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Fig. 1. (a) Input shape and its corresponding polygonal cage; (b) Deformation result of Cauchy coordinates [Weber et al. 2009]; (c) Deformation result of our
Polynomial Cauchy coordinates; (d) P2P deformation result using our coordinates; (e) Inverse mapping obtained using our method to recover the original
shape from (c). (f1-3) Deformation between curved cages using our method.

Barycentric coordinates are widely used in computer graphics, especially

in shape deformation. Traditionally, barycentric coordinates are defined for

polygonal domains. In this work, we relax this requirement by representing

the boundary of the domain using a Bézier spline and extend the complex-

valued Cauchy barycentric coordinates [Weber et al. 2009] to the Bézier

case. Compared to the latest polynomial 2D Green coordinates [Michel and

Thiery 2023], we obtain equivalent results. We further derive a numerical

integration formula for the inverse mapping based on Cauchy’s integral for-

mula, enabling deformation between curved cages through an intermediate

step. Notably, our approach allows curved cages as input. We also provide

expressions for the nth-order derivatives of the coordinates, which facilitate

constrained deformations with position constraints. Through extensive ex-

periments, we demonstrate the versatility of our coordinates for interactive

deformation.
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1 INTRODUCTION
Barycentric coordinates are a powerful mathematical tool that al-

lows us to interpolate data within a region based on scalar or vector

fields defined on the boundary of that region. Barycentric coordi-

nates have found wide applications in computer graphics, including

shape deformation and image cloning. In its most basic form, shape

deformation is achieved by the user moving cage vertices from {𝑣𝑖 }
to {𝑓𝑖 }. Interior points are then repositioned as linear combinations

of the cage vertices: 𝑓 (𝜂) = ∑
𝑖 𝜆𝑖 (𝜂) 𝑓𝑖 , with 𝜆𝑖 (𝜂) being the barycen-

tric coordinates of 𝜂 satisfying 𝜂 =
∑
𝑖 𝜆𝑖 (𝜂)𝑣𝑖 . This computation is

often fast enough to enable real-time interaction.

Considerable progress has been made in the field of barycentric

coordinates, leading to the development of diverse properties and

functionalities. Traditionally, barycentric coordinates have been

defined within polygonal domains, where the boundary is repre-

sented by a collection of linear edges. However, there have been

increased interests in using curves to represent domain boundaries

given its flexibility and fidelity. Polynomial 2D Green coordinates

[Michel and Thiery 2023] (PGC) is a new barycentric coordinate

scheme that allows the target cage to be polynomial curves, but this

does not extend to the source cage. The complex-valued Cauchy

coordinates [Weber et al. 2009] have been shown to be equivalent to

Green coordinates [Lipman et al. 2008]. This inspires us to generalize

Cauchy coordinates to the case of curved boundaries.

In this work, we first generalize Cauchy coordinates, allowing

the boundary of the target cage to be represented by a Bézier spline.

Compared to the PGC of Michel and Thiery [2023], we obtain ef-

fectively equivalent coordinates with an alternative formulation

SA Conference Papers ’24, December 3–6, 2024, Tokyo, Japan.

https://doi.org/10.1145/3680528.3687654
https://doi.org/10.1145/3680528.3687654


2 • Lin and Chen.

based on Bézier splines, offering improved interactivity for the user.

Additionally, we explore several extensions of our barycentric co-

ordinates. We derive expressions for the nth-order derivatives of

our coordinates and present a numerical integration formula for the

inverse mapping using Cauchy’s integral formula. This enables us

to recover the original shape from the deformation result, leading to

a deformation algorithm for curved cages, which has seen limited

research. Furthermore, leveraging our barycentric coordinates and

their closed-form derivatives, we demonstrate the application of our

coordinates in constrained deformation. We showcase the results of

our method on both simple and complicated cages. The closed-form

expressions, coupled with the curved-to-curved mapping capabil-

ity, make our coordinates a powerful and versatile tool for shape

deformation and image editing.

Our key contributions include:

• Extension of complex Cauchy barycentric coordinates to the

polynomial domain, offering closed-form expressions..

• Formulation of coordinates using Bézier representation, en-

abling intuitive, interactive editing of target curves via control

polygons.

• Derivation of nth-order derivatives for our coordinates, facil-

itating point-to-point constrained and smooth energy-driven

deformations.

• Development of inverse barycentric mapping expressions,

allowing deformations between curved cages through an in-

termediate step.

2 RELATED WORK
Barycentric coordinates have been extensively studied in the aca-

demic community. Different barycentric coordinates exhibit various

properties, e.g. interpolation or shape preservation. Barycentric co-

ordinates can be expressed using real or complex scalars, and some

coordinates are provided in closed-form.

