
Volume xx (200y), Number z, pp. 1-4 

  
Approximating Planar Conformal Maps Using  

Regular Polygonal Meshes 
 
 

Renjie Chen1 and Craig Gotsman2 
 

1Max Planck Institute for Informatics, Saarbrücken, Germany 
2Jacobs Technion-Cornell Institute, Cornell Tech, New York, USA 

 
 

 
Abstract 
Continuous conformal maps are typically approximated numerically using a triangle mesh which discretizes the plane. 
Computing a conformal map subject to user-provided constraints then reduces to a sparse linear system, minimizing 
a quadratic “conformal energy”. We address the more general case of non-triangular elements, and provide a 
complete analysis of the case where the plane is discretized using a mesh of regular polygons, e.g. equilateral 
triangles, squares and hexagons, whose interiors are mapped using barycentric coordinate functions. We demonstrate 
experimentally that faster convergence to continuous conformal maps may be obtained this way. We provide a 
formulation of the problem and its solution using complex number algebra, significantly simplifying the notation. We 
examine a number of common barycentric coordinate functions and demonstrate that superior approximation to 
harmonic coordinates of a polygon are achieved by the Moving Least Squares coordinates. We also provide a simple 
iterative algorithm to invert barycentric maps of regular polygon meshes, allowing to apply them in practical 
applications, e.g. for texture mapping. 

Categories and Subject Descriptors (according to ACM CCS): I.3.8 [Computer Graphics]: Applications 

1 Introduction 

Conformal maps of planar domains are important in com-
puter graphics and image processing, as they preserve the 
local proportions of the map, thus minimizing the inevitable 
visual distortion introduced by the mapping. Particularly 
popular in image and 3D model deformation applications, 
they are also used in animation scenarios. While conformal 
maps have been studied for decades in classical complex 
analysis, using them in real-world digital applications re-
quires a discrete theory which has been developed only over 
the past decade. This typically involves discretizing the 
plane using a Finite-Element triangle mesh and computing a 
map, subject to user-supplied constraints, of this mesh into 
the deformed shape. 

In this paper we depart from the typical triangle mesh sce-
nario and address the more general case of higher-order pol-
ygons. We provide a complete analysis of the case where the 
plane is discretized using a mesh of regular polygons, e.g. 
equilateral triangles, squares and hexagons. We show that 
approximations that converge more rapidly to continuous 
conformal maps may be obtained this way. 

Our approach is to analyze a broad family of barycentric 
maps between polygons based on so-called barycentric co-
ordinates [Flo15]. We provide the basic theory required to 
compute these discrete maps and use them in practice. 

2 Conformal and Harmonic Maps 

We start by reviewing the necessary theory from complex 
and harmonic analysis. We provide only the very basics here 
and refer the reader to the classic book by Ahlfors [Ahl79] 
for a complete exposition of complex analysis. As we will 
see, it is particularly advantageous and compact to work with 
complex number algebra, despite the fact that in the end bar-
ycentric coordinates are real and everything could be de-
scribed in ℝ2 . Identifying the 2D plane with the complex 
field ℂ , any complex-valued function from ℂ to itself may 
be expressed as two real functions of the complex variable 
𝑧𝑧 = 𝑥𝑥 + 𝑖𝑖𝑖𝑖 and its conjugate 𝑧𝑧̅ = 𝑥𝑥 − 𝑖𝑖𝑖𝑖: 

𝑓𝑓(𝑧𝑧, 𝑧𝑧̅) = 𝑓𝑓𝑥𝑥(𝑧𝑧, 𝑧𝑧̅) + 𝑖𝑖𝑓𝑓𝑦𝑦(𝑧𝑧, 𝑧𝑧̅) 

implying the complex Wirtinger derivatives [Ahl79]: 
𝜕𝜕
𝜕𝜕𝑧𝑧

=
1
2 �

𝜕𝜕
𝜕𝜕𝑥𝑥 − 𝑖𝑖

𝜕𝜕
𝜕𝜕𝑖𝑖� ,     

𝜕𝜕
𝜕𝜕𝑧𝑧̅ =

1
2 �

𝜕𝜕
𝜕𝜕𝑥𝑥 + 𝑖𝑖

𝜕𝜕
𝜕𝜕𝑖𝑖� 

2.1 Conformal maps 

A complex-valued function 𝑓𝑓  is holomorphic (also called 
analytic) iff it satisfies the Cauchy-Riemann equations: 

𝜕𝜕𝑓𝑓𝑥𝑥
𝜕𝜕𝑥𝑥 =

𝜕𝜕𝑓𝑓𝑦𝑦
𝜕𝜕𝑖𝑖 ,    

𝜕𝜕𝑓𝑓𝑥𝑥
𝜕𝜕𝑖𝑖 = −

𝜕𝜕𝑓𝑓𝑦𝑦
𝜕𝜕𝑥𝑥   

or, more compactly,  

𝑖𝑖
𝜕𝜕𝑓𝑓
𝜕𝜕𝑥𝑥

=
𝜕𝜕𝑓𝑓
𝜕𝜕𝑖𝑖 
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Alternatively, using the Wirtinger derivatives yields the very 
natural equivalent: 

𝜕𝜕𝑓𝑓
𝜕𝜕𝑧𝑧̅

= 0                                             (1) 

Now, recall that a conformal map is actually a holomorphic 
function whose derivative 𝜕𝜕𝜕𝜕

𝑑𝑑𝑑𝑑
 is everywhere non-zero. Ignor-

ing the non-zero derivative requirement for the moment, (1) 
leads to an natural measure of how non-conformal a map 𝑓𝑓 

is at a point 𝑧𝑧: �𝜕𝜕𝜕𝜕
𝑑𝑑�̅�𝑑
�
2

. Thus the conformal energy of a map-
ping 𝑓𝑓 of a domain 𝑃𝑃 ⊂ ℂ is defined as: 

𝐶𝐶(𝑓𝑓) = 2� �
𝜕𝜕𝑓𝑓
𝜕𝜕𝑧𝑧̅
�
2

𝑑𝑑𝑧𝑧⋀𝑑𝑑𝑧𝑧̅ 
𝑃𝑃

                         (2) 

(the 𝑑𝑑𝑧𝑧⋀𝑑𝑑𝑧𝑧̅ indicates a two-dimensional area integral over 
𝑃𝑃) and a mapping 𝑓𝑓 is conformal on 𝑃𝑃 iff 𝜕𝜕𝜕𝜕

𝑑𝑑𝑑𝑑
≠ 0 on 𝑃𝑃 and 

𝐶𝐶(𝑓𝑓) = 0. The factor 2 in the definition of 𝐶𝐶(𝑓𝑓) is required 
for consistency with other definitions, as will be made clear 
later. For example, since an affine map may be expressed in 
general as 𝑓𝑓(𝑧𝑧) = 𝑎𝑎𝑧𝑧 + 𝑏𝑏𝑧𝑧̅ + 𝑐𝑐, its conformal energy over a 
domain 𝑃𝑃  is 𝐶𝐶(𝑓𝑓) = 2𝐴𝐴𝐴𝐴𝐴𝐴𝑎𝑎(𝑃𝑃)|𝑏𝑏|2  and an affine map is 
conformal iff it is linear in 𝑧𝑧: 𝑓𝑓(𝑧𝑧) = 𝑎𝑎𝑧𝑧 + 𝑐𝑐, which means 
that the map is just a similarity of the plane (i.e. a combina-
tion of translation, rotation and scaling). 

Analogously to (1), an anti-holomorphic function 𝑓𝑓 is one 
such that  

𝜕𝜕𝑓𝑓
𝜕𝜕𝑧𝑧 = 0 

The simplest such function is 𝑓𝑓(𝑧𝑧) = 𝑧𝑧̅, which is just a re-
flection of the plane (through the 𝑥𝑥 axis).  

2.2 Harmonic maps 

It is useful to relate the conformal energy (2) of a complex-
valued map to the well-known classical concept of Dirichlet 
energy [PP93] of a real function. For a real function of two 
variables 𝑓𝑓(𝑥𝑥,𝑖𝑖):ℝ2 → ℝ , the Dirichlet energy is defined 
on the domain 𝑃𝑃 ⊂ ℝ2 as: 

𝐷𝐷(𝑓𝑓) =
1
2
� ��

𝜕𝜕𝑓𝑓
𝜕𝜕𝑥𝑥
�
2

+ �
𝜕𝜕𝑓𝑓
𝜕𝜕𝑖𝑖
�
2

�𝑑𝑑𝑥𝑥𝑑𝑑𝑖𝑖
𝑃𝑃

                   (3) 

and noting that, by definition, 

𝜕𝜕𝑓𝑓
𝜕𝜕𝑧𝑧
����

=
𝜕𝜕𝑓𝑓̅
𝜕𝜕𝑧𝑧̅

 and �
𝜕𝜕𝑓𝑓
𝑑𝑑𝑧𝑧
�
2

=
𝜕𝜕𝑓𝑓
𝑑𝑑𝑧𝑧

𝜕𝜕𝑓𝑓
𝑑𝑑𝑧𝑧
����

=
𝜕𝜕𝑓𝑓
𝑑𝑑𝑧𝑧

𝜕𝜕𝑓𝑓̅
𝜕𝜕𝑧𝑧̅

 

we obtain 

�
𝜕𝜕𝑓𝑓
𝜕𝜕𝑥𝑥
�
2

+ �
𝜕𝜕𝑓𝑓
𝜕𝜕𝑖𝑖
�
2

= �
𝜕𝜕𝑓𝑓
𝜕𝜕𝑧𝑧̅

+
𝜕𝜕𝑓𝑓
𝜕𝜕𝑧𝑧
�
2

+ �
1
𝑖𝑖
�
𝜕𝜕𝑓𝑓
𝜕𝜕𝑧𝑧̅

−
𝜕𝜕𝑓𝑓
𝜕𝜕𝑧𝑧
��
2

= 2��
𝜕𝜕𝑓𝑓
𝜕𝜕𝑧𝑧�

2

+ �
𝜕𝜕𝑓𝑓
𝜕𝜕𝑧𝑧̅�

2

� 

Thus, (3) is equivalent to: 

𝐷𝐷(𝑓𝑓) = � ��
𝜕𝜕𝑓𝑓
𝜕𝜕𝑧𝑧�

2

+ �
𝜕𝜕𝑓𝑓
𝜕𝜕𝑧𝑧̅�

2

� 𝑑𝑑𝑧𝑧⋀𝑑𝑑𝑧𝑧̅                           
𝑃𝑃

(4) 

which allows us to generalize the concept of Dirichlet energy 
to complex-valued functions. 

