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Harmonic coordinates are widely considered to be perfect barycentric coordinates of a 
polygonal domain due to their attractive mathematical properties. Alas, they have no closed 
form in general, so must be numerically approximated by solving a large linear equation 
on a discretization of the domain. The alternatives are a number of other simpler schemes 
which have closed forms, many designed as a (computationally) cheap approximation 
to harmonic coordinates. One test of the quality of the approximation is whether the 
coordinates coincide with the harmonic coordinates for the special case where the polygon 
is close to a circle (where the harmonic coordinates have a closed form – the celebrated 
Poisson kernel). Coordinates which pass this test are called “pseudo-harmonic”. Another 
test is how small the differences between the coordinates and the harmonic coordinates 
are for “real-world” polygons using some natural distance measures.
We provide a qualitative and quantitative comparison of a number of popular barycentric 
coordinate methods. In particular, we study how good an approximation they are to 
harmonic coordinates. We pay special attention to the Moving-Least-Squares coordinates, 
provide a closed form for them and their transfinite counterpart (i.e. when the polygon 
converges to a smooth continuous curve), prove that they are pseudo-harmonic and 
demonstrate experimentally that they provide a superior approximation to harmonic 
coordinates.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

1.1. Polygon barycentric coordinates

Barycentric coordinates were developed primarily for interpolation purposes, the most common scenario being the in-
terpolation of a real function given on the boundary of a two-dimensional polygon, where the values of the function are 
specified on the polygon vertices, and assumed to vary linearly between these values along the edges. The objective is then 
to associate with any interior point in the polygon a real value which is some natural combination of the values given at 
the vertices.

More precisely, let P be a planar polygon with vertices p j = (x j, y j), j = 1, . . . , n. Given real values f j at p j , what should 
be the value f (x, y) associated with a point (x, y) ∈ int(P ) (interior to P )? To answer this, we associate with each vertex 
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p j a barycentric coordinate function B j(x, y) which satisfies a number of natural conditions, and then define

f (x, y) =
n∑

j=1

f j B j(x, y). (1)

The conditions that the B j are required to satisfy are:

C1. Non-negativity: B j(x, y) ≥ 0, j = 1, . . . , n, ∀(x, y) ∈ int(P )

C2. Constant precision: 
∑n

j=1 B j(x, y) = 1, ∀(x, y) ∈ int(P )

C3. Linear precision: 
∑n

j=1 x j B j(x, y) = x, 
∑n

j=1 y j B j(x, y) = y, ∀(x, y) ∈ int(P )

C4. Lagrange property: B j(pk) = δ jk

The main advantage of using barycentric coordinates is that the coordinate functions B j(x, y) depend only on the polygon P , 
and not on the f j , so may be pre-computed. Thus a change in any of the f j can be reflected easily in f (x, y) as a simple 
linear combination.

In the field of computer graphics, barycentric coordinates have been used to generate mappings between two-
dimensional regions by associating a 2D vector value q j = (u j, v j) with each vertex of P instead of the usual scalar value f j . 
This means that the edges of the source polygon P = (p1, . . . , pn) are linearly mapped to the edges of the target polygon 
Q = (q1, . . . , qn) and the barycentric coordinate functions define the image of an interior point (x, y) ∈ int(P ):

u(x, y) =
n∑

j=1

u j B j(x, y)

v(x, y) =
n∑

j=1

v j B j(x, y)

The barycentric mapping inherits the properties of the coordinate functions used. Over the years, many recipes for B j(x, y)

have been proposed, the simplest and most well-known being the Laplace (also called discrete harmonic or cotangent) (Pinkall 
and Polthier, 1993), mean value (Floater, 2003; Hormann and Floater, 2006) and Wachspress (1975) coordinates. These 
have simple closed-form expressions for any interior point, so are easy to compute. Alas, they are so simple that they 
do not behave well on domains with complicated shapes, most notably the Laplace and Wachspress coordinates generate 
very bad mappings of non-convex domains. Indeed, for many polygons (even convex) they actually violate condition C1 
(non-negativity).

Probably the most desirable barycentric coordinate functions are those which generate the unique harmonic mapping 
between the source and target with the given piecewise linear boundary conditions. Harmonic mappings are desirable 
since they have many attractive mathematical properties beyond C1–C4, such as smoothness, satisfaction of maximum and 
minimum principles, the mean-value property and minimization of Dirichlet energy. Another very important property is 
that harmonic mappings onto convex polygons are guaranteed to be bijective. When used in the Finite-Element Method 
(FEM), harmonic elements are considered a natural generalization of the linear basis functions on triangles and the bilinear 
basis functions on quads, and retain almost all their desirable properties even for non-convex elements (Martin et al., 2008). 
For all these reasons, harmonic maps of polygonal domains have been used in many 2D and 3D deformation applications 
(Ben-Chen et al., 2009; Schneider and Hormann, 2015). Unfortunately, the harmonic barycentric coordinate functions (first 
used in Joshi et al., 2007) have no closed form for general polygons and must be computed numerically by solving a discrete 
Laplace equation with appropriate Dirichlet boundary conditions on P . This requires a finite-element (FEM) discretization of 
the interior of P , typically by dense triangulation. Although sparse, the resulting linear system, whose size is proportional 
to the number of finite elements, can be very large, so slow to solve. The result is a piecewise-linear approximation to 
the coordinate functions on P , albeit with perfect satisfaction of the boundary conditions. Alternative numerical methods 
(e.g. Weber and Gotsman, 2010) use boundary elements (BEM), which results in perfect harmonic functions on the domain 
at the price of approximate satisfaction of the boundary conditions. These methods also involve the solution of a dense 
(though not too large) system of linear equations. Beyond the significant computation complexity, another disadvantage of 
the harmonic coordinates relative to the simple others mentioned above is that it is impossible to compute the coordinates 
of just a single point in the domain without computing the coordinates of all (sampled) domain points.