Interpolating coordinates.Mean-Value coordinates [Floater 2003;

Hormann and Floater 2006; Ju et al. 2005] (MVC) are developed

based on the mean value theorem for harmonic functions, allowing

interpolation of scalar functions at any point in space. While MVC

offers a closed-form expression with interpolation properties, it may

produce negative values. MVC has been applied to image editing

and cloning [Farbman et al. 2009]. To address the issue of negative

values in MVC, Lipman et al. [2007] proposed Positive Mean-Value

coordinates, which however lacks a closed-form expression. Har-

monic coordinates [Joshi et al. 2007] provides more intuitive shape

editing behavior due to their non-negative nature and magnitude de-

crease with distance measured within the cage. Weber et al. [2012]

proposed Biharmonic coordinates, enabling the interpolation of

boundary derivative data. Local barycentric coordinates [Zhang

et al. 2014] enhances the locality of barycentric coordinates through

convex optimization of the total variation. More recently, variational

barycentric coordinates [Dodik et al. 2023] are proposed to offer

additional control by leveraging the capabilities of neural fields.

Conformal coordinates. Green coordinates [Lipman et al. 2008]

(GC) are derived from Green’s third identity, and can be used for

deformations. Unlike previously mentioned methods, GC does not

possess interpolation properties but instead exhibits conformal prop-

erties. The Cauchy coordinates proposed by Weber et al. [2009]

are complex-valued coordinates and equivalent to GC. Weber et

al. [2011] analyzed 2D barycentric mappings with a complex view,

demonstrating the flexibility of complex barycentric coordinates

over real-valued coordinates. It has been shown that Cauchy coordi-

nates are useful for harmonic shape deformation and interpolation

[Chen and Weber 2017; Chien et al. 2016; Shi and Chen 2022].

Coordinates for curved cages.While barycentric coordinates for

polygonal domain have been extensively studied, research for curved

boundaries remains comparatively limited. Cubic MVC [Li et al.

2013] generalizes MVC to cubic polynomial curves, offering inter-

polation properties but lack support for higher-order curves. PGC

[Michel and Thiery 2023] extends GC to accommodate arbitrary-

order polynomial curve targets, though input cages remain restricted

to polygons. Transfinite Barycentric Coordinates can also facilitate

deformations between smooth cages [Belyaev 2006; Belyaev and

Fayolle 2017; Dyken and Floater 2009]. However, the barycentric

mapping induced by these coordinates involves an integral and

requires numerical approximation in practice, as they assume no

properties beyond continuity for the cage.

3 BACKGROUND
Before diving into our method, we first introduce several closely

related concepts utilized in subsequent discussions.

3.1 Cauchy’s integral formula
The Cauchy’s integral formula states that the value of any holomor-

phic function within a closed region is completely determined by

its values on the boundary of that region. Furthermore, it provides a

method for calculating the integral of any order derivative at every

point within the region. Cauchy’s integral formula holds for any

closed region 𝐷 under certain conditions:

• The region 𝐷 must be simply connected, which means its

boundary curve 𝜕𝐷 consists of a single branch without holes

or self-intersections.

• The function 𝑓 (𝑧) being integrated must be analytic within

the region 𝐷 , i.e. holomorphic.

• The integration path 𝜕𝐷 is the counter-clockwise oriented

boundary curve of 𝐷 .

Cauchy’s integral formula provides a method to compute the

Cauchy transform of a function. The details regarding its computa-

tion and the Cauchy transform will be discussed in Section 3.2.

3.2 Cauchy-Green coordinates
The Cauchy transform is a fundamental mathematical operation

with wide-ranging applications in various fields, including com-

plex analysis, potential theory, and image processing. It produces a

holomorphic functions 𝑢 on a domain 𝐷 when given a continuous

function 𝑓 (𝑧) on the boundary 𝜕𝐷 :

𝑢 (𝑧) = 1

2𝜋𝑖

∫
𝜕𝐷

𝑓 (𝑤)
𝑤 − 𝑧

𝑑𝑤, 𝑧 ∈ 𝐷 (1)
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Function 𝑢 is holomorphic within domain 𝐷 , and if 𝑓 corresponds

to the boundary values of a holomorphic function, then the Cauchy

transform will reproduce 𝑓 .