Harmonic maps have been extensively studied (see, e.g. 
[Dur04]). The standard definition is by minimization of the 

Dirichlet energy: 

A map 𝑓𝑓 of a domain 𝑃𝑃 to a domain 𝑄𝑄 is harmonic iff 

𝑓𝑓 = arg min 𝐷𝐷(𝑓𝑓)    𝑠𝑠. 𝑡𝑡.  𝑓𝑓(𝜕𝜕𝑃𝑃) = 𝑓𝑓𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑑𝑑              (5) 

which can be shown to be equivalent to satisfaction of the 
Laplace equation, subject to given boundary conditions 
𝑓𝑓𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑑𝑑 : 

∇2𝑓𝑓 =
𝜕𝜕2𝑓𝑓
𝜕𝜕𝑧𝑧𝜕𝜕𝑧𝑧̅

= 0    𝑠𝑠. 𝑡𝑡.  𝑓𝑓(𝜕𝜕𝑃𝑃) = 𝑓𝑓𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑑𝑑                     

Harmonic and holomorphic functions are intimately related, 
as follows: 

- The real and imaginary parts of a holomorphic function 
are harmonic. These functions are called harmonic con-
jugates. 

- A function is harmonic iff it is the sum of a holomor-
phic function and an anti-holomorphic function. 

A simple example of a harmonic map is the affine map 
𝑓𝑓(𝑧𝑧) = 𝑎𝑎𝑧𝑧 + 𝑏𝑏𝑧𝑧̅ + 𝑐𝑐,  which, as mentioned above, is also 
holomorphic iff 𝑏𝑏 = 0. 

It is also easy to express the Jacobian determinant of a map-
ping using the Wirtinger derivatives: 

𝐽𝐽(𝑓𝑓) =
𝜕𝜕𝑓𝑓𝑥𝑥
𝜕𝜕𝑥𝑥

𝜕𝜕𝑓𝑓𝑦𝑦
𝜕𝜕𝑖𝑖 −

𝜕𝜕𝑓𝑓𝑥𝑥
𝜕𝜕𝑖𝑖

𝜕𝜕𝑓𝑓𝑦𝑦
𝜕𝜕𝑥𝑥 = �

𝜕𝜕𝑓𝑓
𝜕𝜕𝑧𝑧�

2

− �
𝜕𝜕𝑓𝑓
𝜕𝜕𝑧𝑧̅�

2

 

So for any 𝑓𝑓:𝑃𝑃 → 𝑄𝑄 

𝐷𝐷(𝑓𝑓) = � ��
𝜕𝜕𝑓𝑓
𝜕𝜕𝑧𝑧
�
2

+ �
𝜕𝜕𝑓𝑓
𝜕𝜕𝑧𝑧̅�

2

�
𝑃𝑃

𝑑𝑑𝑧𝑧⋀𝑑𝑑𝑧𝑧̅

= � ��
𝜕𝜕𝑓𝑓
𝜕𝜕𝑧𝑧
�
2

− �
𝜕𝜕𝑓𝑓
𝜕𝜕𝑧𝑧̅�

2

�
𝑃𝑃

𝑑𝑑𝑧𝑧⋀𝑑𝑑𝑧𝑧̅ + 2� �
𝜕𝜕𝑓𝑓
𝜕𝜕𝑧𝑧̅�

2

𝑑𝑑𝑧𝑧⋀𝑑𝑑𝑧𝑧̅
𝑃𝑃

= 𝐴𝐴𝑄𝑄 + 𝐶𝐶(𝑓𝑓) 

where 𝐴𝐴𝑄𝑄 is the signed area of 𝑄𝑄.  Consequently, in applica-
tions where 𝑃𝑃 and 𝑄𝑄 are given, and the objective is to design 
a  mapping between them (e.g. the polygon mapping prob-
lem described in the next subsection), the fact that 𝐴𝐴𝑄𝑄 is con-
stant implies that the Dirichlet and conformal energies are 
minimized together. 

2.3 Polygon mapping vs. point mapping  

We now examine the following two mapping problems: the 
so-called polygon mapping problem and the point mapping 
problem (see Fig. 1). In the polygon mapping problem, two 
polygons 𝑃𝑃 = (𝑝𝑝1, . . , 𝑝𝑝𝑏𝑏)  and 𝑄𝑄 = (𝑞𝑞1, . . , 𝑞𝑞𝑏𝑏)  with the 
same number of vertices are given, with a mapping between 
the boundaries of 𝑃𝑃 and 𝑄𝑄 such that the edges are mapped 
linearly to each other, namely, 

𝑓𝑓�𝑡𝑡𝑝𝑝𝑗𝑗+1 + (1 − 𝑡𝑡)𝑝𝑝𝑗𝑗� = 𝑡𝑡𝑓𝑓�𝑝𝑝𝑗𝑗+1� + (1 − 𝑡𝑡)𝑓𝑓�𝑝𝑝𝑗𝑗�
= 𝑡𝑡𝑞𝑞𝑗𝑗+1 + (1 − 𝑡𝑡)𝑞𝑞𝑗𝑗 

The problem is then to compute the mapping between 𝑃𝑃 and 
𝑄𝑄 which satisfies these boundary conditions and is the most 
conformal, i.e. 

𝑓𝑓 = arg min𝐶𝐶(𝑓𝑓)                           (6) 
𝑠𝑠. 𝑡𝑡.  𝑓𝑓�𝑡𝑡𝑝𝑝𝑗𝑗+1 + (1− 𝑡𝑡)𝑝𝑝𝑗𝑗� = 𝑡𝑡𝑞𝑞𝑗𝑗+1 + (1 − 𝑡𝑡)𝑞𝑞𝑗𝑗   ∀𝑡𝑡 ∈ [0,1] 
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In the point mapping problem, the constraints are not given 
via boundary values, but by the images 𝑞𝑞𝑖𝑖 ∈ ℂ of a finite set 
of points 𝑝𝑝𝑗𝑗 ∈ 𝑃𝑃. Thus we seek a continuous complex func-
tion 𝑓𝑓:𝑃𝑃 → ℂ: 

𝑓𝑓 = arg min𝐶𝐶(𝑓𝑓)      𝑠𝑠. 𝑡𝑡.   𝑓𝑓�𝑝𝑝𝑗𝑗� = 𝑞𝑞𝑗𝑗                      (7) 

For the polygon mapping problem, there always exists a 
(unique) harmonic map satisfying the given boundary con-
ditions. This is the classical Dirichlet problem (5) [Ahl79, 
Dur11]. In contrast, a conformal map satisfying those 
boundary conditions typically does not exist. It is overdeter-
mined, as the celebrated Riemann mapping theorem [Ahl79] 
states that there is essentially just one conformal mapping of 
𝑃𝑃 to 𝑄𝑄 mapping 𝜕𝜕𝑃𝑃 to 𝜕𝜕𝑄𝑄 (up to a very small number of de-
grees of freedom). Thus the best that can be hoped for is a 
map which minimizes the conformal energy subject to the 
boundary conditions, as in (6). Following the discussion at 
the end of Section 2.2, this is exactly the harmonic map of 
(5).  

For the point mapping problem, since complete boundary 
conditions are not prescribed, many harmonic maps could 
satisfy the point constraints, and more information is needed 
to uniquely specify it. However, the constraints will typi-
cally overdetermine a conformal map, so here again, the 
conformal energy should be minimized, as in (7). Note, how-
ever, that the resulting map is not neccesarily harmonic. 

In the sequel, we will combine the two (polygon mapping 
and point mapping) problems. The end-user problem will be 
a point mapping problem, which is useful in interactive de-
formation scenarios. This is solved using a FEM discretiza-
tion of the plane, where our finite elements will be regular 
polygons, each mapped to its image as in the polygon map-
ping problem. We will sometimes call this discrete approxi-
mation of the continuous conformal map a discrete confor-
mal map. 

3 The Conformal/Dirichlet Energy of a Single Polygon 

Assume the polygon mapping scenario, namely that the in-
terior of a polygon 𝑃𝑃 having 𝑛𝑛 vertices is mapped to the in-
terior of another polygon 𝑄𝑄 having the same number of ver-
tices, in such a way that 𝑓𝑓�𝑝𝑝𝑗𝑗� = 𝑞𝑞𝑗𝑗  and the edges are 
mapped linearly to each other. We now wish to compute the 
conformal energy of this mapping, which is the Dirichlet en-
ergy up to the area of 𝑄𝑄. To do this, we need to specify the 
mapping, and we will restrict our attention to a well-known 
family of mappings – the barycentric mappings – which all 
satisfy the linear edge-to-edge boundary conditions. We 
begin with the general theory, and then specialize to the case 
where 𝑃𝑃 is a regular polygon. We start first with the mapping 
of the simplest possible polygon - the triangle. 

3.1 The triangle 

Assume a triangle whose (column) vertex vector 𝑧𝑧 =
(𝑧𝑧1, 𝑧𝑧2, 𝑧𝑧3)𝑡𝑡  is affinely mapped to a triangle with vertex vec-
tor 𝑤𝑤 = (𝑤𝑤1,𝑤𝑤2,𝑤𝑤3)𝑡𝑡. This mapping, of course, satisfies the 
linear edge-to-edge boundary constraints and is also har-
monic, so minimizes the Dirichlet energy among all possible 
mappings, and we aim to compute its conformal energy. The 
(complex) coefficients 𝑎𝑎, 𝑏𝑏, 𝑐𝑐  of the affine map 𝑓𝑓(𝑧𝑧) =
𝑎𝑎𝑧𝑧 + 𝑏𝑏𝑧𝑧̅ + 𝑐𝑐 thus satisfy the linear equations 

�
𝑧𝑧1 𝑧𝑧1� 1
𝑧𝑧2 𝑧𝑧2� 1
𝑧𝑧3 𝑧𝑧3� 1

��
𝑎𝑎
𝑏𝑏
𝑐𝑐
� = �

𝑤𝑤1
𝑤𝑤2
𝑤𝑤3
� 

Denoting the edge vectors 𝐴𝐴1 = 𝑧𝑧2 − 𝑧𝑧3,  𝐴𝐴2 = 𝑧𝑧3 −
𝑧𝑧1,  𝐴𝐴3 = 𝑧𝑧1 − 𝑧𝑧2 , 𝐴𝐴 = (𝐴𝐴1, 𝐴𝐴2, 𝐴𝐴3)𝑡𝑡,   the solution is 𝑎𝑎 =
𝑖𝑖

4𝐴𝐴𝑧𝑧
𝐴𝐴∗𝑤𝑤, 𝑏𝑏 = − 𝑖𝑖

4𝐴𝐴𝑧𝑧
𝐴𝐴∗� 𝑤𝑤,  where 𝐴𝐴𝑑𝑑 = 1

4𝑖𝑖
(𝑧𝑧1𝐴𝐴1� + 𝑧𝑧2𝐴𝐴2� +

𝑧𝑧3𝐴𝐴3� ) is the area of the triangle with vertex vector 𝑧𝑧 and ∗ is 
the conjugate transpose operator. Thus the conformal energy 
of the mapping may be expressed as a Hermitian form in 𝑤𝑤:  

𝐶𝐶(𝑤𝑤) =  2𝐴𝐴𝑑𝑑|𝑏𝑏|2 = 2𝐴𝐴𝑑𝑑𝑏𝑏∗𝑏𝑏 = 𝑤𝑤∗𝐶𝐶𝑤𝑤                     (8)                                               

where 𝐶𝐶 is the scaled 3x3 outer product matrix 𝐶𝐶 = 1
8𝐴𝐴𝑧𝑧

𝐴𝐴𝐴𝐴∗�����. 

