Then,
as shown in Fig. 6, the region between the (blue) boundary
and the (red) convex hull is the union of simple closed poly-
gons, which may be identified by “walking” along the
boundary. A simplified version of our Algorithm 1 may be
used to triangulate these polygons by running on their verti-
ces in parallel. For each vertex c on any of these simple pol-

ygons G, we replace c∈G with the infinite point, to obtain

the initial candidate Delaunay one-ring P, and construct the
Delaunay neighbor candidate list V as all the vertices of P.

Figure 6. Transforming a periodic DT to a regular DT. The green square

marks the original domain of the input point set and the red polygon its

convex hull. Four periods are shown. The blue polygon marks the
boundary of the DT after removing all triangles of the periodic DT

crossing the original (green) domain boundary. Only the region between it

and the (red) convex hull, which consists of the union of simple polygons,
such as the blue polygon, need to be triangulated.

VI. EXPERIMENTAL RESULTS

In this section, we demonstrate the efficiency of our DT
algorithm, both serial and parallel, for point sets drawn from
a uniform distribution, and analyze the complexity of the
algorithm. Our experiments were run on a PC with an Intel
i7-i2720QM@2.2 GHZ 4-core CPU and 8GB RAM.

For a uniformly distributed point set, the algorithm takes
constant average time to compute the Voronoi cell and the

Delaunay one-ring for most interior points and O(√) for
each point on the convex hull and a very few points near the
convex hull. Since the number of points on the convex hull
is O() on the average [33], the overall time complexity

of the algorithm is O((n-logn)+ √ logn) = O(n). Our serial
implementation confirms this. As for the space complexity,
our algorithm needs to build and use the cell/bucket data
structure, which takes O(n) space. As discussed in Section V,
we only need to output two triangles for each vertices, there-
fore we need O(n) space to store the results. For each paral-
lel thread, we need to maintain both the candidate Delaunay
one-ring polygon and the candidate dual Voronoi cell for

current vertex. Let the largest valence of the DT be k and the
number of parallel threads be p, then the overall space com-
plexity is O(n)+O(n)+O(kp)=O(n+kp).

Fig. 8 shows the runtime of our DT algorithm with 1 to
4 CPU cores in comparison with Qhull [37], CGAL [35]
and Triangle [32] - the best (and most popular) serial algo-
rithms that we are aware of - and GPU-DT [8], for uniform-
ly distributed point sets of different sizes (between 10

5
 and

10
6
 points). Triangle and CGAL have similar performance,

and the serial implementation of our DT algorithm is ap-
proximately 2-2.5 times slower.

The DT algorithm was parallelized on a multi-core CPU
using OpenMP [34]. The atomic directive is used to build
the cell data structure in parallel. Only the point set and cor-
responding spatial data structure are shared among all the
threads. Fig 8. shows that the parallel DT gives an almost
perfect speedup over the serial version, thus our parallel
implementation on 3 cores and above outperforms Triangle
and CGAL, and the same implementation on 4 cores outper-
forms GPU-DT. Fig 9. shows the speedup using different
numbers of CPU cores for different point sets. This particu-
lar experiment was run on a Linux server containing two
Intel Xeon E5420@2.5 GHZ 4-core CPUs with 32GB RAM.
As can be seen, our parallel implementation gives an almost
perfect speedup over the serial version for point sets under
either uniform or non-uniform distribution.

Our algorithm is designed primarily for uniformly dis-
tributed point sets. Although it can also be used for non-
uniform distributions, its performance will not be as good.
Table I shows the timing of the algorithm run on some point
sets having irregular distributions. For point sets having
“reasonable” distributions, such as the Gradient and Leaf
examples, our algorithm still achieves reasonable perfor-
mance. However for point sets having extreme distributions,
such as the Ring example, our algorithm performs poorly.
The reason is that most cells in the underlying grids are ei-
ther empty or very dense, causing the Delaunay neighbor
candidate sets V constructed in Algorithm 1 to be either very
large or empty. This significantly damages the load balance,
increasing the complexity of Algorithm 1.