Cauchy coordinates [Weber et al. 2009] are a discretization of

Cauchy’s integral formula (1). If we discretize the boundary into a

polygon with a series of vertices {𝑧 𝑗 }𝑛𝑗=1, and function 𝑓 at these

boundary vertices is given as 𝑓𝑗 = 𝑓 (𝑧 𝑗 ), and gets linearly interpo-

lated along the boundary edges, then we can compute a complex

number𝐶 𝑗 (𝑧) associated with 𝑓𝑗 . Consequently, the integral (1) can

be expressed as the following summation:

𝑢 (𝑧) =
𝑛∑︁
𝑗=1

𝐶 𝑗 (𝑧) 𝑓𝑗 , 𝑧 ∈ 𝐷, (2)

where domain𝐷 is the interior of the polygon, and 𝑧 is a point inside

𝐷 . 𝐶 𝑗 (𝑧) is given by:

𝐶 𝑗 (𝑧) =
1

2𝜋𝑖

( 𝐵 𝑗+1
𝐴 𝑗+1

log

𝐵 𝑗+1
𝐵 𝑗

−
𝐵 𝑗−1
𝐴 𝑗

log

𝐵 𝑗

𝐵 𝑗−1

)
, 𝑧 ∈ 𝐷 (3)

with 𝐴 𝑗 = 𝑧 𝑗 − 𝑧 𝑗−1 and 𝐵 𝑗 = 𝑧 𝑗 − 𝑧. Weber et al. [2009] derived

analytic expressions for the first and second derivatives of the coor-

dinates and proved the following theorem:

Theorem 3.1. Lipman’s 2D Green coordinates [Lipman et al. 2008]
are identical to discrete Cauchy coordinates.

3.3 Bézier curve
The Bézier curve is a widely used parameterized curve represen-

tation in computer graphics. It is a smooth and continuous curve

defined by a control polygon. Assuming the control polygon is given

by a 𝑛 + 1 point sequence [b0, b1, ..., bn], then the degree 𝑛 (order

𝑛 + 1) Bézier curve is given by:

𝑥 (𝑡) =
𝑛∑︁
𝑖=0

𝐵𝑛𝑖 (𝑡)bi, (4)

where 𝐵𝑛
𝑖
(𝑡) =

(𝑛
𝑖

)
𝑡𝑖 (1 − 𝑡)𝑛−𝑖 are the Bernstein basis functions.

This formulation will be used in the derivation of our coordinates.

«««< HEAD Multiple Bézier curves can be composited into a

Bézier spline which is at least 𝐶0
continuous at the endpoints of

each Bézier curve. In our notations, we use “Bézier curve” to denote

a single curve, while “Bézier spline” refers to a cage formed by mul-

tiple curves, which are 𝐶0
continuous at each end point. =======

Multiple Bézier curves can be composited into a Bézier spline which

is at least 𝐶0
continuous at the endpoints of each Bézier curve. In

our notations, we use “Bézier curve” to denote a single curve, while

“Bézier spline” refers to a cage formed by multiple curves, which are

𝐶0
continuous at each end point. »»»> fe11ab1 (.)

4 METHOD
We aim to extend Cauchy coordinates of Weber et al. [2009] to

curved cages. We begin by addressing the fundamental case of

mapping from a polygonal cage to a curved cage. In this process, we

generalize Cauchy coordinates to derive coordinates functionally

equivalent to PGC [Michel and Thiery 2023], but with novel closed-

form expressions. Employing a similar methodology, we develop

formulas for the derivatives of these coordinates.

Building on these barycentric coordinates and their derivatives,

we introduce a method to compute the inverse barycentric map-

ping. This innovation enables deformations from curved cages to

polygonal cages. By synthesizing these advancements, we present a

comprehensive framework for mapping between curved cages. To

demonstrate the practical utility of our approach, we showcase a

technique for Point-to-Point (P2P) constrained mappings using our

newly developed coordinates.

4.1 Formulation: Polygonal Cage to Curved Cage
Consider a simple case: suppose the source cage is a polygon formed

by several line segments in counterclockwise (CCW) order, while

the target cage is a curve represented by a Bézier spline. Both the

source cage and the target cage have the same number of edges

or segments. Our goal is to derive new barycentric coordinates by

utilizing Cauchy’s integral formula.

𝑗−1

𝑗

𝑤

𝒖
𝑓(𝑤)

𝒃𝒋,𝟎

𝒃𝒋,𝟏

𝒃𝒋,𝟐

𝒃𝒋,𝟑

𝒖−𝟏

∈ 𝐷

𝑤0 ∈ 𝑢(𝐷)

Fig. 2. Implementation of our coordinates, 𝑓 (𝑤 ) is defined by Bézier curves
on the cage. A holomorphic function 𝑢 will be constructed.

We aim to compute the discretized form of Cauchy’s integral

formula and distribute it to each Bézier control point. Since our co-

ordinates is derived from this formula, it is important to ensure that

our input satisfies the conditions stated in Section 3.1. Specifically,

we require that 𝐷 is a simply connected region.