Since the harmonic barycentric coordinates are so important, a number of methods whose primary objective is to ap-
proximate the harmonic coordinates, were invented. These include the mean-value coordinates and others, details of which 
we will provide later. Of special interest are the so-called Moving Least-Squares (MLS) coordinates (Manson and Schaefer, 
2010), which have a closed form requiring not much more computation than, say, mean-value coordinates, but as we will 
show, generate a superior approximation to harmonic coordinates. The interested reader is also referred to the recent survey 
by Floater (2015) for a comprehensive overview of many barycentric coordinate recipes.

A simple test for the quality of approximation of a given barycentric coordinate scheme to the harmonic coordinates is 
the behavior of the coordinates in the special case where the polygon has a very large number of vertices and converges 
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in shape to a circle. In the case of a circle, the harmonic coordinates have a well-known closed form, the so-called Poisson 
kernel (Ahlfors, 1979), and if the barycentric coordinates in question converge to this form, we say that the coordinates are 
“pseudo-harmonic”. However, in order to be more precise when talking about barycentric schemes on smooth continuous 
domains such as the disk (instead of discrete polygons), we need to recall the concept of transfinite barycentric coordinates, 
which we do in the next section. After that we will be in a position to state our results more precisely.

1.2. Transfinite barycentric coordinates

The concept of barycentric coordinates of a polygon P with a finite set of vertices may be generalized to a closed simple 
planar curve S , which may be thought of as the limit of a polygon with an increasing number of vertices. In this case the 
discrete index j (over the vertices) in the sum (1) becomes a continuum, the value of f is given at a continuum of points 
of S , the discrete sum is replaced by a contour integral, and the finite set of barycentric coordinate functions is replaced by 
a real-valued kernel function K (s, t), where s is a 2D point on S , t is a 2D point in the interior of S . Eq. (1) then becomes:

f (t) =
˛

S

K (s, t) f (s)ds (2)

meaning that the value of f at an interior point t is defined to be some weighted average of the values of f given on the 
boundary S . The kernel K should typically be smooth and satisfy conditions analogous to conditions C1–C3 above:

D1. Non-negativity: K (s, t) ≥ 0, ∀s ∈ S , ∀t ∈ int(S)

D2. Constant precision: 
¸

S K (s, t)ds = 1, ∀t ∈ int(S)

D3. Linear precision: 
¸

S sK (s, t)ds = t , ∀t ∈ int(S)

Perhaps the most well-known transfinite barycentric kernel is the so-called Poisson kernel (Ahlfors, 1979) mentioned above. 
This kernel K P reproduces harmonic functions, but only when the domain is the unit disk:

K P (s, t)ds = ds

‖s − t‖2
(3)

The ds differential is the standard (and default) arc-length differential, as opposed to other differentials (such as dθ and 
dw that we will employ later). We write it explicitly when needed to avoid confusion. Transfinite barycentric kernels have 
been investigated by Belyaev (2006) and others (e.g. Schaefer et al., 2007; Dyken and Floater, 2009; Kosinka and Barton, 
2016). They were able to describe the kernels which are the transfinite counterparts of some of the well-known discrete 
(polygon) barycentric coordinate recipes. For example, Belyaev (2006) shows that one of the most basic recipes are the mean 
value coordinates, and the others are generalizations of this basic form. However, Belyaev’s formulation (Belyaev, 2006) is 
complicated somewhat by the fact that the integral (2) is taken not over the contour S , rather over a “virtual” unit circle 
centered at t:

f (t) =
˛

S

K (s, t) f (s)dθ

where θ is the angle formed by the ray through s originating at t , in effect traversing the unit circle around t . With this 
differential, it turns out that the mean-value kernel is just the (normalized) inverse distance:

KMV(s, t)dθ = dθ

‖s − t‖ (4)

A practical question is how to convert transfinite barycentric kernels to their finite barycentric coordinate functions coun-
terparts in the case that the contour C is actually a polygon. This is relatively simple. Given a transfinite barycentric kernel 
K (s, t), if the contour is an n-sided polygon P with vertices (p1, . . . , pn), then the kernel may be converted into n barycen-
tric coordinate functions B j , one for each vertex, in the following manner:

B j(t) =
1ˆ

r=0

rK
(

p j−1 + r(p j − p j−1), t
)‖p j − p j−1‖dr +

1ˆ

r=0

rK
(

p j+1 + r(p j − p j+1), t
)‖p j − p j+1‖dr (5)

reflecting the fact that the polygon is given with data values on its vertices, which are assumed to vary linearly over the 
edges (meaning that the image of P is also a polygon).
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Fig. 1. Barycentric coordinate functions of the marked vertex of a non-convex polygon. Left to right: Harmonic (H), Moving Least Squares (MLS), Maximum 
Entropy (ME). According to our numerical experiments, MLS and ME are the closest approximations to H. Other coordinate functions are provided in Fig. 7.

2. Our objective

In this paper we investigate the quality of approximation afforded by a number of popular barycentric coordinate 
schemes to the harmonic coordinates. In particular, we systematically analyze two variants of the Moving Least Squares 
(MLS) coordinates, introduced by Manson and Schaefer (2010). We provide the kernel function for their transfinite versions 
and prove that they are pseudo-harmonic. We also demonstrate experimentally that, based on a number of metrics that we 
propose, they are the best approximation to harmonic coordinates on many types of polygons, compared to other known 
coordinate schemes. For example, Fig. 1 shows the contour lines of the harmonic, Moving Least Squares and Maximum En-
tropy barycentric coordinate functions associated with a vertex of a typical non-convex polygon. The latter two are shown 
to be excellent numerical approximations to the harmonic function.