The (𝑗𝑗, 𝑘𝑘)  entry of 𝐶𝐶  can be seen to be 1
4
�𝑖𝑖 + cot𝛼𝛼𝑗𝑗𝑗𝑗� , 

where 𝛼𝛼𝑗𝑗𝑗𝑗 is the angle opposite the edge between vertices 𝑗𝑗 
and 𝑘𝑘. See Fig. 2. This is consistent with the way the cele-
brated triangle mesh Laplacian (also known as cotangent 
weights) is constructed [DMA02, LM02, PP93]. 

Note that, by definition, 𝐶𝐶 has rank 1, and its nullspace is 
easily seen to be spanned by the two vectors 𝑜𝑜 = (1,1,1)𝑡𝑡 
and 𝑧𝑧 = (𝑧𝑧1 , 𝑧𝑧2, 𝑧𝑧3)𝑡𝑡. This is consistent with the fact that any 
triangle with vertex vector 𝑤𝑤 which is a complex-valued lin-
ear function (a similarity) of the vertex vector 𝑧𝑧 , i.e. 𝑤𝑤 =
𝑎𝑎𝑧𝑧 + 𝑐𝑐 will have vanishing conformal energy 𝐶𝐶(𝑤𝑤). 

3.2 Higher-order polygons 

We now show how to generalize the quadratic conformal en-
ergy (8) developed in the previous section to polygons with 
more than three sides. For this to be meaningful, we must 
specify how the interior of the source polygon 𝑃𝑃 with verti-
ces 𝑧𝑧1, . . , 𝑧𝑧𝑏𝑏  is mapped to the interior of the target polygon 

  
Figure 1: Two possible mapping scenarios: (left) poly-
gon mapping (right) point mapping. 
 

 
Figure 2: An affine map 𝑓𝑓 of the triangle 𝑧𝑧 to the triangle 
𝑤𝑤. The conformal energy 𝐶𝐶(𝑓𝑓) of this mapping is a Her-
mitian form on the vector (𝑤𝑤1,𝑤𝑤2,𝑤𝑤3)𝑡𝑡 with a 3x3 matrix 
𝐶𝐶 derived from the geometry of the triangle 𝑧𝑧. 

𝐶𝐶(𝑓𝑓) = (𝑤𝑤�1,𝑤𝑤�2,𝑤𝑤�3)𝐶𝐶 �
𝑤𝑤1
𝑤𝑤2
𝑤𝑤3

� 
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𝑄𝑄 with vertices 𝑤𝑤1, . ,𝑤𝑤𝑏𝑏 . We focus our attention on the so-
called barycentric mappings, where a basis function 𝐵𝐵𝑗𝑗(𝑧𝑧) is 
associated with the 𝑗𝑗 ’th source polygon vertex. The basis 
functions have the following properties: 

1. Constant precision: ∑ 𝐵𝐵𝑗𝑗(𝑧𝑧)𝑏𝑏
𝑗𝑗=1 = 1, ∀𝑧𝑧 ∈ 𝑃𝑃 

2. Linear precision: ∑ 𝑧𝑧𝑗𝑗𝐵𝐵𝑗𝑗(𝑧𝑧)𝑏𝑏
𝑗𝑗=1 = 𝑧𝑧, ∀𝑧𝑧 ∈ 𝑃𝑃 

3. Lagrange property: 𝐵𝐵𝑗𝑗(𝑧𝑧𝑗𝑗) = 𝛿𝛿𝑗𝑗𝑗𝑗  

Note that although we write 𝐵𝐵𝑗𝑗(𝑧𝑧), seemingly implying that 
𝐵𝐵𝑗𝑗  is a function of only 𝑧𝑧, 𝐵𝐵𝑗𝑗  is usually non-holomorphic, i.e. 
a function of both 𝑧𝑧 and 𝑧𝑧̅, although we will omit the 𝑧𝑧̅ argu-
ment for brevity’s sake.   Properties 1-3 imply that each 
source polygon edge is mapped linearly to its target counter-
part. We may then define the function 𝑓𝑓 on 𝑃𝑃 as follows:  

𝑓𝑓(𝑧𝑧) = �𝐵𝐵𝑗𝑗(𝑧𝑧)𝑤𝑤𝑗𝑗  
𝑏𝑏

𝑗𝑗=1

 

Over the years, many recipes for 𝐵𝐵𝑗𝑗(𝑧𝑧)have been proposed, 
the most well-known being the so-called three-point 
schemes [FHK06]: Laplace [DMA02, LM02, PP93] (also 
called discrete harmonic or cotangent), mean value [Flo03, 
HF06], Wachspress [Wac75], and the harmonic scheme 
[JMD*07]. The first four have closed-form expressions, 
while the harmonic coordinates must be computed numeri-
cally by solving a Laplace equation with appropriate Di-
richlet boundary conditions on 𝑃𝑃. 

Weber et al. [WBGH11] expressed the three-point barycen-
tric coordinate functions as follows: 

𝐵𝐵�𝑗𝑗(𝑧𝑧) = 𝛾𝛾𝑗𝑗(𝑧𝑧)𝑟𝑟𝑗𝑗+1(𝑧𝑧)

𝑒𝑒𝑗𝑗
 − 𝛾𝛾𝑗𝑗−1(𝑧𝑧)𝑟𝑟𝑗𝑗−1(𝑧𝑧)

𝑒𝑒𝑗𝑗−1
,   𝐵𝐵𝑗𝑗(𝑧𝑧) = 𝐵𝐵�𝑗𝑗(𝑑𝑑)

∑ 𝐵𝐵�𝑗𝑗(𝑑𝑑)𝑛𝑛
𝑗𝑗=1

  (9) 

where 𝑧𝑧𝑗𝑗 , 𝑗𝑗 = 1, . . ,𝑛𝑛 are the source polygon vertices, 𝑧𝑧 is a 
point in the source polygon interior 𝐴𝐴𝑗𝑗(𝑧𝑧) is the difference 
𝑧𝑧𝑗𝑗 − 𝑧𝑧,  𝐴𝐴𝑗𝑗   is the edge vector 𝑧𝑧𝑗𝑗+1 − 𝑧𝑧𝑗𝑗   and 𝛾𝛾𝑗𝑗   is a complex 
function associated with the 𝑗𝑗’th edge. See Fig. 3. They show 
that the Wachspress, mean-value and Laplace coordinates 
may be obtained for 

𝛾𝛾𝑗𝑗(𝑧𝑧) = 𝑒𝑒𝑗𝑗
Im(𝑟𝑟𝚥𝚥(𝑑𝑑)�������𝑟𝑟𝑗𝑗+1(𝑑𝑑))

��𝑟𝑟𝑗𝑗+1
(𝑑𝑑)�

𝑝𝑝

𝑟𝑟𝑗𝑗+1(𝑑𝑑)
− �𝑟𝑟𝑗𝑗(𝑑𝑑)�

𝑝𝑝

𝑟𝑟𝑗𝑗(𝑑𝑑)
�        (10)                                        

with 𝑝𝑝 = 0, 1, 2, respectively. 

Not surprisingly, for the case of a triangle, all these coordi-
nate functions are equivalent and reduce to the classical 
unique barycentric coordinates introduced by Moebius: 

𝐵𝐵�𝑗𝑗(𝑧𝑧) =
Im(�̅�𝐴𝑗𝑗−1(𝑧𝑧)𝐴𝐴𝑗𝑗+1(𝑧𝑧))
Im(�̅�𝐴𝑗𝑗−1(𝑧𝑧)𝐴𝐴𝑗𝑗+1(𝑧𝑧))    

i.e. the ratio between the area of the triangle �𝑧𝑧𝑗𝑗−1, 𝑧𝑧, 𝑧𝑧𝑗𝑗+1� 
with cyclic indexing to the area of the triangle (𝑧𝑧1, 𝑧𝑧2, 𝑧𝑧3). 
These coordinates induce the obvious affine mapping be-
tween the two triangles. 

For a higher-order polygon with 𝑛𝑛 sides, different choices of 
barycentric coordinate functions induce different mappings. 
In these cases, the conformal energy may be computed as 
follows: 

 
Figure 3: The terminology of complex barycentric coor-
dinates. 

                          𝐶𝐶(𝑓𝑓) = 2� �
𝜕𝜕𝑓𝑓
𝑑𝑑𝑧𝑧̅�

2

𝑑𝑑𝑧𝑧⋀𝑑𝑑𝑧𝑧̅ 
𝑃𝑃

= 2� ��
𝜕𝜕𝐵𝐵𝑗𝑗(𝑧𝑧)
𝜕𝜕𝑧𝑧̅ 𝑤𝑤𝑗𝑗  

𝑏𝑏

𝑗𝑗=1

�

2

𝑑𝑑𝑧𝑧⋀𝑑𝑑𝑧𝑧̅
𝑃𝑃

= 𝑤𝑤∗𝐶𝐶𝑤𝑤                                               (11) 

where 𝐶𝐶  is the 𝑛𝑛 × 𝑛𝑛 Hermitian conformal matrix 

𝐶𝐶𝑗𝑗𝑗𝑗 = 2�
𝜕𝜕𝐵𝐵𝑗𝑗(𝑧𝑧)
𝜕𝜕𝑧𝑧̅

𝜕𝜕𝐵𝐵�𝑗𝑗(𝑧𝑧)
𝜕𝜕𝑧𝑧 𝑑𝑑𝑧𝑧⋀𝑑𝑑𝑧𝑧̅

𝑃𝑃
                (12) 

If 𝑃𝑃 is a convex polygon the integrals (11) and (12) will typ-
ically exist. This is not the case for a non-convex 𝑃𝑃, since 
some of the barycentric coordinate functions may not be 
smooth or even continuous. If these integrals do exist,  𝐶𝐶 has 
properties similar to the triangle case, as the following theo-
rem shows: 

Theorem 1: The conformal matrix 𝐶𝐶 of an 𝑛𝑛-gon is positive 
semi-definite and has co-rank 2. Its nullspace is spanned by 
the all-ones vector 𝑜𝑜 = (1, . . ,1)𝑡𝑡 and the source polygon ge-
ometry vector 𝑧𝑧 = (𝑧𝑧1, . . , 𝑧𝑧𝑏𝑏)𝑡𝑡 .  