Denote the region enclosed by the polygonal cage by 𝐷 , then the

integral formula (1) can be transformed into the following form:

𝑢 (𝑧) = 1

2𝜋𝑖

∑︁
𝑒 𝑗 ∈𝜕𝐷

∫
𝑒 𝑗

𝑓 (𝑤)
𝑤 − 𝑧

𝑑𝑤, 𝑧 ∈ 𝐷, (5)

where 𝑓 (𝑤) =
∑𝑛 𝑗

𝑚=0
𝐵
𝑛 𝑗

𝑚 (𝑡)bj,m represents a Bézier curve in the

cage. Based on this, we can compute the coordinates on each edge

𝑒 𝑗 individually. In our formulation, the source edge 𝑒 𝑗 is defined

by two points, 𝑧 𝑗 and 𝑧 𝑗+1, while the target curve is defined by a

Bézier control polygon {bj,m}𝑛 𝑗

𝑚=0
, where 𝑛 𝑗 is the degree of current

Bézier curve. Since the edge 𝑒 𝑗 is a line segment, we can express 𝑡

as 𝑡 =
𝑤−𝑧 𝑗−1
𝑧 𝑗−𝑧 𝑗−1 . So

𝑢 (𝑧) = 1

2𝜋𝑖

∑︁
𝑒 𝑗 ∈𝜕𝐷

∫
𝑒 𝑗

∑𝑛 𝑗

𝑚=0
𝐵
𝑛 𝑗

𝑚 (𝑡)bj,m
𝑤 − 𝑧

𝑑𝑤

=
1

2𝜋𝑖

∑︁
𝑒 𝑗 ∈𝜕𝐷

𝑛 𝑗∑︁
𝑚=0

( ∫
𝑒 𝑗

𝐵
𝑛 𝑗

𝑚

( 𝑤−𝑧 𝑗−1
𝑧 𝑗−𝑧 𝑗−1

)
𝑤 − 𝑧

𝑑𝑤

)
bj,m .
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And if we write

Integral(𝑧, 𝑒 𝑗 ,𝑚, 𝑛 𝑗 ) =
∫
𝑒 𝑗

𝐵
𝑛 𝑗

𝑚

( 𝑤−𝑧 𝑗−1
𝑧 𝑗−𝑧 𝑗−1

)
𝑤 − 𝑧

𝑑𝑤,

then the coordinates associated with point bj,m can be expressed as

𝐶 𝑗,𝑚 (𝑧) = 1

2𝜋𝑖
Integral(𝑧, 𝑒 𝑗 ,𝑚, 𝑛 𝑗 ) . (6)

𝑢 (𝑧) =
∑︁

𝑒 𝑗 ∈𝜕𝐷

𝑛 𝑗∑︁
𝑚=0

𝐶 𝑗,𝑚 (𝑧)bj,m (7)

Let 𝐴 𝑗 = 𝑧 𝑗 − 𝑧 𝑗−1 and 𝐵 𝑗 = 𝑧 𝑗 − 𝑧. By utilizing the binomial

expansion theorem, we can derive a closed-form expression for the

aforementioned integral. The detailed derivation can be found in

the supplemental material, and the derived result is as follows:

Integral(𝑧, 𝑒 𝑗 ,𝑚, 𝑁 )

=

(𝑁
𝑚

)
(𝐴 𝑗 )𝑁

[ 𝑚∑︁
𝑘=0

𝑁−𝑚∑︁
𝑙=0

𝑁−𝑚−𝑙+𝑘≠0

(𝑚
𝑘

) (𝑁−𝑚
𝑙

)
(−1)𝑁−𝑘−𝑙

𝑁 −𝑚 − 𝑙 + 𝑘

(
(𝐵 𝑗 )𝑁−𝑚+𝑘 (𝐵 𝑗−1)𝑚−𝑘

− (𝐵 𝑗 )𝑙 (𝐵 𝑗−1)𝑁−𝑙
)
+ (−𝐵 𝑗−1)𝑚 (𝐵 𝑗 )𝑁−𝑚

log

𝐵 𝑗

𝐵 𝑗−1

]
. (8)

Here, we use 𝑁 to simplify the notation for 𝑛 𝑗 , as our derivation is

focused on a single segment. The subsequent formulas also employ

the same simplified notation. Thus, we have obtained the closed-

form expression for our coordinates. We evaluate the expression (6),

denoted as 𝐶 𝑗,𝑚 (𝑧), for all edges 𝑒 𝑗 and assign the resulting values

to their corresponding Bézier control point bj,m.
Note that the endpoint of the current Bézier curve coincides

with the starting point of the next curve (bj,nj = bj+1,0), we need
to compute their barycentric coordinates separately (𝐶 𝑗,𝑛 𝑗

(𝑧) and
𝐶 𝑗+1,0 (𝑧)). Depending on the data structure used in the implemen-

tation, it may be required to sum up the two obtained barycentric

coordinates. In our implementation, we treat these two points as the

same point because we require the target Bézier control polygons

to enclose a closed region.

We represent the coordinates in matrix form, with 𝐶 𝑗,𝑚 (𝑧) being
row vectors and bj,m being column vectors, and𝑢 (𝑧) can be obtained
through matrix multiplication.