3. Pseudo-harmonic transfinite barycentric kernels

Many of the barycentric coordinate recipes were invented in an attempt to approximate the harmonic coordinates, which 
in general have no closed form and must be computed numerically. The quality of the approximation is typically better if 
more computation is invested, resulting in somewhat more complicated formulae. One basic test of the quality of the 
approximation is when the contour is the simplest possible – the unit circle C . In this case it is well known that the 
harmonic kernel is the so-called Poisson kernel (Ahlfors, 1979), given in complex number algebra as:

K P (w, z)ds = 1

2π
Re

(
w + z

w − z

)
ds = 1

2π

1 − |z|2
|w − z|2 ds (6)

where w is a point on the circle C and z an interior point within the circle. It is possible to superficially simplify this 
formula by noticing that some of it is a function of z only, thus may be omitted, resulting in the complex analog to (3):

K P (w, z)ds = ds

|w − z|2 (7)

and recovered as part of a standard normalization procedure, i.e. given boundary values f (w), the Dirichlet problem on the 
unit disk may be solved as

f (z) =
¸

C K P (w, z) f (w)ds¸
C K P (w, z)ds

Note that ds is still the arc-length boundary element ds = |dw|, where dw is the more common differential used in complex 
analysis.

If a given transfinite barycentric coordinate scheme reduces to the Poisson kernel for the special case that the contour is 
the unit circle, we say that the coordinates are pseudo-harmonic. Belyaev (2006) has shown that the popular special cases 
of three-point coordinates (described in Section 4.1 below), in the continuous limit, are not pseudo-harmonic, but those 
introduced by Gordon and Wixom (1974) (see Section 4.4 below) are.

4. Some barycentric coordinate schemes

In this section we provide some necessary details on a number of popular barycentric coordinate schemes that we will 
later compare. We will prefer to use the complex number formulation.
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Fig. 2. The terminology of complex barycentric coordinates.

4.1. The “three-point” coordinates

In the 2D scenario, it is convenient to represent 2D vectors (x, y) ∈ R
2 as complex numbers z∈ C. Using this formulation, 

Weber et al. (2009) showed that it is possible to express any barycentric coordinate function as complex-valued functions:

B̂ j(z) = γ j(z)
r j+1(z)

e j
−γ j−1(z)

r j−1(z)

e j−1
, B j(z) = B̂ j(z)∑n

j=1 B̂ j(z)
(8)

where W = (w1, . . . , wn) are the source polygon vertices, z is a point in the interior of the source polygon, r j(z) is the 
difference w j − z, e j is the edge vector w j+1 − w j and γ j is a complex-valued function associated with the j’th edge. See 
Fig. 2. Thus the mapping of the interior of the source polygon to the interior of the target polygon whose vertices are f j , 
j = 1, . . . , n is

f (z) =
n∑

j=1

B j(z) f j

Weber et al. (2011) show that the popular special cases of the so-called “three-point coordinates” – Wachspress (W), mean-
value (MV) and Laplace (L) – may be obtained for

γ j(z) = e j

Im(r j(z)r j+1(z))

( |r j+1(z)|p

r j+1(z)
− |r j(z)|p

r j(z)

)
(9)

with p = 0, 1, 2, respectively. We remind the reader that z is the complex conjugate of z.
The advantage of using the complex formulation is that many of the formulae become very simple. For example, Weber et 

al. (2009) showed that the so-called Green coordinates introduced by Lipman et al. (2008) to generate conformal mappings 
may be expressed very simply in the complex formulation, essentially using the very simple kernel KC (w, z)dw = dw

w−z
featuring in Cauchy’s integral formula (Ahlfors, 1979) (with the complex differential dw).

Given a simple planar polygon W having vertices (in complex form) w j, j = 1, . . . , n, the three-point schemes express 
B j(z) – the un-normalized barycentric coordinate function associated with w j as a function of just w j−1, w j , w j+1 (and 
of course z). This is reflected also in (8). For example, the Laplace coordinate function is just the sum of the cotangents of 
the two angles formed by (w j, w j−1, z) and (w j, w j+1, z): α j−1 and β j in Fig. 2. Similarly, the mean-value and Wachspress 
coordinates involve only angles and edge lengths in these two triangles.

The mean-value (MV) coordinates are particularly interesting as they are derived by trying to mimic the mean-value 
property of harmonic functions (Floater, 2003; Hormann and Floater, 2006). Yet, as Belyaev (2006) notes, they are not 
pseudo-harmonic, and neither are the Wachspress (W) or Laplace (L) coordinates. In contrast, when the polygon is a unit 
square, both the Wachspress and Laplace coordinates are exactly the harmonic bilinear coordinates:

B1(x, y) = (1 − x)(1 − y), B2(x, y) = x(1 − y), B3(x, y) = (1 − x)y, B4(x, y) = (1 − x)(1 − y)

This was noted by Floater et al. (2006), who also noted that these two coordinates coincide for any circular polygon (some-
times called a cyclic polygon), i.e. a polygon whose vertices all lie on a circle, including the regular polygons (those having 
equal edge lengths). Floater et al. (2006) also observed that the Laplace coordinates are positive for all interior points of 
a polygon iff the polygon is circular. Thus the Laplace coordinates will incur negative values on almost all polygons, even 
those which are convex, quite unlike most of the other coordinate schemes, who are typically non-negative on convex poly-
gons. More properties of the transfinite mean-value coordinates were provided by Dyken and Floater (2009) and the rates 
of convergence of finite mean value coordinates (and others) on a polygon to their transfinite counterparts was studied by 
Kosinka and Barton (2016).
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4.2. Harmonic (H) coordinates