Proof. 𝐶𝐶 is positive semi-definite because it is a covariance 
matrix. Denote by {𝜓𝜓𝑗𝑗: 𝑗𝑗 = 1, . . ,𝑛𝑛} the (unit-length) eigen-
vectors of 𝐶𝐶 . Consider the barycentric mapping 𝐵𝐵𝑗𝑗   of the 
(source) polygon to a target polygon whose vertices are the 
entries of 𝜓𝜓𝑗𝑗  with linear (edge-to-edge) boundary condi-
tions. By definition, the eigenvalue 𝜆𝜆𝑗𝑗 associated with 𝜓𝜓𝑗𝑗 is 
the conformal energy, implying that 𝜆𝜆𝑗𝑗 = 0 iff the mapping 
𝐵𝐵𝑗𝑗  is conformal. Now the constant mapping 𝐵𝐵1(𝑧𝑧) ≡ 1 and 
the identity mapping 𝐵𝐵2(𝑧𝑧) = 𝑧𝑧 are certainly conformal and 
satisfy the linear boundary conditions, thus the two inde-
pendent vectors 𝑜𝑜 and 𝑧𝑧 are contained in 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛(𝐶𝐶) (as are all 
vectors 𝑎𝑎𝑧𝑧 + 𝑏𝑏𝑜𝑜  for any complex scalars 𝑎𝑎  and 𝑏𝑏,  which 
represent an arbitrary similarity of the plane). Any other ei-
genvector 𝜓𝜓𝑗𝑗  not spanned by 𝑜𝑜 and 𝑧𝑧 represents a target pol-
ygon which is not a similar copy of 𝑧𝑧,  thus the mapping 
𝐵𝐵𝑗𝑗  will be piecewise linear on the boundaries with a deriva-
tive discontinuity at one vertex at least. This implies that 
𝐵𝐵𝑗𝑗  is not differentiable at that vertex, thus cannot be confor-
mal. As a result, its conformal energy is positive, namely 
𝜆𝜆𝑗𝑗 > 0. ∎ 

As we will see, the matrix 𝐶𝐶 will play a central role in the 
sequel. A similar stiffness matrix is used in Finite Element 
Methods (FEM), as described by Sukumar and Malsch 
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[SM06], and the subsequent development of the so-called 
Virtual-Element Method (VEM) [MRS14]. These investi-
gated the solution of second-order elliptic differential equa-
tions, in particular the Poisson equation, using FEM with 
mesh elements which are general polygons. Since all the 
mesh elements are typically different from each other, the 
method requires the computation of the (different) stiffness 
matrix of each element, a significant computational task in 
itself. Thus the focus of Sukumar and Malsch’s work 
[SM06] is the accurate computation of the stiffness matrix 
of an arbitrary polygon and determining which barycentric 
coordinate (basis) functions yield the most accurate solution 
to the Poisson equation. They conclude that for convex ele-
ments, the Laplace elements achieve the best approximation. 
Although playing a similar role, our matrix 𝐶𝐶, being com-
plex-valued and more compact, differs from the classical 
real-valued stiffness matrix. Furthermore, in the sequel we 
will focus on regular polygonal elements, which have spe-
cial properties and can be analyzed in more detail. Conven-
iently, using a mesh of identical regular elements avoids the 
need to compute a separate matrix per mesh element.  

3.3 Circular polygons 

There are a number of special cases which result in interest-
ing conformal energy matrices. Consider a circular polygon 
𝑃𝑃 , namely a polygon whose vertices all lie on a circle 𝑆𝑆 , 
(sometimes called a cyclic polygon) and consider the piece-
wise-affine mapping induced by some triangulation of 𝑃𝑃. In 
this case all possible triangulations of 𝑃𝑃 are Delaunay (since, 
by definition, the circumcircles of all possible triangles lie 
on 𝑆𝑆), thus all entries of 𝐶𝐶 corresponding to interior edges 
of 𝑃𝑃 will have vanishing entries (since the two angles 𝛼𝛼 and 
𝛽𝛽 opposite the edge sum to 𝜋𝜋, implying cot𝛼𝛼 + cot𝛽𝛽 = 0. ) 

Another interesting property of circular polygons, shown by 
Floater et al [Flo15], is that the Laplace and Wachspress bar-
ycentric coordinates are identical for these polygons.  

4 Regular Polygons 

The most interesting special case – the one we will concen-
trate on from now on – is that of a regular polygon, in par-
ticular the equilateral triangle, the square and the regular 
hexagon, which may be used to tile the plane. The symmetry 
of the polygon dictates that barycentric coordinate functions 
will be identical up to rotation of the variable 𝑧𝑧. Without loss 
of generality, assume that the polygon 𝑃𝑃’s vertices 𝑧𝑧𝑗𝑗  are the 
𝑛𝑛′th roots of unity: 

𝜔𝜔𝑏𝑏 = exp �
2𝜋𝜋𝑖𝑖
𝑛𝑛 � ,          𝑧𝑧𝑗𝑗 = 𝜔𝜔𝑏𝑏

𝑗𝑗−1,     𝑗𝑗 = 1, . . ,𝑛𝑛 

Since a regular polygon is circular, the properties mentioned 
in the previous section carry over to this case. 

Because of the rotational symmetry, the 𝑛𝑛 × 𝑛𝑛  conformal 
energy matrix 𝐶𝐶 will be circulant, spanned by the row 

𝐶𝐶1𝑗𝑗 = 2�
𝜕𝜕𝐵𝐵1(𝑧𝑧)
𝜕𝜕𝑧𝑧̅

𝜕𝜕𝐵𝐵�𝑗𝑗(𝑧𝑧)
𝜕𝜕𝑧𝑧  𝑑𝑑𝑧𝑧⋀𝑑𝑑𝑧𝑧̅

𝑃𝑃
 

and have the Fourier vectors as its eigenbasis: 

   𝜑𝜑𝑗𝑗𝑗𝑗 = 𝜔𝜔𝑏𝑏
(𝑗𝑗−1)(𝑗𝑗−1) 

So its first eigenvector (𝑘𝑘 = 1) will be the all-ones vector 
𝑜𝑜 = (1, . . ,1)𝑡𝑡,  and the second eigenvector (𝑘𝑘 = 2)  will be 
the polygon geometry vector 𝑧𝑧. By Theorem 1, these two ei-
genvectors will have vanishing eigenvalues, and all other ei-
genvectors will have positive eigenvalues. Thus, for any bar-
ycentric coordinate recipe, the matrix 𝐶𝐶 may be written as 
the sum of 𝑛𝑛 − 2 outer products of the Fourier eigenvectors, 
weighted by their corresponding eigenvalues: 

𝐶𝐶 = ∑ 𝜆𝜆𝑗𝑗(𝜑𝜑𝑗𝑗𝜑𝜑𝑗𝑗∗)𝑏𝑏
𝑗𝑗=3                             (13)                                                                  

meaning that the specific barycentric coordinate scheme 
used is characterized by the conformal matrix spectrum of 
𝑛𝑛 − 2 positive values 𝜆𝜆𝑗𝑗 ,𝑘𝑘 = 3, . . ,𝑛𝑛. Note that since an ar-
bitrary scaling of 𝐶𝐶 by a positive real constant will essen-
tially not change the energy function, there are actually only 
𝑛𝑛 − 3 degrees of freedom in 𝐶𝐶, and even then, not all possi-
ble values of 𝜆𝜆𝑗𝑗  are allowed, namely, correspond to some 
barycentric coordinate recipe. 

The following theorem shows that the conformal matrix 
spectra of any real barycentric coordinate functions on a reg-
ular polygon actually have another eigenvalue in common, 
apart from the two zeros: 

Theorem 2: The spectrum of the conformal matrix of any 
real barycentric coordinate functions on a regular 𝑛𝑛 -gon 
contains 𝜆𝜆𝑏𝑏 = sin 2𝜋𝜋

𝑏𝑏
.   

Proof: As for any circulant matrix, the eigenvectors of the 
circulant conformal matrix of all barycentric coordinate 
functions on a 𝑛𝑛-sided regular polygon 𝑃𝑃𝑏𝑏 = (𝑧𝑧1, 𝑧𝑧2, . . , 𝑧𝑧𝑏𝑏) 

= (𝜔𝜔𝑏𝑏0,𝜔𝜔𝑏𝑏1 . . ,𝜔𝜔𝑏𝑏𝑏𝑏−1) are the Fourier vectors: 

𝜑𝜑𝑗𝑗 = �𝜔𝜔𝑏𝑏0,𝜔𝜔𝑏𝑏
𝑗𝑗−1, . . ,𝜔𝜔𝑏𝑏

(𝑏𝑏−1)(𝑗𝑗−1)�
𝑡𝑡

     𝑗𝑗 = 1, . . ,𝑛𝑛 

with eigenvalues 𝜆𝜆1, . . , 𝜆𝜆𝑏𝑏.  Denote by 𝐵𝐵𝑗𝑗(𝑧𝑧), 𝑗𝑗 = 1, . ,𝑛𝑛  the 
𝑛𝑛 barycentric coordinate functions, and by 𝐶𝐶 the associated 
conformal energy matrix of 𝑃𝑃. 