C = [𝐶1,0 (𝑧),𝐶1,1 (𝑧), ...,𝐶1,𝑛1−1 (𝑧),𝐶2,0 (𝑧), ...]

b = [b1,0, b1,1, ..., b1,n1−1, b2,0, ...]𝑇

𝑢 (𝑧) = C · b
(9)

4.2 Derivatives of our coordinates
The derivatives of the classic Cauchy barycentric coordinates are

obtained by directly differentiating 𝐶 𝑗 (𝑧), as it is relatively simple.

However, we employ a novel approach to compute our derivatives.

Cauchy’s integral formula holds for any simply connected closed

region under certain conditions, which align with our assump-

tions. According to Cauchy’s integral formula, the derivatives of

the barycentric coordinates of any order can be expressed using

an integral formula. This allows us to derive the derivatives of our

barycentric coordinates following the same approach.

The nth-order derivative of our coordinates can be calculated by:

𝑢 (𝑛) (𝑧) = 𝑛!

2𝜋𝑖

∫
𝜕𝐷

𝑓 (𝑤)
(𝑤 − 𝑧)𝑛+1

𝑑𝑤 (10)

Since it is a polynomial integration, the derivation is similar to

that of our coordinates. Coefficients 𝐶
(𝑛)
𝑗,𝑚

(𝑧) for bj,m are given by:

𝐶
(𝑛)
𝑗,𝑚

(𝑧) = 𝑛!

2𝜋𝑖

∫
𝑒 𝑗

𝐵𝑁𝑚 ( 𝑤−𝑧 𝑗−1
𝑧 𝑗−𝑧 𝑗−1 )

(𝑤 − 𝑧)𝑛+1
𝑑𝑤

The derivation is straightforward. The detailed derivation and

closed-form expressions of the nth-order derivatives can be found

in the supplementary material. We provide Alg. 1 for calculating the

nth-order derivative. This pseudocode can also handle the case of

𝑛 = 0, i.e. the expression of our coordinates. In fact, the derivatives

of any order can be computed within the same function.

Algorithm 1: Calculate n-th Derivative of Our Coordinates

Input: Interior point 𝑧, edge 𝑒 𝑗 , index of Bézier control
points𝑚, degree of current Bézier curve 𝑁 ,

derivative order 𝑛

Output: result as 𝐶 (𝑛)
𝑗,𝑚

(𝑧)
result = 0;

for k = 0:m do
for l = 0:N-m do

if N-m-l+k == n then
result +=(𝑚

𝑘

) (𝑁−𝑚
𝑙

)
(−1)𝑁−𝑘−𝑙 (𝐵 𝑗 )𝑙 (𝐵 𝑗−1)𝑚−𝑘

log

𝐵 𝑗

𝐵 𝑗−1
;

else
result +=(𝑚

𝑘

) (𝑁−𝑚
𝑙

)
(−1)𝑁 −𝑘−𝑙

𝑁−𝑚−𝑙+𝑘−𝑛

(
(𝐵 𝑗 )𝑁−𝑚+𝑘−𝑛 (𝐵 𝑗−1)𝑚−𝑘−

(𝐵 𝑗 )𝑙 (𝐵 𝑗−1)𝑁−𝑙−𝑛
)
;

end
end
result ×= n!

(𝑁
𝑚

) /
(𝐴 𝑗 )𝑁

/
(2𝜋𝑖) ;

end

Expression (8) contains two nested summation operations, each

denoted by the symbol Σ. Typically, the curve order is not high, so
the direct evaluation of the sums does not incur significant overhead.

However, in some applications with large 𝑁 , the growth in compu-

tational complexity could be unpredictable. We provide a method

to speedup the computation. By isolating variables 𝑘 and 𝑙 and pre-

computing the following two matrices 𝑇1 and 𝑇2 in 𝑂 (𝑁 2) time,

we can speedup the computation process, ensuring that the average

runtime of our coordinates for each control point does not exceed

𝑂 (𝑁 ). The details can be found in the supplementary material.

𝑇 1[𝑁 −𝑚,𝑘] =
𝑁−𝑚∑︁
𝑙=0

(𝑁−𝑚
𝑙

)
(−1)−𝑙

𝑁 −𝑚 − 𝑙 + 𝑘 𝑘 = 0, 1, ...,𝑚 (11)

𝑇 2[𝑚, 𝑁 − 𝑙] =
𝑚∑︁
𝑘=0

(𝑚
𝑘

)
(−1)−𝑘

𝑁 −𝑚 − 𝑙 + 𝑘 𝑙 = 0, 1, ..., 𝑁 −𝑚. (12)
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With this optimization, the expression can be obtained with a pre-

computation step of 𝑂 (𝑁 2) and a per-point coordinates calculation

of 𝑂 (𝑁 ), significantly reducing the complexity from the original

𝑂 (𝑁 3) for each point and 𝑂 (𝑁 4) for a Bézier curve.