When interpolating boundary values given on a contour, the typical objective is that the interpolated value at an interior 
point z is some convex combination of the boundary values f (w), where the weight of boundary point w is (obviously) 
positive, and inversely proportional to some “distance” between z and w . Ideally this reflects the distance within the contour, 
as opposed to the simple Euclidean distance which ignores the contour, and the two may be quite different if the contour 
is non-convex and convoluted. A harmonic interpolant, which is known to exist for any given boundary values (the solution 
to the so-called Dirichlet problem), provides this effect of “interior” distance, and may be obtained by solving the Laplace 
second-order differential equation on the domain. In general, except for a few special contours, there is no closed-form 
solution to this equation, and its solution must be computed numerically. This involves discretizing the interior of the 
contour (usually by a Finite-Element triangulation) and solving the discrete linear Laplace equation with the appropriate 
boundary values. If the contour is a polygon with n vertices, each of the n barycentric coordinate functions may be computed 
separately, where the boundary values for the j’th coordinate function is linear increasing between 0 and 1 on the edge 
[w j−1, w j] and linearly decreasing between 1 and 0 on the edge [w j, w j+1]. Everywhere else it is 0. This means that 
the value of the coordinate function for a single interior point cannot be computed independently of all the other interior 
points (sampled in the discretization). Thus, even though the resulting linear systems are sparse, their solution typically 
involves significant computation. Alternatively, Boundary-Element Methods (BEM) (e.g. Weber and Gotsman, 2010), whose 
complexity is proportional to the size of the discretization of the boundary, which is typically much less than the size of 
the discretization of the interior, may be used to produce an accurate harmonic function on the interior, at the expense of 
fully interpolating the given boundary values. In the transfinite case, the harmonic kernel is known in closed form only for 
very few simple boundaries, including the unit circle, where it is known as the Poisson kernel (see Section 3).

4.3. Poisson (P) coordinates

Poisson coordinates (Li and Hu, 2013) (not to be confused with the Poisson kernel) are derived in a manner similar to 
mean-value coordinates, except that instead of using the mean-value property of harmonic functions, which is applicable 
only to a point at the center of a circle, the Poisson kernel is used to approximate the value of the function at an arbitrary 
point within a circle. Together with an elaborate method for positioning the circle for a given interior point z, this results 
in a pseudo-harmonic coordinate system.

4.4. Gordon–Wixom (GW) coordinates

One of the earliest transfinite barycentric schemes is due to Gordon and Wixom (1974). This expresses the kernel value 
between interior point z and contour point w in terms of z, w and w1, where w1 is the antipode of w with respect to z, 
i.e. the point on the contour intersected by the ray originating at z, proceeding in the direction opposite that of w . For 
a convex contour – the case dealt by Gordon and Wixom – w1 is unique. Gordon and Wixom proved that this scheme 
is pseudo-harmonic. These coordinates were later generalized by Belyaev (2006) to the non-convex case (essentially taking 
into account all the points of intersection of a line through z with the contour), retaining the pseudo-harmonicity, but losing 
the positivity of the coordinates.

4.5. Positive Gordon–Wixom (PGW) coordinates

Belyaev (2006) also defined weighted versions of the Gordon–Wixom coordinates, which, under mild conditions on the 
weighting function, are still pseudo-harmonic. In a followup work, Belyaev and Fayolle (2015) showed that certain weighting 
functions could lead to better approximation of the harmonic coordinates. Similarly, Mason and Schaefer (2011) described 
the so-called positive Gordon–Wixom (PGW) coordinates based on very specific weighting functions. These are non-negative 
everywhere, even on non-convex contours, but unfortunately no longer pseudo-harmonic.

4.6. Maximum Entropy (ME) coordinates

In the quest for non-negative barycentric coordinates for all types of contours, Sukumar (2004) and Hormann and Suku-
mar (2008) formulated the coordinates for a given interior point z as the solution to an optimization problem, which 
involves maximizing an entropy function involving all the boundary values. This is borrowed from probability theory, where 
probabilities are always non-negative. Being a convex function, the entropy is amenable to robust numerical optimization 
and has a unique global minimum. Different coordinates may be generated when using different prior functions. Sukumar 
(2004) showed that for a constant prior, ME coordinates reproduce the harmonic (bilinear) coordinates on the unit square. 
Unfortunately, this is not the case for the unit circle. Hormann and Sukumar (2008) later introduced a number of other 
geometric priors, one which would seem to also reproduce the harmonic function on the square.

chen
Highlight
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4.7. Moving Least-Squares (MLS) coordinates

In a very interesting paper, Manson and Schaefer (2010) defined the Moving Least-Squares (MLS) barycentric coordinates 
for polygons, to be used primarily in a 2D mapping scenario. The starting point is an influence function R(w, z) (not to be 
confused with a kernel function) which, for every w on the source contour S , defines its influence on a point z interior 
to S . Typical influence functions are |w − z|−2α , with integer α ≥ 1. Assume we are also given a target contour T corre-
sponding to S . Then, given a point z interior to S , an affine transformation Az , which best maps the points w ∈ S to their 
corresponding points f (w) ∈ T , is computed using weighted least-squares, where each point w ∈ S is weighted by R(w, z). 
The image of z, namely f (z), is then defined to be Az(z). Computation of Az is linear in the number of points on the source 
contour S , and this results in the complete set of barycentric coordinate values for z. Note that even the simple three-point 
coordinates (L, MV, W) require linear time to compute the analogous set of values for a given z (because they must be 
normalized).