Now we observe that, since any unit-length complex num-
ber 𝑛𝑛 satisfies 𝑛𝑛−1 = 𝑛𝑛� , 

𝜑𝜑𝑏𝑏 = �𝜔𝜔𝑏𝑏0,𝜔𝜔𝑏𝑏𝑏𝑏−1, . . ,𝜔𝜔𝑏𝑏
(𝑏𝑏−1)(𝑏𝑏−1)�

𝑡𝑡

= �𝜔𝜔𝑏𝑏0,𝜔𝜔𝑏𝑏−1, . . ,𝜔𝜔𝑏𝑏
−1(𝑏𝑏−1)�

𝑡𝑡
 

= (𝜔𝜔𝑏𝑏0,𝜔𝜔�𝑏𝑏 , . . ,𝜔𝜔�𝑏𝑏𝑏𝑏−1)𝑡𝑡 = 𝜑𝜑2����  

So, since 𝐵𝐵𝑖𝑖(𝑧𝑧) are real, for the target polygon 𝜑𝜑𝑏𝑏 

𝑓𝑓(𝑧𝑧) = �𝐵𝐵𝑗𝑗(𝑧𝑧)
𝑏𝑏

𝑗𝑗=1

𝜑𝜑𝑏𝑏 = �𝐵𝐵�𝑗𝑗(𝑧𝑧)
𝑏𝑏

𝑗𝑗=1

𝜑𝜑�2 = �𝐵𝐵𝚥𝚥(𝑧𝑧)
𝑏𝑏

𝚥𝚥=1

𝜑𝜑2
���������������

= 𝑧𝑧̅ 

The conformal energy of this mapping 𝑓𝑓(𝑧𝑧) = 𝑧𝑧̅  is 

𝐸𝐸𝑐𝑐(𝑓𝑓) = 2� �
𝜕𝜕𝑓𝑓
𝑑𝑑𝑧𝑧̅�

2

𝑑𝑑𝑧𝑧⋀𝑑𝑑𝑧𝑧̅ =
𝑃𝑃

2�  𝑑𝑑𝑧𝑧⋀𝑑𝑑𝑧𝑧̅
𝑃𝑃

= 2Area(𝑃𝑃) = 𝑛𝑛 sin
2𝜋𝜋
𝑛𝑛  

Since the conformal energy is also 𝐸𝐸𝐶𝐶(𝑓𝑓) = 𝜑𝜑𝑏𝑏∗𝐶𝐶𝜑𝜑𝑏𝑏 =
𝜆𝜆𝑏𝑏|𝜑𝜑𝑏𝑏|2 = 𝑛𝑛𝜆𝜆𝑏𝑏, we conclude that  𝜆𝜆𝑏𝑏 = sin 2𝜋𝜋

𝑏𝑏
.  ∎ 

Corollary 1: For 𝑛𝑛 = 3, 4, 6 , we have 𝜆𝜆𝑏𝑏 = √3
2

, 1, √3
2

  re-
spectively. ∎ 
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We now study the important special cases of regular poly-
gons for 𝑛𝑛 = 3, 4, 6 when mapped using the following bary-
centric coordinates: Triangulated (T), Wachspress (W) 
[Wac75] = Laplace (L) [PP93], mean value (MV) [Flo03], 
affine-based Moving Least Squares (MLS) [MS10], Gor-
don-Wixom (GW) [GW74], Improved Gordon-Wixom 
(IGW) [BF15] and harmonic (H) [JMD*07]. Each will have 
a different conformal energy matrix, but with common (Fou-
rier) eigenstructure. Since the conformal energy is mini-
mized for the harmonic mapping (H), we expect this to re-
flect in the spectrum of its conformal matrix.  

4.1 The equilateral triangle 

The simplest regular polygon is the equilateral triangle, with 

vertices vector 𝑧𝑧 = �1,−1−√3𝑖𝑖
2

,−1+√3𝑖𝑖
2

�
𝑡𝑡
. The barycentric 

coordinates are uniquely determined by the affine mapping: 

𝐵𝐵𝑗𝑗(𝑧𝑧) =
1
3 Re�1 + 2𝑧𝑧𝜔𝜔3

1−𝑗𝑗�,       𝑘𝑘 = 1,2,3 

Accordingly, there is just one possible conformal matrix, as 
developed in Section 3.1. 

𝐶𝐶 =
1

24√3
�
−3 − √3𝚤𝚤
3 − √3𝚤𝚤

2√3𝚤𝚤
��

−3 − √3𝚤𝚤
3 − √3𝚤𝚤

2√3𝚤𝚤
�

∗����������������������������������

=
1

4√3
�

2 −1 + √3𝑖𝑖 −1 − √3𝑖𝑖
−1 − √3𝑖𝑖 2 −1 + √3𝑖𝑖
−1 + √3𝑖𝑖 −1 − √3𝑖𝑖 2

� 

with spectrum �0,0, √3
2
� . 

4.2 The square 

 The regular polygon with 𝑛𝑛 = 4  sides is the square with 
vertices vector 𝑧𝑧 = (1, 𝑖𝑖,−1,−𝑖𝑖)𝑡𝑡 . For this polygon the 
Wachspress and Laplace barycentric mappings are identical, 
as for all circular polygons, but for the square these are also 
identical to the bilinear and harmonic coordinates: 

𝐵𝐵𝑗𝑗(𝑧𝑧) =
1
4 Re ��1 + 𝑧𝑧𝜔𝜔41−𝑗𝑗�

2� , 𝑘𝑘 = 1 … 4          (14) 

Table 1 shows the two non-zero eigenvalues of the confor-
mal energy matrix corresponding to the different barycentric 
mappings of the square, along with the first row of the cir-
culant matrix itself. These integrals were computed symbol-
ically where possible, otherwise numerically by MATLAB’s 
integral2 function based on a quadrature on the square. 
MATLAB guarantees that the relative error in the computa-
tion is less than 10−6. As expected, the harmonic (H) map-
ping has the smallest eigenvalues, consistent with the fact 

that it achieves the smallest conformal energy. The MLS co-
ordinates are very close to these, indicating that they provide 
a superior approximation to harmonic coordinates. 

4.3 The regular hexagon 

The regular polygon with 𝑛𝑛 = 6 sides is the hexagon with 
vertex vector 𝑧𝑧 = �1, 1

2
+ √3

2
,−1

2
+ √3

2
,−1,−1

2
− √3

2
, 1
2
−

√3
2
�
𝑡𝑡
. As in the cases 𝑛𝑛 = 3, 4, here too the Wachspress (W) 

and Laplace (L) barycentric mappings are identical, but 
these do not coincide with the harmonic (H) coordinates, for 
which a closed-form expression does not exist. 

Table 2 shows the four non-zero eigenvalues of the confor-
mal energy matrix corresponding to some of the different 
barycentric mappings of the regular hexagon. In the non-har-
monic case, the matrix was computed using a quadrature on 
a simple triangulation of the hexagon to four triangles (the 
quadrature on a triangle was obtained by duplicating and re-
flecting the triangle to form a parallelogram and then af-
finely transform it to a rectangle, which MATLAB’s inte-
gral2 function can handle). Here again, MATLAB guaran-
tees error less than 10−6. In the harmonic case, the matrix 
was computed over a dense triangulation of the hexagon into 
14,000 triangles. The harmonic function was then approxi-
mated as a piecewise-linear interpolant and the integral com-
puted analytically over each triangle. As in the case of a 
square, the harmonic mapping (H) has the smallest eigenval-
ues, consistent with the fact that it achieves the smallest con-
formal energy. The closest to this again seems to be the MLS 
coordinates. 

4.4 Some examples 

To illustrate the difference between the different barycentric 
coordinate mappings, we show the deformations achieved 
when a single polygon is mapped by minimizing the confor-
mal energy of the mapping subject to positional constraints 
on three of the vertices of the polygon, using the “triangle” 
(T) and harmonic (H) barycentric mappings. The image of 
the regular source polygon is an irregular polygon. The top 
row of Fig. 4 shows this for deformations of a square and 
Fig. 5 for deformations of a regular hexagon. The blue points 
show the positional constraints on the target polygon. As ex-
pected, there is a significant difference between the two. Not 

Table 1 
Conformal energy matrices and spectra of some bary-

centric mappings of the unit square 
Barycentric 
coordinate 

Conformal 
eigenvalues 

𝜆𝜆4,𝜆𝜆3 

First row of conformal matrix 

W = H = L 
= bilinear 

1, 1/3 1
4 (4/3,−1/3 + 𝑖𝑖,−2/3,−1/3− 𝑖𝑖) 

T 1, 1 1
4

(2,−1 + 𝑖𝑖, 0,−1− 𝑖𝑖) 

MV 1, .342065 1
4

(1.342065,−0.342065 + 𝑖𝑖,−0.657935,−0.342065− 𝑖𝑖) 

MLS 1, .333635 1
4 (1.333635,−0.333635 + 𝑖𝑖,−0.666365,−0.333635− 𝑖𝑖) 

GW 1, .350756 1
4 ( 1.350756,−0.350756 + 𝑖𝑖,−0.649244,−0.350756− 𝑖𝑖) 

IGW 1, .355479 1
4 ( 1.355479,−0.355479 + 𝑖𝑖,−0.644521,−0.355479− 𝑖𝑖) 

Table 2 
Conformal energy matrix spectra of some barycentric 

mappings of the regular hexagon 
Barycentric  
coordinate 

Conformal eigenvalues 
𝜆𝜆6,𝜆𝜆5, 𝜆𝜆4,𝜆𝜆3 

First row of conformal matrix 

H √3 2⁄ , .924824, .413950, .058799 
1
4

(1.50907,−0.31517 + 𝑖𝑖,−0.34058,−0.19757,−0.34058,−0.31517− 𝑖𝑖)  

T √3 2⁄ , √3,  √3, √3 2⁄  
1
4

(2√3,−√3 + 𝑖𝑖, 0, 0,0,−√3− 𝑖𝑖)  

W = L √3 2⁄ , .929965, .422050, .063940 
1
4 (1.52132,−0.32399 + 𝑖𝑖,−0.33861,−0.19611,−0.33861,−0.32399− 𝑖𝑖) 

MV √3 2⁄ , .934926, .434346, .068901 
1
4

(1.53613,−0.33550 + 𝑖𝑖,−0.33372,−0.19770,−0.33372,−0.33550− 𝑖𝑖)  

MLS √3 2⁄ , .925390, .414526, .059364 
1
4

(1.51020,−0.31593 + 𝑖𝑖,−0.34058,−0.19720,−0.34058,−0.31593− 𝑖𝑖)  

GW √3 2⁄ , .935107, .432956, .069082 
1
4

(1.53545,−0.33469 + 𝑖𝑖,−0.33477,−0.19653,−0.33477,−0.33469− 𝑖𝑖)  

IGW √3 2⁄ , .960167, .471829, .094142 
1
4

(1.59478,−0.37731 + 𝑖𝑖,−0.32556,−0.18903,−0.32556,−0.37731− 𝑖𝑖)  
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shown are the deformations corresponding to the other bar-
ycentric coordinate scehemes, which are very similar to the 
harmonic result. 