VII. CONCLUSION

We have presented a Local Delaunay lemma which al-
lows to localize the Delaunay triangulation, namely, bound
the points in a set which may be Delaunay neighbors of a
given point. This localization may be used to design an al-
gorithm to construct the Delaunay triangulation and Voronoi
diagram, which may easily be parallelized, since the Delau-
nay neighbors of any point may be found independently and
relatively quickly by process of elimination. Our experi-
ments show that speedup is linear in the number of proces-
sors, which means that Delaunay triangulations may be
computed arbitrarily quickly by adding computing power.

Future work includes implementation on modern graphic
hardware (GPU), extending the algorithm to 3D space, op-
timizations for point sets with non-uniform distributions and
generalization to power diagrams and regular triangulations.

Figure 7. Evolution of the (black) Delaunay one-ring P and (red) Voronoi cell Q as Algorithms 1 and 2 are running. (Top) Serial version. (Bottom) Parallel

version optimized to eliminate redundancy.

Figure 8. Runtime of parallel DT with different configurations compared

to Qhull [37], CGAL [35] and Triangle [32] - the state-of-the-art serial

algorithms, and GPU-DT [7].

Figure 9. Speedup of parallel DT using multi-core CPU.

TABLE I. RUNTIME (SEC) OF PARALLEL DT ON NON-UNIFORM

POINT SETS.

Point set

(51,200

points)

Ring

Gradient

Leaf

Parallel DT
on 4 cores

0.516 0.036 0.048

CGAL [35] 0.091 0.089 0.091

Triangle [32] 0.055 0.055 0.057

ACKNOWLEDGMENT

This research project was financially supported by the
state of Lower-Saxony and the Volkswagen Foundation,
Hannover, Germany. R. Chen is partially supported by the
Ali Kaufmann postdoctoral fellowship at the Technion.

REFERENCES

[1] J. L. Bentley, B. W. Weide, and A. C. Yao. 1980. Optimal
expected-time algorithms for closest point problems. ACM
Trans. Math. Softw. 6(4), 563-580.

[2] P. Su and R. L. Scot Drysdale. 1995. A comparison of
sequential Delaunay triangulation algorithms. In Proc. SoCG
'95. 61-70.

[3] A. Maus. 1984. Delaunay Triangulation and the convex hull
of n points in expected linear time. BIT, 24:151-163.

[4] L. J. Guibas, D. E. Knuth, and M. Sharir. 1990. Randomized
incremental construction of Delaunay and Voronoi diagrams.
In Proc. ICALP ‘90, 414-431.

[5] R. A. Dwyer. 1987. A faster divide-and-conquer algorithm
for constructing Delaunay triangulations. Algorithmica 2,
137-151

[6] S. Fortune. 1986. A sweepline algorithm for Voronoi
diagrams. In Proc. SoCG '86, 313-322.

[7] M. Qi, T-T Cao and T-S Tan. 2012. Computing 2D
constrained Delaunay triangulation using the GPU. In Proc.
Symp. Interactive 3D Graphics and Games (I3D ’12). 39-46.

[8] J. Shewchuk. 2005. Star splaying: an algorithm for repairing
Delaunay triangulations and convex hulls. In Proc.
SoCG ’05:237-246.

[9] A. Maus, J. M. Drange. 2010. All closest
neighbors are proper Delaunay edges generalized, and its
application to parallel algorithms. Proceedings of Norwegian
informatikkonferanse. 1-12.

[10] G. Rong, T-S Tan, T-T Cao, and Stephanus. 2008.
Computing two-dimensional Delaunay triangulation using
graphics hardware. In Proc. Symp. Interactive 3D Graphics
and Games (I3D '08). 89-97.

[11] M. de Berg, O. Cheong, M. van Kreveld and M. Overmars.
2008. Computational Geometry: Algorithms and
Applications. Springer-Verlag

[12] S. Lee, C-I Park, and C-M Park. 1997. An improved parallel
algorithm for Delaunay triangulation on distributed memory
parallel computers. In Proc. Advances in Parallel and
Distributed Computing Conf. (APDC '97).

[13] J. Kohout and I. Kolingerov. 2003. Parallel Delaunay
triangulation based on circumcircle criterion. In Proc. Spring
Conf. Computer Graphics (SCCG '03), 73-81.