4.3 Inverse mapping
We have previously derived barycentric coordinates for deformation

using a curved cage, specifically for cases where the input cage is

polygonal. We now extend this work to enable the inverse mapping

𝑢−1 (𝑧) from a curved cage to a polygonal cage, given the expression

for 𝑢 (𝑧). Employing Cauchy’s integral formula with 𝑢 (𝐷) satisfying
the conditions outlined in Section 3.1 and 𝑤0 located inside 𝑢 (𝐷)
(Fig. 2), we perform a change of variables𝑤 = 𝑓 (𝑧) to derive:

𝑢−1 (𝑤0) =
1

2𝜋𝑖

∫
𝜕𝑢 (𝐷 )

𝑢−1 (𝑤)
𝑤 −𝑤0

𝑑𝑤 =
1

2𝜋𝑖

∫
𝜕𝐷

𝑧 𝑢′ (𝑧)
𝑢 (𝑧) −𝑤0

𝑑𝑧.

This inverse can be numerically integrated if 𝑢 (𝑧) and 𝑢′ (𝑧)
are known on the boundary, requiring an additional derivation

of our polynomial Cauchy coordinates at the boundary. To deter-

mine 𝑢 (𝑧) on the boundary, we take the limit of our coordinates

expression, similar to the approach used for Cauchy coordinate

derivatives [Segall and Ben-Chen 2016, Appendix A]. Special care is

needed for endpoints where the logarithmic function may become

infinite. We address this by specifically computing 𝐶 𝑗,𝑁 (𝑧 𝑗 ) and
𝐶 𝑗+1,0 (𝑧 𝑗 ), allowing infinite terms to cancel out when summed. The

resulting unified expressions are:

𝐶 𝑗,𝑚 (𝑧 𝑗−1) =
(𝑁
𝑚

)
(−1)𝑁−𝑚𝑇 1[𝑁 −𝑚,𝑚] (13)

𝐶 𝑗,𝑚 (𝑧 𝑗 ) =
(
log

( 𝐵 𝑗+1
𝐵 𝑗−1

)
+ 2𝜋𝑖

)
𝐼{𝑚=𝑁 } −

(𝑁
𝑚

)
𝑇 2[𝑚, 𝑁 ] . (14)

Note that the complex logarithm is a multi-valued function, and

we take the principal branch. The 2𝜋𝑖 term in (14) is due to the

following limit

lim

𝑧∈𝑒 𝑗
𝑧→𝑧 𝑗

log

𝐵 𝑗+1
𝐵 𝑗

= log

����𝐵 𝑗+1
𝐵 𝑗

���� + 𝜋𝑖 = log

(
−
𝐵 𝑗+1
𝐵 𝑗

)
+ 𝜋𝑖.

While 𝐶 (𝑧) can be obtained through limits on the boundary and

at vertices, the limit of 𝐷 (𝑧) at vertices does not exist. In practice,

we approximate the limit of 𝐷 (𝑧) at the vertices by evaluating 𝐷 (𝑧)
for points inside the region close to the vertices.

For numerical integration, we sample the cage boundary and

evaluate 𝑢 (𝑧) and 𝑢′ (𝑧) at midpoint of line segments. This approach

ensures computation accuracy and circumvents the non-existence

of the limit of 𝐷 (𝑧) at vertices. Our numerical results validate the

efficacy of this sampling method.

4.4 Formulation: Between Curved Cages
We’ve developed a method for curved-cage deformation using our

proposed coordinates and inverse maps. Inspired by Cubic MVC [Li

et al. 2013], our approach involves an intermediate step and ad-

dresses two typical scenarios:

Case 1. Known deformation results and corresponding cages: We

restore the original shape using the inverse map (section 4.3), then

apply deformation as described in section 4.1.

Case 2. One shape with user-specified source and intermediate

cages: The input may not meet conditions for inversion initially, as

our inverse is valid only for the interior of 𝑢1 (𝐷), which may differ

from the region enclosed by the Bézier spline, since our coordinates

are not interpolating. The user can interactively adjust the Bézier

control points of the input cage so that the containing condition is

met. Alg. 2 outlines this simple process.

During the inversion process, we sample interior points of 𝑢1 (𝐷).
It is less straightforward to sample this curved region, compared

to polygonal domains. We can either sample within the polygonal

region 𝐷 and apply 𝑢1, or sample the entire plane, compute the

inverse, and filter out points mapped near 0 (those outside 𝑢1 (𝐷)).