4.5 Non-barycentric energies  

The conformal energy matrices described in Tables 1 and 2 
above all correspond to barycentric mappings. However, it 
should be possible to use a matrix 𝐶𝐶 as in (13) with arbitrary 
positive values of 𝜆𝜆𝑗𝑗 . This will probably not correspond to 
the conformal energy of any barycentric mapping, but per-
haps result in other interesting effects. For example, take 
𝜆𝜆4 = 1 and 𝜆𝜆3 = 𝜀𝜀 (a very small number) in the square case 
(𝑛𝑛 = 4 ) (we avoid taking 𝜆𝜆3 = 0  since then 𝐶𝐶  would have 
rank 1). Minimizing this “energy” results in the square striv-
ing to be deformed to a parallelogram. Taking the opposite 
𝜆𝜆4 = 1 and 𝜆𝜆3 to be a very large number results in the square 
deforming to a “crossgram” – a quadrilateral in which the 
two diagonals have equal length and are perpendicular to 

each other. This is demonstrated in the bottom row of Fig. 4 
and has been explored in a recent paper of Chen and Gots-
man [CG16], who used it to generate piecewise-affine map-
pings, approximating projective homographies of the plane. 
Interestingly, despite the fact that it does not really corre-
spond to any conformal energy, the crossgram case was re-
cently proposed by Cartade [CMMS13] for conformal de-
formations of quad meshes. They show also how to general-
ize it to arbitrary meshes.  

5 Polygonal Meshes 

A deformation of a single polygon is of limited interest in 
real-world applications. It is more useful to tessellate a pla-
nar region 𝑃𝑃 with a polygonal mesh, and then compute a de-
formation of this entire mesh structure given positional con-
straints on a small subset of the mesh vertices, which have 
been specified by the application.  

One of the most popular (and simplest) methods to compute 
a discrete map of 𝑃𝑃 which is as close to conformal as possi-
ble is to triangulate the interior of 𝑃𝑃 and, subject to the posi-
tional constraints, solve for the images of the vertices of the 
triangulation of 𝑃𝑃. The objective is that each triangle of 𝑃𝑃 is 
mapped to a triangle which is, as much as possible, a similar 
copy of itself. This is called the As-Similar-As-Possible 
(ASAP) mapping [DMA02, LM02] and can easily be shown 
to boil down to a linear system of equations equivalent to the 
discrete linear Laplace equation, with boundary conditions 
which are not necessarily Dirichlet conditions (i.e. on the 
domain boundary). Since the set of source triangles in 𝑃𝑃 and 
their images define a piecewise-affine mapping of the inte-
rior of 𝑃𝑃  to ℂ , any point 𝑝𝑝 ∈ 𝑃𝑃  may then be mapped 
uniquely using the appropriate affine mapping. 

Note that a conformal map is by definition locally injective. 
In constrast, a discrete conformal map, particularly one gen-
erated by the FEM method, may not be so. This manifests in 
elements whose images have flipped orientation. Methods 
have been developed to generate mappings which avoid this 
(e.g. [SKPS13, PL14]), but we do not deal with this issue in 
this paper. 

We now consider what happens when 𝑃𝑃 is decomposed into 
elements which are not necessarily triangles, rather regular 
polygons, e.g. squares or regular hexagons, which are the 
only possible tessellations of the plane using identical regu-
lar elements. Since the conformal energy is additive, the con-
formal energy of a deformed complete mesh consisting of 
many regular polygons is simply the sum of their individual 
conformal energies (11) (or (8)). For a mesh of 𝑚𝑚 vertices, 
this results in a 𝑚𝑚 × 𝑚𝑚  Hermitian matrix 𝐶𝐶 , (analogous to 
the so-called global stiffness matrix of FEM) where the con-
formal energy is a quadratic form on the mesh vertex posi-
tions (when represented as complex numbers). The structure 
of 𝐶𝐶 is very similar to that of the Laplacian matrix of a mesh 
[PP93], which is quite sparse, an entry of the matrix being 
non-zero only if it corresponds to a pair of vertices which 
are vertices of a common polygon. Typically, there will be a 
non-zero entry for every such pair of vertices, as observed 
by Alexa and Wardetzky [AW11]. However, if the individual 
conformal matrix used per polygon corresponds to the piece-
wise-triangle mapping, the only non-zero entries will corre-
spond to the edges of the mesh, i.e. the Laplacian will have 

   
Source 

 
Triangle (T) 

(𝜆𝜆3 = 1) 
Harmonic (H) 

(𝜆𝜆3 = 1/3) 

   
parallelogram 

(𝜆𝜆3 = .01) 𝜆𝜆3 = .1 
crossgram 
(𝜆𝜆3 = 10) 

Figure 4: Deformations of a square minimizing various 
energies. The first two (top row) are conformal energies 
associated with the two-triangle and harmonic barycen-
tric mappings of the interior of the square. The grid tex-
ture allows to visualize the mapping. Note the discontinu-
ity along the diagonal in the triangle (T) mapping. The 
next three (bottom row) are the result of minimizing an 
energy with 𝜆𝜆4 = 1  and values of 𝜆𝜆3  not corresponding 
to any barycentric mapping. Three of the vertices have 
been constrained. Note how very small values of 𝜆𝜆3 result 
in a parallelogram, and very large values in a 
“crossgram” – a quadrilateral in which the two diago-
nals have equal length and are perpendicular to each 
other. 

   
Source Triangle Harmonic 

Figure 5: Deformations of a regular hexagon minimiz-
ing conformal energy associated with different barycen-
tric mappings of the interior. The grid texture allows to 
visualize the mapping. 
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the sparsity structure of the mesh adjacency matrix. This is 
called a perfect Laplacian [HKA15].  

Fig. 6 shows some deformations of a rectangular planar re-
gion using different discretizations with regular polygons 
and two different barycentric interior mappings of the poly-
gons – the triangle (T) mapping and the harmonic (H) map-
ping. Since the complexity of the linear system to be solved 
depends on the number of vertices in the mesh, for a fair 
comparison we used meshes containing approximately the 
same number of vertices (𝑚𝑚 = 18 on the average in the fig-
ure) covering the deforming region. All the deformations are 
subject to an identical set of (blue) point constraints, and the 
resulting deformation is visualized by a checkerboard tex-
ture map. Each square of the checkerboard is 8×8 image pix-
els and the edge length of the triangle, quad and hex were 
90, 80 and 73 pixels, respectively. Each visualization is ac-
companied by 𝐸𝐸𝐶𝐶 – the total conformal energy of the defor-
mation. The results show that the “most conformal” defor-
mation, both quantitavely and qualitatively, is achieved by 
hex elements using harmonic coordinates. Similar results are 
obtained when using many of the other barycentric coordi-
nates (in particular MLS and MV) instead of the harmonic 
coordinates. To measure the convergence of the mapping as 
the resolution of the mesh is increased, we performed iden-
tical experiments for mesh sizes increasing up to 𝑚𝑚 =
  30,000 vertices. Fig. 7 shows the performance statistics 

when the resolution of the mesh is increased. The left graph 
reports the decrease in conformal energy when an interior 
harmonic mapping is used, in a log-log plot. The linear be-
havior indicates an inverse polynomial relationship. The 
right graph reports the increase in runtime, as measured 
when using MATLAB’s LDL solver, which performs well 
on sparse linear systems. Surprisingly, the quad mesh solves 
a little faster than the others, despite the associated matrix 
not being the least sparse - 8 entries per row on the average 
for interior mesh vertices - as opposed to 12 and 6 in the 
hexagonal and triangular case, respectively. 

5.1 Solving the optimization problem 

In practice, the positions of the deformed mesh vertices are 
derived by solving the set of linear normal equations corre-
sponding to optimizing the quadratic conformal energy (sub-
ject to the linear point constraints).When a small set of mesh 
points are constrained, there is a simple analytic solution, 
which we detail here for completeness’ sake: Denote by 𝐶𝐶 
the conformal matrix of the mesh. Denote by 𝐴𝐴 and 𝐵𝐵 the in-
dices of the constrained and free sets of mesh vertices re-
spectively, and by 𝑤𝑤𝐴𝐴 and 𝑤𝑤𝐵𝐵 the vector of their deformed 
positions, respectively. Without loss of generality, order the 
mesh vertices such that all constrained vertices come before 
the free vertices, and partition 𝐶𝐶 as follows: 
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Figure 6: (Top) Discretization of bar shape using regular triangles, quads and hexagonal elements. The edge lengths of the 
three types of elements are 90,80 and 73 image pixels, respectively. The bar is deformed using four (blue) constraints. 
(Middle) Deformation using conformal energy based on triangle (T) basis functions. (bottom) Deformation using conformal 
energy based on harmonic (H) basis functions. Note how smooth the harmonic deformation on hexagons is. 
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𝐶𝐶 = �𝐶𝐶𝐴𝐴𝐴𝐴 𝐶𝐶𝐴𝐴𝐵𝐵
𝐶𝐶𝐵𝐵𝐴𝐴 𝐶𝐶𝐵𝐵𝐵𝐵

� 

Then, given 𝑤𝑤𝐴𝐴, minimizing 𝐶𝐶(𝑤𝑤) implies the following set 
of normal equations for 𝑤𝑤𝐵𝐵: 

(𝐶𝐶𝐵𝐵𝐴𝐴 𝐶𝐶𝐵𝐵𝐵𝐵) �
𝑤𝑤𝐴𝐴
𝑤𝑤𝐵𝐵� = 0 

resulting in: 

𝑤𝑤𝐵𝐵 = −𝐶𝐶𝐵𝐵𝐵𝐵−1𝐶𝐶𝐵𝐵𝐴𝐴𝑤𝑤𝐴𝐴                                (15) 

This can be interpreted as saying that the free vertex posi-
tions 𝑤𝑤𝐵𝐵 are just a linear combination of the constrained ver-
tex positions 𝑤𝑤𝐴𝐴, where the “basis functions” used in the lin-
ear combination depend only on the source mesh: the (𝑗𝑗, 𝑘𝑘) 
entry of −𝐶𝐶𝐵𝐵𝐵𝐵−1𝐶𝐶𝐵𝐵𝐴𝐴  represents the “influence” of the 𝑘𝑘 ’th 
constrained vertex on the 𝑗𝑗’th free vertex. Fig. 8 illustrates 
some of these basis functions on a regular hexagonal mesh. 
This is very similar to the concept of barycentric coordi-
nates, except that here the constraints are points (as opposed 
to the edges of a polygon). 