[14] D. Reem. 2009. An algorithm for computing Voronoi
diagrams of generators in general normed spaces. Proc.
International Symp. Voronoi Diagrams in Science and
Engineering (ISVD 2009), 144-152.

[15] D. Reem. 2011. On the possibility of simple parallel
computing of Voronoi diagrams and Delaunay graphs.
Preprint, 2011.

[16] P. Cignoni, C. Montani, R.Perego and R. Scopigno. 1993.
Parallel 3D Delaunay triangulation. In Proc. Eurographics 93.

[17] G. E. Blelloch, G. L. Miller, and D. Talmor. 1996.
Developing a practical projection-based parallel Delaunay
algorithm. In Proc. SoCG ’96, 186-195.

[18] S. Lee, C-I Park, C-M Park. 1996. An efficient parallel
algorithm for Delaunay triangulation on distributed memory
parallel computers. In Proc. PDPTA '96, 169-177

[19] P. J. Green and R. Sibson. 1977. Computing Dirichlet
tessellation in the plane. Comput. J. 21, 168-173

[20] N. M. Amato, M. T. Goodrich and E. A. Ramos. 1994.
Parallel algorithms for higher-dimensional convex hulls. In
Proc. FOCS ‘94, 683-694

[21] G. E. Blelloch, J. C. Hardwick, G. L. Miller and D. Talmor.
1999. Design and implementation of a practical parallel
Delaunay algorithm. Algorithmica 24, 243-269

[22] N. Dadoun and D. G. Kirkpatrick. 1989. Parallel construction
of subdivision hierarchies. J. Comput. Syst. Sci. 39, 153-165

[23] H. Meyerhenke. 2005. Constructing higher-order Voronoi
diagrams in parallel. EWCG. 123-126

[24] J. H. Reif and S. Sen. 1992. Optimal parallel randomized
algorithms for three dimensional convex hulls and related
prblems. SIAM J. Comput. 21, 466-485

[25] O. Schwarzkopf. 1989. Parallel computation of discrete
Voronoi diagrams. LNCS 349, 193-204

[26] D. A. Spielman, S.-H. Teng and A. Ungor. 2007. Parallel
Delaunay refinement: Algorithms and analyses. International
Journal of Computational Geometry and Applications 17, 1-
30

[27] C. Trefftz and J. Szakas. 2003. Parallel algorithms to find the
Voronoi diagrams and the order-k Voronoi diagram. In Proc.
PODC ’03.

[28] B. C. Vemuri, R. Varadarajan and N. Mayya. 1992. An
efficient expected time parallel algorithm for Voronoi
construction. In Proc. SPAA ’92, 392-401.

[29] C. B. Barber. 1993. Computational geometry with imprecise
data and arithmetic. Ph.D. Thesis, Princeton.

[30] A. Okabe, B. Boots, K. Sugihara and S.N. Chiu. 2000.
Spatial tessellations: Concepts and applications of Voronoi
diagrams, 2nd Ed. Wiley Series in Probability and Statistics,
John Wiley & Sons Ltd.

[31] D. McCallum and D. Avis. 1979. A linear algorithm for
finding the convex hull of a simple polygon. Information
Processing Letters, 9(5):201-206.

[32] J. Shewchuk. 1996. Triangle: Engineering a 2D quality mesh
generator and Delaunay triangulator. In Applied
Computational Geometry: Towards Geometric Engineering,
vol. 1182 of LNCS, Springer, 203-222.

[33] S. Har-Peled. 1997. On the expected complexity of random
convex hulls. Technical Report.

[34] OpenMP API Specifications for Parallel Programming.
http://openmp.org

[35] CGAL - Computational Geometry Algorithms Library.
http://www.cgal.org

[36] C. Manuel and T. Monique. 2008. On the computation of 3D
periodic triangulations. In Proc. SoCG ’08:222-223.

[37] C. B. Barber, D. P. Dobkin and H. T. Huhdanpaa. The
Quickhull algorithm for convex hulls. ACM Trans. on
Mathematical Software, 22(4):469-483.

http://openmp.org/
http://www.cgal.org/