𝒖𝟏

𝒖𝟏
−𝟏

𝑢1
−1( ) ∈ 𝐷

∈ 𝑢1(𝐷) 𝑢2 ∘ 𝑢1
−1( )

𝒖𝟐

Fig. 3. Implementation of our algorithm between curved cages. 𝑢1 will be
firstly calculated, and then follows 𝑢−1

1
and 𝑢2.

Algorithm 2: Find the Mapping Between Curved Cages

Input: Source Shape, Source curved cage, Intermediate

polygonal cage, Target curved cage

Output: Deformed Shape

1. Evaluate 𝑢1 at samples on the intermediate cage;

2. Check whether the entire shape is contained inside 𝑢1 (𝐷)
and otherwise perform user interaction;

3. Sample the interior of 𝑢1 (𝐷) for the mapping;

4. Evaluate 𝑢−1
1

for sampled points;

5. Evaluate 𝑢2 for final result;

4.5 Point-to-Point Constrained Map
With our coordinates and its derivatives, we can also design energy

functions and formulate an optimization problem for deformation.

Using the matrix form (9) of our coordinates, the P2P energy can be

written as follows:

𝐸P2P ( ˆb) = | |CP2P
ˆb − 𝑧

dst
| |2,

where
ˆb is the free variable, which represents the column vector of

the Bézier control points of the cage, CP2P is our coordinates for

{𝑧src}, indicating that {𝑧src} should be mapped to {𝑧
dst

}. In addition,
to promote smoothness of the mapping, we define a smoothness

energy. Utilizing the previously given second derivatives of our

coordinates, the smoothness energy is defined as:

𝐸
Smooth

( ˆb) = | |C(2) ˆb| |2 .
Combining these two energies, we obtain the following mapping

energy for optimization,

𝐸
Def

( ˆb) = 𝐸P2P ( ˆb) + 𝜆 𝐸
Smooth

( ˆb),
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where 𝜆 is a user specified weight.

We note that the optimization variables are
ˆb, the Bézier control

points of the cage. Since the energy function is in the form of sum

of squares, the optimization problem can be easily solved using a

linear solver.

5 RESULTS AND COMPARISONS
Fig. 4 showcases the deformation from a polygonal cage to a curved

cage using our coordinates, juxtaposed with results from Cauchy

coordinates and PGC. This comparison highlights our method’s

conformal, smooth, and controllable nature, attributed to the Bézier

representation of the cage. Notably, our results are visually indistin-

guishable from PGC outcomes. Fig. 5 illustrates the inverse mapping

computed by our method. When the mapped boundary is free of

self-intersections, we successfully reconstruct the original shape

from its deformed state. It’s worth noting that the quality of this

inversion is influenced by the density of boundary sampling. Fig. 6

presents deformation results between curved cages, including the

intermediate mapping stage. Fig. 7 and Fig. 8 further demonstrate

the breadth of our method’s applications, including Point-to-Point

(P2P) deformation.

(a) Input (b) Cauchy (c) Ours (d) PGC

Fig. 4. When using a polygonal cage as input (a), our method and Cauchy
coordinates both employ a linear combination of the control vertices. How-
ever, our approach (c) achieves smoother boundary results compared to
Cauchy coordinates (b). Compared to PGC (d), our method (c) produces
identical result, with differences only at the level of numerical precision
(1e-8 under the 𝐿∞ norm).

(a) Input (b) Our Coodinates (c) Inverse Results

Fig. 5. Inverse map. We can see that the computed inverse map (c) is the
same as the original shape (a). However, due to the nature of numerical
integration, the obtained results are not accurate and exhibits numerical
error. Table. 1 shows how boundary samples affects average numerical errors
(𝐿1 norm), convergence order and running time for this example.

To ensure the practical applicability and reproducibility of our

proposed method, several key implementation considerations must

be taken into account.

Table 1. Statistics for the Inverse Mapping in Fig. 5

#Boundary Samples Error Order Runtime(s)

3200 3.1914e-03 - 0.202

32000 3.2069e-04 0.9979 0.801

320000 3.2091e-05 0.9997 12.89

3200000 3.1971e-06 1.0016 150.20

• Inverse Mapping Accuracy: The fidelity of inverse mapping

is contingent on boundary sampling density. Insufficient sam-

pling can lead to noticeable deviations from the ground truth,

with sparse sampling potentially causing significant numeri-

cal errors, especially at control polygon endpoints. This issue

can be mitigated by increasing sampling density. Our im-

plementation employs mid-point integration for boundary

samples, achieving a convergence order of 1, as evidenced in

Table 1. This convergence pattern remains consistent across

our diverse set of examples, demonstrating the robustness of

our approach.

• Content Preservation in Curved Cage Deformations: Dur-

ing curved cage deformations, the inverse map 𝑢1 (𝐷) may

not encompass the entire shape, potentially resulting in con-

tent loss during inversion. This discrepancy arises from the

non-interpolating nature of our proposed coordinates, unlike

interpolating methods such as Cubic MVC. The difference be-

tween the actual inverse region 𝑢1 (𝐷) and the area enclosed

by the source Bézier spline can be addressed through user

interaction.