It turns out that f (z), as defined by the MLS procedure, may be expressed using a transfinite barycentric kernel. As 
we show in Theorem A.1 in Appendix A, for the natural influence function R(w, z) = |w − z|−2 (i.e. α = 1), when the 
requirement of an affine transformation is replaced by the requirement of a similarity transformation, we obtain the very 
simple (un-normalized) transfinite barycentric kernel KSMLS(w, z) (for the ds differential):

KSMLS(w, z) = P

|w − z|2 − Q (z)

w − z
(10)

where P is the length of S and

Q (z) =
˛

S

1

w − z
ds

is a function of z only that involves an integral over the entire contour. This kernel is complex-valued and is guaranteed 
to reproduce only similarity transformations of S to T (as opposed to general affine transformations). Theorem A.4 in 
Appendix A gives a closed-form expression for Q (z) in the case that the contour is a polygon, by computing the integrals 
of (5).

The affine case is a little more difficult to analyze. It is convenient to transform the plane by a similarity transformation, 
which simplifies the computations. In Theorem A.2 of Appendix A, we show that the affine-based MLS kernel for the natural 
influence function R(w, z) = |w − z|−2, after a simplifying similarity transformation of the plane, is

KAMLS(w, z) = 1

|w − z|2 + 2
A(z)Re(wz) − B(z)Re(wz)

A2(z) − B2(z)

1

|w − z|2 (11)

where

A(z) =
˛

S

w

w − z
ds and B(z) =

˛

S

w

w − z
ds

5. Pseudo-harmonicity of the MLS coordinates

Manson and Schaefer (2010) did not provide the transfinite version of the MLS coordinates, thus did not investigate 
whether the MLS coordinate scheme is pseudo-harmonic. In fact, other authors (Li and Hu, 2013) seem to believe it is not. 
This is probably because they mainly concentrate on the case α = 2. However, we show in Theorem A.3 in Appendix A that 
both the affine-based and the similarity-based MLS kernels for the more natural case α = 1 are indeed pseudo-harmonic. 
The essence of the proofs is to prove that the second terms in (10) and (11) vanish when S is a circle. Furthermore, our 
experimental results (see Section 6) show that the affine-based MLS kernel is an excellent approximation to the harmonic 
kernel for a variety of polygons.

6. Experimental comparison

We have generated the barycentric coordinates described in Section 4 for a number of interesting polygons and com-
pared the quality of their approximation to the harmonic coordinates. The polygons were the unit square, the unit circle 
(approximated as a regular polygon with 48 edges), an irregular convex pentagon, a highly non-convex polygon with 25 
edges shaped like a human figure, and a variant on the same polygon with 27 edges, where one part of the polygon (the 
hand) bends back to come very close to another unrelated part of the polygon (the hip). Figs. 3–7 show some of the result-
ing basis functions. Specifically, we show a contour plot of a select basis function. The thick red contour lines are spaced at 
0.1, and the thin ones at 0.01. The thick blue contour is the zero crossing.

We are especially interested in how good an approximation the various coordinate functions are to the holy grail – the 
harmonic coordinate function. We measure this using three different error functions:



JID:COMAID AID:1562 /FLA [m3G; v1.175; Prn:10/05/2016; 13:22] P.8 (1-21)

8 R. Chen, C. Gotsman / Computer Aided Geometric Design ••• (••••) •••–•••
Fig. 3. Barycentric coordinate function of the bottom-left vertex of a square. The numbers indicate the errors E1, E2, E3 of the coordinates relative to 
the harmonic (H) coordinate function, which is known to be bilinear. Note that the Laplace (L), Wachspress (W) and maximum-entropy (ME) coordinates 
coincide with the harmonic (H) coordinate, and the (affine) MLS coordinate is extremely close to this, despite the small negative region in the opposite 
corner.

1. The first error function is the most direct – the relative (squared) l2 distance between the coordinate function B and 
the corresponding harmonic coordinate function H :

E1(B, H) = ‖B − H‖2
2

‖H‖2
2

=
˜

int(S)
(B(x, y) − H(x, y))2dxdy˜

int(S)
H(x, y)2dxdy

2. Recalling that the harmonic function minimizes the scalar Dirichlet energy (Pinkall and Polthier, 1993) among all func-
tions having given boundary conditions, the second error function measures the relative absolute difference between 
the Dirichlet energies of the two functions:

E2(B, H) = |D(B) − D(H)|
D(H)

3. Recalling that a harmonic function has vanishing Laplacian on the interior, the third error function measures the 
(squared) l2 norm of the scalar Laplacian on the interior:
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Fig. 4. Barycentric coordinate function of a vertex of a regular 48-gon approximating a circle. The numbers indicate the errors E1, E2, E3 of the coordinates 
relative to the harmonic (H) coordinate function. Note that the (affine) MLS, Gordon–Wixom (GW) and Poisson (P) coordinates are pseudo-harmonic, and 
the mean-value (MV) and maximum-entropy (ME) coordinates give very good approximations.