Using the same notation, the conformal energy of the de-
formed mesh may be rewritten as: 

𝐶𝐶(𝑤𝑤) = �
𝑤𝑤𝐴𝐴
𝑤𝑤𝐵𝐵�

∗
�𝐶𝐶𝐴𝐴𝐴𝐴 𝐶𝐶𝐴𝐴𝐵𝐵
𝐶𝐶𝐵𝐵𝐴𝐴 𝐶𝐶𝐵𝐵𝐵𝐵

� �
𝑤𝑤𝐴𝐴
𝑤𝑤𝐵𝐵�

= �
𝑤𝑤𝐴𝐴
𝑤𝑤𝐵𝐵�

∗
�𝐶𝐶𝐴𝐴𝐴𝐴𝑤𝑤𝐴𝐴 + 𝐶𝐶𝐴𝐴𝐵𝐵𝑤𝑤𝐵𝐵

0 �
= 𝑤𝑤𝐴𝐴∗𝐶𝐶𝐴𝐴𝐴𝐴𝑤𝑤𝐴𝐴 + 𝑤𝑤𝐴𝐴∗𝐶𝐶𝐴𝐴𝐵𝐵𝑤𝑤𝐵𝐵 

Using (15): 

= 𝑤𝑤𝐴𝐴∗𝐶𝐶𝐴𝐴𝐴𝐴𝑤𝑤𝐴𝐴 − 𝑤𝑤𝐴𝐴∗𝐶𝐶𝐴𝐴𝐵𝐵𝐶𝐶𝐵𝐵𝐵𝐵−1𝐶𝐶𝐵𝐵𝐴𝐴𝑤𝑤𝐴𝐴
=  𝑤𝑤𝐴𝐴∗(𝐶𝐶𝐴𝐴𝐴𝐴 − 𝐶𝐶𝐴𝐴𝐵𝐵𝐶𝐶𝐵𝐵𝐵𝐵−1𝐶𝐶𝐵𝐵𝐴𝐴)𝑤𝑤𝐴𝐴 

implying that the constrained conformal energy is still a 
quadratic form in the positions of just the constrained verti-
ces 𝑤𝑤𝐴𝐴. Note that 𝐶𝐶𝐴𝐴𝐴𝐴 will typically be diagonal if the con-
strained vertices are distant from each other in the mesh. The 
observant reader will also note that the Hermitian matrix is 
the Schur complement [HJ13] of 𝐶𝐶. 

In a practical deformation scenario, some of the user-sup-
plied constraints will not coincide exactly with mesh verti-
ces, but rather fall within a mesh polygon. In this case, the 
constraint location is expressed as a linear combination of 

the polygon vertices, again using barycentric coordinates. 
This still leads to a slightly more intricate linear system to 
solve for 𝑤𝑤𝐵𝐵. 

5.2 Comparison to similarity-based mesh-free MLS 
mapping 

It is interesting to compare the maps generated by minimiz-
ing conformal energy on discrete meshes to other ways of 
approximating continuous conformal maps. The Moving 
Least Squares (MLS) mappings, as introduced by Schaefer 
et al [SMW06], generates, given a set of point constraints, a 
continuous deformation which, per point 𝑧𝑧  in the plane, 
computes the best similarity mapping 𝑆𝑆𝑑𝑑  fitting the con-
straints, where each constraint 𝑧𝑧𝑗𝑗  is weighted in some way 
depending on its proximity to 𝑧𝑧, e.g. by |𝑧𝑧 − 𝑧𝑧𝑗𝑗|−2. The de-
formation is then defined to be 𝑓𝑓(𝑧𝑧) = 𝑆𝑆𝑍𝑍(𝑧𝑧). 

It is relatively straightforward to show that the MLS map-
ping can also be expressed as a linear combination of basis 
functions depending only on the positions of the constrained 
points in the source. Weighting the target positions of these 
constraints with the basis functions produces the final map-
ping. Fig. 8 depicts the basis functions of the mesh-free MLS 
method under the same conditions as a discrete conformal 
map based on a regular hex mesh, assuming each hex is 
mapped using a harmonic map. Note the local nature of the 
MLS basis functions, which, at first glance, would seem to 
be a desirable property. However, this also implies that the 
MLS mapping is unpredictable in regions distant from all the 

  
Figure 7: (Left) Decrease in conformal energy and (Right) linear system solve time as a function of mesh size. 

 

Discrete conformal 
map (on hex mesh) 

Mesh-free Moving-
Least-Squares (MLS) 

 

  

   
Figure 8: (left) Two of the five basis functions of a dis-
crete conformal map constrained at 5 points, computed 
on a hex mesh using the harmonic barycentric coordinate 
mapping per hex. Note how the basis functions increase 
in regions void of constraints. (right) Analogous two ba-
sis functions of the mesh-free MLS method. Note the lo-
cality of these basis functions. 
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constraints.  In contrast, the discrete conformal basis func-
tions grow in regions void of constraints, keeping the map-
ping under control.  

5.3 Weighted discrete conformal maps 

As mentioned above, a conformal map of a polygonal mesh 
may be computed by minimizing the quadratic conformal 
energy of the mesh, where each polygon contributes propor-
tionally to its area. This can easily be done differently if the 
application dictates that some region be mapped more con-
formally, possibly at the expense of other regions. All that 
needs to be done is to weight the contribution of each poly-
gon by some positive real weight, depending on its im-
portance. The resulting conformal energy matrix will still be 
Hermitian. A possible application is in image warping, 
where it is more important to conformally map the regions 
containing high frequencies, at the expense of regions which 
contain only low frequencies, under the premise that any dis-
tortion is less noticeable in those regions. This is sometimes 
called “content-aware” deformation and Fig. 9 shows a typ-
ical application: “image retargeting” [RGSS10]. Here the 
objective is to modify the aspect ratio of a given image, in 
this case transforming a rectangle into a square. This is im-
plied by appropriate constraints along the entire boundary of 
the mesh, and would ordinarily just stretch the source image 
vertically. This is indeed what happens when uniform im-
portance is used. In contrast, when weighted by a user-spec-
ified importance map, concentrating on the more interesting 
parts of the image, the result is a deformation that is more 
conformal (thus less distorting) in the regions of high im-
portance, at the expense of the conformality in the other re-

gions. Weighting the various elements in a conformal map-
ping scenario was also done by Mullen et al. [MTAD08], al-
beit in a 3D mesh parameterization scenario, where the 
weighting factor was simply the inverse of the element area. 

6 Inverting Barycentric Maps 

An important practical question arises when using barycen-
tric mappings in a real-world application. In order to render 
a deformation of a given image, using, say, texture mapping, 
it is necessary to invert the mapping. For example, in order 
to render the image of the deformed grid in Fig. 9, it is nec-
essary to invert all the barycentric mappings used on the in-
teriors of the individual polygons.  

This is, in general, a difficult problem. The simplest version 
of the problem – inverting the bilinear map of a unit square 
– has attracted some attention since bilinear maps of quads 
are quite popular in computer graphics. (Note that by bilin-
ear we mean maps of the form (14), and not the conformal 
linear fractional map, which is sometimes also called a bi-
linear map). The exact solution involves solving a quadratic 
equation, i.e. computing a square root. While this does not 
sound difficult, it may suffer from numerical imprecision in 
single-precision shaders. In practice, the map is inverted us-
ing an iterative Gauss-Newton algorithm, which converges 
quite quickly. We now present an algorithm which works for 
all invertible barycentric mappings, working especially well 
if the mapping is close to conformal. 

6.1 The “gamma” formulation of complex barycentric 
coordinates 

Weber et al. [WBGH11] provided an alternative description 
of barycentric coordinates, when expressed using complex 
numbers. They show that, up to normalization, any barycen-
tric coordinate function can be expressed as a linear combi-
nation (by so-called “gamma functions” 𝛾𝛾𝑗𝑗(𝑧𝑧)) of similarity 
transformations per edge, where the 𝑗𝑗’th similarity transfor-
mation 𝑆𝑆𝑗𝑗  is derived from the 𝑗𝑗 ’th source-target edge pair, 
and then applied to a point 𝑧𝑧, weighted by 𝛾𝛾𝑗𝑗(𝑧𝑧). This seems 
a more natural description in the context of conformal maps, 
since similarities are the simplest form of a conformal map.  

More precisely, the 𝛾𝛾  formulation represents a barycentric 
mapping as 

𝑓𝑓(𝑧𝑧) = �𝛾𝛾𝑗𝑗(𝑧𝑧)𝑆𝑆𝑗𝑗(𝑧𝑧)
𝑏𝑏

𝑖𝑖=1

                           (16) 

where the 𝑗𝑗’th similarity function is: 

𝑆𝑆𝑗𝑗(𝑧𝑧) = 𝑓𝑓𝑗𝑗 + 𝑎𝑎𝑗𝑗�𝑧𝑧 − 𝑧𝑧𝑗𝑗� 

and the 𝑎𝑎𝑗𝑗 = �̂�𝑒𝑗𝑗
𝑒𝑒𝑗𝑗

  are (complex-valued) constants depending 

only on the source and target polygons: 𝐴𝐴𝑗𝑗 = 𝑧𝑧𝑗𝑗+1 − 𝑧𝑧𝑗𝑗  and  
�̂�𝐴𝑗𝑗 = 𝑓𝑓𝑗𝑗+1 − 𝑓𝑓𝑗𝑗  are the 𝑗𝑗’th edge of the source and target pol-
ygons, respectively. 

For example, the Laplace coordinate functions may be de-

scribed using 𝛾𝛾𝑗𝑗(𝑧𝑧) = � 𝑒𝑒𝑗𝑗
ℎ𝑗𝑗(𝑑𝑑)�,  where �ℎ𝑗𝑗(𝑧𝑧)�  is the distance 

of 𝑧𝑧  from the 𝑗𝑗 ’th edge, and normalizing so that 
∑ 𝛾𝛾𝑗𝑗(𝑧𝑧) = 1𝑏𝑏
𝑖𝑖=1 . Weber et al [WBGH11] provide a general 

In
pu

t 

 

Im
po

rta
nc

e 
M

ap
 

  

D
ef

or
m

at
io

n 

  
Figure 9: Deformations of a hex mesh based on uniform 
and non-uniform importance maps. The constraints (along 
all the boundary vertices) imply a vertical stretch of the 
(top) input image, which is what is obtained with (bottom 
left) a uniform importance map. However, the non-uniform 
importance map causes (bottom right) some regions to be 
mapped more conformally than others, resulting in less 
distortion where it is visibly noticeable. 
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form of the 𝛾𝛾 functions for the family of three-point coordi-
nates. 