• Minimum Curve Requirement: The input cage should com-

prise more than two curves to avoid degeneracy in the in-

termediate polygonal cage. In practice, shape-aware cages

typically satisfy this requirement naturally. For inputs with

only one or two curves, this issue can be resolved by subdi-

viding the Bézier curves.

(a) Curved Cage(Input) (b) Intermediate Step (c) Curved Cage(Output)

Fig. 6. Input with a curved cage. In this case, the user specifies the cages of
both the intermediate map and the target.

Comparison with Cauchy Coordinates. Cauchy coordinates neces-

sitate polygonal representations for both input and output cages,

and require numerous segments to approximate curved boundaries.

In contrast, our method achieves comparable results using only
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a few Bézier curves. This not only simplifies the representation

but also leads to more shape-preserving outcomes, mirroring the

advantages PGC holds over GC. Our approach thus offers a more

efficient and accurate alternative for handling curved boundaries in

deformation tasks. «««< HEADWhen the Bézier curve degenerates

to a line segment (𝑁 = 1), our barycentric coordinates and their

derivatives are equivalent to Cauchy coordinates, ensuring consis-

tency with existing methods for linear cages. This property allows

our approach to seamlessly handle both curved and linear cage ele-

ments, providing a unified framework for deformation tasks across

varying domain complexities. ======= When the Bézier curve de-

generates to a line segment (N=1), our barycentric coordinates and

their derivatives are equivalent to Cauchy coordinates, ensuring

consistency with existing methods for linear cages. This property

allows our approach to seamlessly handle both curved and linear

cage elements, providing a unified framework for deformation tasks

across varying domain complexities. »»»> fe11ab1 (.)

Comparison with PGC.Weber et al. [2009] established the equiv-

alence of Cauchy coordinates and Green coordinates, based on

the relationship between Cauchy’s integral formula and Green’s

third identity [Ahlfors 1979]. Our experimental results suggest this

equivalence extends to polynomial boundaries, with our coordi-

nates showing equivalence to PGC. Despite minor differences in

boundary curve representation, the interconvertibility of Bézier and

polynomial curves enables direct comparisons. While a formal proof

of equivalence remains challenging, we believe Theorem 3 from

Weber et al. [2009] could potentially be adapted, albeit with more

complex derivations.

Our approach offers several key advantages over PGC.

• User-friendly interaction: The Bézier spline representation for

the boundaries allows for more user intuitive and interactive

curve editing.

• Analytical derivatives: We provide closed-form expressions

for nth-order derivatives of the coordinates, enabling efficient

implementation of variational optimization techniques such

as point-to-point deformation.

• Curved cage support: Our method extends to accommodate

curved cages as input, significantly enhancing its versatility

and expanding its potential applications.

6 CONCLUSION
We have generalized the Cauchy barycentric coordinates for Bézier

spline cages, enabling seamless deformation from polygonal to

curved cages via Bézier control polygons. Our derived closed-form

derivatives of the coordinates facilitate interactive point-to-point

deformation by minimizing mapping smoothness energy. We also

introduce a method for computing the inverse mapping, which,

when combined with our polynomial coordinates, enables curved-

to-curved cage deformations. This advancement opens up a wide

range of potential applications in computer graphics and geometric

modeling.

Limitations and Future work.While our approach for curved-to-

curved cage deformations relies on an intermediate map, future

research will focus on more automated generation of this map-

ping. Our current inverse mapping technique doesn’t prevent self-

intersection of boundary curves in 𝑢 (𝑧), potentially leading to unex-
pected results. Although this can be mitigated through user interac-

tion, we aim to develop an automated solution. The iterative closest

conformal map technique proposed by Segall and Ben-Chen [2016]

presents a promising direction for addressing this challenge.
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(a) Input (b) Cauchy (c) Ours (d) Ours P2P (e) Ours Inverse

Fig. 7. Comparison of our deformation results with Cauchy coordinates [Weber et al. 2009]. In these examples, the target cage has segments with varying
degrees, which can be observed from the number of Bézier control points in our results (c). The results of our P2P deformation are shown in (d), note that in
the grid example, the source points we selected are all grid points. The results of using our method to compute the inverse mapping and restore the original
shape are presented in (e).

(a) Input (b) Intermediate (c) Output (d) Ours P2P

Fig. 8. Deformation results of our method, with curved cages as input. (a) the input, the interior of𝑢1 (𝐷 ) is marked with a light red mask, (b) the intermediate
step, (c) the deformed shape, (d) P2P deformation results of (b), with the original image displayed in the background to indicate the P2P constraints.
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