E3(B, H) = ‖�B‖2
2 =

¨

int(S)

�B(x, y)2dxdy

In all our examples, the harmonic coordinate function H was computed numerically by triangulation of the polygon and 
solution of a linear system of equations over the triangulation vertices. The statistics of the triangulations used are given 
in Table 1. Thus, in practice, the values of H are available only at the triangulation vertices and H is a piecewise-linear 
function. For compatibility, B was also computed at the same vertices and an analogous piecewise-linear function formed. 
Each of the two integrals of E1 may then be computed as the sum of integrals over triangles, where the function values f1, 
f2 and f3 given at the vertices of a triangle define a linear interpolant, and the relevant l2 norm squared is the following 
integral multiplied by the area of the triangle:

1ˆ 1ˆ (
(1 − √

r) f1 + √
r(1 − s) f2 + √

rsf3
)2

dr ds = 1

6

(
f 2
1 + f 2

2 + f 2
3 + f1 f2 + f2 f3 + f3 f1

)

0 0
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Fig. 5. Barycentric coordinate function of the marked vertex of a convex pentagon. The numbers indicate the errors E1, E2, E3 of the coordinates relative 
to the harmonic (H) coordinate function. Note the excellent approximation of the harmonic coordinate by the affine MLS coordinate, with the Poisson 
coordinate a close second.

(the use of 
√

r and s induce a uniform density on the triangle). A similar procedure is followed for computation of E3, 
where �B is numerically evaluated at the interior vertices of the triangulation using the standard cotangent-based Laplacian 
operator (matrix) (Martin et al., 2008). The Dirichlet energy used in E2 is also computed as a quadratic form using the same 
Laplacian matrix.

The tables in Appendix B present the complete set of results: Each of the three error values for each barycentric coor-
dinate function of each test polygon, along with the average for each polygon over all coordinate functions. Since all the 
coordinate functions of the square and the circle are equivalent (up to rotation), we show the errors on just one such coor-
dinate function. For convenience, E1 and E2 are multiplied by 102 and E3 is multiplied by 106. The ∗ indicates a resulting 
value greater than 1,000, which is obviously too large to be of interest.

The experimental results on the first two polygons (Figs. 3–4) confirm some of the theoretical results quoted earlier. The 
Laplace (L), Wachspress (W) and maximum-entropy (ME) coordinates coincide with the (bilinear) harmonic (H) coordinates 
on the unit square. None of these are pseudo-harmonic, i.e. coincide with the harmonic coordinates on the unit circle, but 
the (affine-)MLS, Gordon–Wixom (GW) and Poisson (P) coordinates are. Note that although the MLS coordinates are not 
identical to the harmonic coordinates on the unit square, they are extremely close, despite the slight negative value in the 
opposite corner.
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Fig. 6. Barycentric coordinate function of the marked vertex of a “man-shaped” non-convex polygon. The numbers indicate the errors E1, E2, E3 of the 
coordinates relative to the harmonic (H) coordinate function. Note how bad the Laplace (L) and Wachspress (W) coordinates are and how surprisingly good 
the mean-value (MV) approximation is.

The results for the irregular convex polygon (Fig. 5) demonstrates that the MLS coordinates are again an excellent ap-
proximation to the harmonic coordinates. The Poisson (P) coordinates are a close second.

Figs. 6–7 confirm, as expected, that the Laplace (L) and Wachspress (W) coordinates behave very badly on the non-convex 
polygons, but the mean-value (MV) coordinates behave surprisingly well.

The most interesting results are in Fig. 7. The right hand of the man figure is very close to the hip, when measured 
using Euclidean distance. However, when measured using distance through the interior of the polygon, the two pieces of 
the polygon are actually quite distant. This we would expect the barycentric coordinate function centered at a vertex at the 
hip to have extremely small values in the hand region. This is evident in the harmonic coordinate function, but not in any 
of the others, where the coordinate function appears to “leak” from the hip into the hand. This effect seems to be minimal 
for the maximum-entropy (ME) coordinates.

A more complete picture is given by looking at the average errors per polygon in the tables in Appendix B. These are 
summarized in Table 1, where for each polygon and error measure averaged over all vertices of the polygon, we have 
indicated the method which yields the best approximation to the harmonic coordinates. For the square, the W, L and ME 
coordinates coincide with the harmonic bilinear coordinate functions, thus give zero error. Among all those giving non-zero 
error, MLS is the smallest for all error measures. For the circle, the MLS, P and GW coordinates are pseudo-harmonic, thus 
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Fig. 7. Barycentric coordinate function of the marked vertex of a “man-shaped” non-convex polygon where one hand is very close to the hip. The numbers 
indicate the errors E1, E2, E3 of the coordinates relative to the harmonic (H) coordinate function. Note the “leakage” of all the coordinate functions (except 
the harmonic (H)) from the hip into the hand.

Table 1
Discretization statistics and methods best approximating the harmonic (H) barycentric coordinate functions, as derived from the averages in Tables B.1–B.3
in Appendix B.

Square Circle Convex 
Pentagon

Non-convex 
Man 1

Non-convex 
Man 2

Boundary vertices 337 283 144 363 402
Interior vertices 7,584 5,943 1,079 1,441 1,393
Triangles 15,503 12,167 2,300 3,243 3,186

E1 W/L/ME MLS/P/GW MLS MLS ME
E2 W/L/ME MLS/P/GW MLS MLS MLS
E3 W/L/ME MLS/P/GW MLS MLS MLS

coincide with the Poisson kernel, giving zero error. For the non-trivial polygons, especially the non-convex ones, there is 
overwhelming evidence that the affine-based MLS coordinates are probably the best choice to use as an approximation to 
the harmonic (H) coordinates.
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Appendix A

In this Appendix we develop the similarity- and affine-based MLS kernel functions for the case α = 1, and prove some 
of their properties.

We will need the following definitions:

R(w, z) = |w − z|−2

A0(z) =
˛

S

R(w, z)ds

A1(z) =
˛

S

w R(w, z)ds

A2(z) =
˛

S

w2 R(w, z)ds

B2(z) =
˛

S

|w|2 R(w, z)ds

Theorem A.1. The complex similarity-based MLS kernel (up to normalization) is

KSMLS(w, z) = Q (z)

w − z
− P

|w − z|2
where

Q (z) =
˛

S

1

w − z
ds

and P is the length of the contour S.