6.2 The iterative algorithm 

We present here an iterative algorithm to invert a general 
barycentric mapping using its 𝛾𝛾 functions. Given 𝑤𝑤 = 𝑓𝑓(𝑧𝑧), 
and assuming 𝑓𝑓 is injective, we would like to compute 𝑧𝑧, i.e. 
solve the equation 𝑤𝑤 − 𝑓𝑓(𝑧𝑧) = 0  for 𝑧𝑧.  The Newton-
Raphson method over the complex field dictates the follow-
ing iteration, given an initial guess 𝑧𝑧0:  

𝑧𝑧𝑏𝑏+1 = 𝑧𝑧𝑏𝑏

+
�𝑤𝑤 − 𝑓𝑓(𝑧𝑧𝑏𝑏)� 𝜕𝜕𝑓𝑓𝜕𝜕𝑧𝑧 (𝑧𝑧𝑏𝑏)

����������
− �𝑤𝑤 − 𝑓𝑓(𝑧𝑧𝑏𝑏)�������������� 𝜕𝜕𝑓𝑓𝜕𝜕𝑧𝑧̅ (𝑧𝑧𝑏𝑏)

�𝜕𝜕𝑓𝑓𝜕𝜕𝑧𝑧 (𝑧𝑧𝑏𝑏)�
2
− �𝜕𝜕𝑓𝑓𝜕𝜕𝑧𝑧̅ (𝑧𝑧𝑏𝑏)�

2            (17) 

(note that the denominator in (17) is the Jacobian of 𝑓𝑓 at 𝑧𝑧𝑏𝑏). 
Now, since ∑ 𝛾𝛾𝑗𝑗(𝑧𝑧) = 1𝑏𝑏

𝑖𝑖=1   implies ∑ 𝜕𝜕𝛾𝛾𝑗𝑗(𝑑𝑑)
𝜕𝜕𝑑𝑑

= 0𝑏𝑏
𝑖𝑖=1   and 

∑ 𝜕𝜕𝛾𝛾𝑗𝑗(𝑑𝑑)
𝜕𝜕�̅�𝑑

= 0,𝑏𝑏
𝑖𝑖=1   from (16) we obtain: 

𝜕𝜕𝑓𝑓
𝜕𝜕𝑧𝑧 = �

�̂�𝐴𝑗𝑗
𝐴𝐴𝑗𝑗
𝛾𝛾𝑗𝑗

𝑏𝑏

𝑖𝑖=1

+ �𝑆𝑆𝑗𝑗
𝜕𝜕𝛾𝛾𝑗𝑗
𝜕𝜕𝑧𝑧

𝑏𝑏

𝑖𝑖=1

 

and 

𝜕𝜕𝑓𝑓
𝜕𝜕𝑧𝑧̅ = �𝑆𝑆𝑗𝑗

𝜕𝜕𝛾𝛾𝑗𝑗
𝜕𝜕𝑧𝑧̅

𝑏𝑏

𝑖𝑖=1

 

Now if 𝑓𝑓 is close to conformal, then all the 𝑆𝑆𝑗𝑗 can be approx-
imated as a constant value independent of 𝑗𝑗, thus  

𝜕𝜕𝑓𝑓
𝜕𝜕𝑧𝑧 ≈�

�̂�𝐴𝑗𝑗
𝐴𝐴𝑗𝑗
𝛾𝛾𝑗𝑗

𝑏𝑏

𝑖𝑖=1

,
𝜕𝜕𝑓𝑓
𝜕𝜕𝑧𝑧̅ ≈ 0                      (18)   

which is easily computed and can be used to update 𝑧𝑧𝑏𝑏 in 
(17). 

The gradient approximation (18) for 𝑓𝑓 close to conformal is 
justified especially in our scenario of a discrete conformal 
map of a polygonal mesh, since each individual polygon will 
be close to be conformally mapped (see e.g. the individual 
polygons in Fig. 6). Since the Newton-Raphson method is 
relatively tolerant to error in the gradient as long as it points 
in approximately the right direction, it corrects itself at the 
expense of more iterations. 

In our implementation we initialized 𝑧𝑧0  to be the reverse 
mapping of 𝑤𝑤, i.e. the point that 𝑤𝑤 is mapped to using the 
barycentric mapping obtained when the roles of the source 
and target polygons are reversed. This, in itself, is an excel-
lent approximation for the inverse when the mapping is 
“well-behaved”, certainly if it is close to conformal.  Exper-
imental results show that this iteration converges rapidly 
(within a small number of iterations) for regular source pol-
ygons. Fig. 10 shows the inverted mean value (MV) map of 
a regular hexagon to another hexagon computed using this 
method. The inversion procedure required 7 iterations on the 
average to converge for each of the vertices of the triangula-
tion of the interior of the target polygon that it was applied 
to, and no more than 14 iterations in the worst case. The it-
erative algorithm was implemented as a shader in GLSL 
(OpenGL Shader Language) to facilitate texture mapping. 

We note that the recent paper of Chen and Gotsman [CG16b] 
presented a similar algorithm to invert barycentric map-
pings. However, in that paper they deal with the transfinite 
case (i.e. the case of mapping of the interior of a smooth 
contour) without explicit dicretization. They develop (more 
complicated) explicit expressions for the gradients of the 
mapping without making the simplifying assumption that all 
the 𝑆𝑆𝑗𝑗 can be approximated as a constant, which is justified 
only in the case of a mesh of multiple elements undergoing 
a close to conformal mapping. 

7 Discussion and Conclusion 

We have shown how to generalize the classical quadratic 
conformal energy associated with deformations of triangle 
meshes to the case where the mesh consists of regular 
squares or hexagons. This also takes into account the map-
ping of the interior of the polygon using barycentric coordi-
nates (which could be harmonic or some approximation of 
that). We have demonstrated that an interior mapping which 
in essence is equivalent to triangulating the polygon is par-
ticularly bad, and other barycentric mappings which are 
much closer to a harmonic map are to be preferred, in par-
ticular the MLS mapping. Using meshes of higher-order reg-
ular polygons, e.g. squares or hexagons, result in faster con-
vergence of the discrete approximation to the continuous 
limit, for the same number of mesh vertices.  

We show that although the Laplace coordinates (which are 
identical to the Wachspress coordinates for regular poly-
gons) indeed are a good approximation to the harmonic case, 
an even better approximation is obtained using the so-called 
Moving Least Squares (MLS) coordinates [MS10]. This is 
consistent with the findings of Chen and Gotsman [CG16a], 
who prove that the MLS coordinates are pseudo-harmonic, 
namely coincide with the classical harmonic Poisson kernel 
[Ahl79] when the number of vertices of the source polygon 
is increased and it converges to a circle.  

Conformal energy matrices are typically sparse. However, it 
is important to note that the entries of 𝐶𝐶 corresponding to di-
agonals of the polygon 𝑃𝑃  will typically vanish only under 
very special conditions. A similar observation was made by 
Alexa and Wardetsky [AW11] in their study of Laplacian op-
erators for polygonal meshes. 

The general case of a higher-order polygon may be reduced 
to the triangle case by consistently triangulating both the 
source and target polygons and mapping each source triangle 
independently to its target counterpart. This results in a 
piecewise-affine 𝐶𝐶0 mapping and may also be expressed us-
ing barycentric coordinate functions (which we labeled T in 

  
Figure 10: (left) A mean value (MV) mapping (left) of a 
regular hexagon and (right) its inverse computed using 
the iterative algorithm of Section 6.2. Both mappings are 
computed on the vertices of a triangulation of the interior 
of the (source or target) hexagon. On the average, 7 iter-
ations per vertex were required to invert the mapping.  
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the text). In this case, the 𝑗𝑗’th barycentric function is sup-
ported only on the triangles incident on the 𝑗𝑗’th vertex. Fur-
thermore, the conformal energy matrix 𝐶𝐶 is just the sum of 
the conformal energy sub-matrices corresponding to the in-
dividual triangles, so that the interior edges have entry 
1
4
�cot𝛼𝛼𝑗𝑗𝑗𝑗 + cot𝛽𝛽𝑗𝑗𝑗𝑗�, where 𝛼𝛼𝑗𝑗𝑗𝑗 and 𝛽𝛽𝑗𝑗𝑗𝑗  are the two angles 

opposite the edge. Boundary edges have en-
try 1

4
(𝑖𝑖 + cot𝛼𝛼𝑗𝑗𝑗𝑗), where 𝛼𝛼𝑗𝑗𝑗𝑗 is the single angle opposite the 

edge. The results of Chen et al [CXGL10] imply that, among 
all possible triangulations, the conformal energy is mini-
mized by the Delaunay triangulation of the polygon. 

The meshes we use consist of identical regular polygons. It 
should be possible to generalize to meshes of irregular pol-
ygons, possibly conforming to some underlying image con-
tent. Irregular meshes of convex elements were used for 
elasticity computations in the 3D scenario treated by Wicke 
et al [WBG08]. Similarly, Huang et al [HCLB09] used 
meshes of irregular tetrahedra for 3D deformation. The lat-
ter, however, considered As-Rigid-As-Possible (ARAP) de-
formations with regularlization for smoothness control, as 
opposed to our pure conformal deformations. While the use 
of an irregular mesh will require the computation of a differ-
ent stiffness matrix for each individual element, the compu-
tation is done only once in a pre-processing step when the 
mesh is constructed. In constrast, the solution of (15) is per-
formed repeatedly as the point constraints are moved in an 
interative editing session. Using such irregular meshes could 
be a topic for future work. 

Weighting the conformal energy of the individual polygons 
is useful in practical applications (especially in content-
aware image deformation) where distortion is less tolerated 
in specific regions. In this case a single positive real weight 
is associated with each polygon. A similar concept has been 
proposed for so-called “weighted triangulations” 
[DMMD14], where a real weight is associated with each ver-
tex of a triangulation, inducing a generalized (cotangent) La-
placian. We speculate that this is somewhat analogous to our 
weighting notion, albeit on the dual mesh – where each face 
is dualized to a vertex. 

While we have dealt only with approximation of point-to-
point conformal maps of compact domains using discrete fi-
nite elements, it is also possible to employ the so-called 
Boundary Element Method (BEM) [WG10]. Here the map 
is approximated by a linear combination of a finite number 
of conformal basis functions centered at select locations 
(which may also be the locations of the constraints), and the 
coefficients are computed such that the user-provided con-
straints are satisfied. This is similar in spirit to the classical 
Radial Basis Function (RBF) method and resembles the 
MLS method mentioned in Section 5.2. However, while the 
resulting map will be conformal (as opposed to approxi-
mately conformal in our method), the results are extremely 
sensitive to the character of the basis functions used and the 
number of degrees of freedom, thus somewhat unpredictable 
away from the constraints. 

Our formulation of the conformal mapping problem in-
volved the convenient use of complex numbers. While this 
is extremely convenient in the plane, there is no direct ana-
log in higher dimensions, in particular three dimensions. 
Fortunately, some of the properties of complex numbers can 

be extended into 3D using vector analysis. 
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