Proof. For a given interior point z, we first solve a weighted least-squares problem for an optimal similarity transformation 
Sz(w) = aw + b. Representing Sz as the coefficient vector sz = [a b]t :

sz = argmin
˛

S

R(w, z)
∣∣[w 1]sz − f (w)

∣∣2
ds

The solution is given by the normal equation:

0 =
˛

S

R(w, z)
([w 1]∗[w 1]sz − [w 1]∗ f (w)

)
ds

Since sz is a constant within the integral, the solution is simply

sz = T −1(z)

˛

S

R(w, z)[w 1]∗ f (w)ds

where T (z) is the 2 × 2 matrix

T (z) =
˛

S

R(w, z)[w 1]∗[w 1]ds =
(

B2(z) A1(z)
A1(z) A0(z)

)

Once sz is known, we apply it to z to obtain f (z):

f (z) = [z 1]sz = [z 1]T −1(z)

˛
R(w, z)[w 1]∗ f (w)ds (A.1)
S
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Now, since f (z) should also be obtained through the kernel function:

f (z) =
˛

S

KSMLS(w, z) f (w)ds (A.2)

comparing (A.1) and (A.2) yields:

KSMLS(w, z) = (
z 1

)(
B2(z) A1(z)
A1(z) A0(z)

)−1 (
w
1

)
R(w, z)

Thus (dropping the variables w and z for clarity)

KSMLS(w, z) = (
z 1

)(
B2 A1
A1 A0

)−1 (
w R
R

)
= 1

A0 B2 − |A1|2
(

z 1
)(

A0 −A1
−A1 B2

)(
w R
R

)

= (A0z − A1)w R + (B2 − z A1)R

A0 B2 − |A1|2 = R

A0 B2 − |A1|2
(

w(A0z − A1) + (B2 − z A1)
)

= R

A0 B2 − |A1|2
(

w

˛

S

1

w − z
ds −

˛

S

w

w − z
ds

)

= R

A0 B2 − |A1|2
(

(w − z)

˛

S

1

w − z
ds −

˛

S

w − z

w − z
ds

)

Ignoring the normalization constant A0 B2 − |A1|2,

=
(

1

w − z

˛

S

1

w − z
ds − 1

|w − z|2
˛

S

1ds

)

= Q (z)

w − z
− P

|w − z|2 �
Theorem A.2. The real affine-based MLS kernel (up to normalization) is, after a suitable similarity transformation of the plane:

KAMLS(w, z) = 1

|w − z|2 + 2 Re(B̂2(z)wz − Â2(z)wz)

B̂2
2(z) − Â2

2(z)

1

|w − z|2
where

Â2(z) =
˛

S

w

w − z
ds, B̂2(z) =

˛

S

w

w − z
ds

after the transformation.

Proof. Similarly to the proof of Theorem A.1, for a given interior point z, we first solve a weighted least-squares problem 
for an optimal affine transformation Az(w) = aw + bw + c. Representing Az as the coefficient vector az = [a b c]t :

az = argmin
˛

S

R(w, z)
∣∣[w w 1]az − f (w)

∣∣2
ds

leads to the kernel

KAMLS(w, z) = (z z 1)T −1(z)

⎛
⎝ w

w
1

⎞
⎠ R(w, z)

where T is the 3 × 3 matrix:

T (z) =
⎛
⎝ B2(z) A2(z) A1(z)

A2(z) B2(z) A1(z)
A1(z) A1(z) A0(z)

⎞
⎠

Using the minors
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T11 = A0 B2 − |A1|2
T21 = A0 A2 − A1

2

T31 = A1 A2 − B2 A1

T33 = B2
2 − |A2|2

we obtain

M A(w, z) = (T33 + 2 Re(T31(w + z) + T11 wz − T21 wz))R(w, z)

|T |
Consider the simplifying similarity transformation f (z) = pz + q, where p and q are the complex numbers (depending 
on z):

p(z) = A0 exp

(
− i

2
arg

(
A0 A2 − A2

1

))
, q(z) = − A1

A0
.

This will transform the functions into new ones, which we will denote using a hat, e.g. Â0. It is easy to see that after this 
transformation we have Â0 = 1, Â1 = 0, and Im( Â2) = 0, thus

T̂11 = B̂2

T̂21 = Â2

T̂31 = 0

T̂33 = B̂2
2 − Â2

2

|T̂ | = T̂33

KAMLS(w, z) = R(w, z) + 2R(w, z)Re(B̂2(z)wz − Â2(z)wz)

B̂2
2(z) − Â2

2(z)

Now observe that

B̂2(z) =
˛

S

|w|2 R(w, z)ds =
˛

S

w w

(w − z)(w − z)
ds =

˛

S

(w − z + z)w

(w − z)(w − z)
ds

=
˛

S

w

w − z
ds + z

˛

S

w

|w − z|2 ds =
˛

S

w

w − z
ds + z Â1 =

˛

S

w

w − z
ds

and similarly

Â2(z) =
˛

S

w

w − z
ds �

We now show that both the similarity-based and affine-based MLS kernels with α = 1 are pseudo-harmonic. First a 
technical lemma:

Lemma A.1. On the unit circle C , for any integer k ≥ 0,

˛

C

wk

|w − z|2 ds = 2π zk

1 − |z|2 and

˛

C

wk

|w − z|2 ds = 2π zk

1 − |z|2

Proof. For the unit circle we have w = 1/w, |w| = 1 and ds = dw
iw . Thus

˛

C

wk

|w − z|2 ds = −i

˛

C

wk

w(w − z)(w − z)
dw = −i

˛

C

wk

(w − z)(1 − zw)
dw

Now f z(w) = wk

(w−z)(1−zw)
is an analytic function of w with a pole at w = z inside C , and a pole at w = 1/z, outside C . 

Thus, by the Cauchy residue theorem,
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= 2π i Res( f z,0) = 2π
zk

1 − |z|2 .

The second identity follows by conjugation of the first identity.
The observant reader will notice that this Lemma is actually also a consequence of the fact that the Poisson kernel 

reproduces harmonic functions on the unit circle. Thus it also reproduces holomorphic functions (since both the real and 
imaginary parts of a holomorphic function are harmonic), including wk . �
Theorem A.3. Both the similarity- and affine-based MLS kernel functions are pseudo-harmonic.

Proof. Applying Lemma A.1 to the case where S = C is the unit circle, we have:

c(z) = 2π

1 − |z|2
A0(z) =

˛

C

R(w, z)ds = c(z)

A1(z) =
˛

C

w R(w, z)ds = c(z)z

A2(z) =
˛

C

w2 R(w, z)ds = c(z)z2

B2(z) =
˛

C

|w|2 R(w, z)ds = A0 = c(z)

Thus, for the similarity case:

Q (z) =
˛

C

1

w − z
ds =

˛

C

(w − z)R(w, z)ds =
˛

C

w R(w, z)ds − z

˛

C

R(w, z)ds

= A1(z) − z A0(z) = 0

And for the affine case, similar calculations show that the similarity transformation of the plane used in Theorem A.2 has 
parameters p(z) = 0, q(z) = −z, thus is just a translation, not changing the influence function R . And, since z is translated 
to 0, we have

B̂2(z)wz − Â2(z)wz = 0

namely, both the similarity and affine cases result in the Poisson kernel. �
To complete the picture for the MLS kernels, we provide closed expressions for the required integrals in the case that 

the contour S is a polygon.

Theorem A.4. If S is an n-sided polygon with vertices (w1, . . . , wn), denote (for cyclic indices wn+1 ≡ w1):

u j = w j+1 − w j

|w j+1 − w j| , a j = u j
2, b j = w j+1 w j − w j w j+1

w j+1 − w j
= 2i Im(w j w j+1)

w j − w j+1

r j(z) = w j+1 − z

w j − z
, β j(z) =

√
a j

a j z + b j − z
= −i|w j+1 − w j|

2 Im(w j+1 − w j z − w j w j+1)

Then:

A0(z) =
n∑

j=1

β j(z)
(
log r j(z) − log r j(z)

)

A1(z) =
n∑

j=1

β j(z)
(
z log r j(z) − (a j z + b j) log r j(z)

)

A2(z) =
n∑

a j|w j+1 − w j| + β j(z)
(
z2 log r j(z) − (a j z + b j)

2 log r j(z)
)

j=1
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Q (z) =
n∑

j=1

u j log r j(z)

B̂2(z) = P̂ + z
n∑

j=1

u j log r j(z) = P̂ + zQ̂ (z)

Â2(z) =
n∑

i=1

a j|w j+1 − w j| + u j(a j z + b j) log r j(z)

where P̂ is the total length of the transformed polygon edges and Q̂ is the transformed version of Q .

Proof. Note that for a line segment [w j, w j+1], we may write for any w on the segment: w = a j w + b j for the complex 
constants a j, b j defined above. Thus dw = u j

2dw and ds = u jdw . The results follow by straightforward integration. �
Appendix B

Table B.1
Error measure E1 (×100) – the relative l2 difference between the barycentric coordinate function and the harmonic (H) coordinate function (∗ denotes 
> 104). Red rows correspond to the coordinate functions in Figs. 2–6. Minimal values for each coordinate function are in bold. (For interpretation of the 
references to color in this table, the reader is referred to the web version of this article.)

W MV L H MLS P ME GW PGW

Square
Average 0 0.04 0 0 0.00 0.02 0 0.08 0.08

Circle
Average 12.3 2.03 12.4 0 0 0 1.71 0 12.0

Convex Pentagon
1 19.0 0.23 7.52 0 0.19 0.17 2.14 1.29 0.35
2 26.1 0.28 10.3 0 0.24 0.17 2.65 1.53 0.42
3 1.26 0.18 0.38 0 0.04 0.16 1.50 0.88 0.42
4 0.71 0.11 0.21 0 0.03 0.11 0.95 0.56 0.26
5 0.11 0.00 0.04 0 0.00 0.00 0.03 0.02 0.01
Average 9.44 0.16 3.69 0 0.10 0.12 1.45 0.86 0.29

Non-convex Man 1
1 ∗ 0.31 ∗ 0 0.06 0.46 0.73 2.06 6.43
2 ∗ 0.86 ∗ 0 0.30 1.09 1.37 2.08 3.74
3 ∗ 1.42 ∗ 0 0.81 2.64 1.09 2.10 7.70
4 ∗ 2.12 ∗ 0 3.69 2.76 5.00 7.69 11.1
5 ∗ 3.85 ∗ 0 3.90 3.44 2.79 10.5 4.81
6 621 1.98 ∗ 0 0.67 1.89 1.18 3.08 0.96
7 983 1.52 ∗ 0 0.86 1.48 1.20 1.87 0.96
8 ∗ 3.02 ∗ 0 3.25 2.88 3.04 10.7 3.66
9 ∗ 1.05 ∗ 0 1.83 0.99 3.07 4.85 6.40
10 ∗ 0.52 ∗ 0 1.09 0.72 2.30 1.85 0.79
11 ∗ 0.81 ∗ 0 0.72 0.58 1.89 6.37 6.63
12 ∗ 1.36 ∗ 0 2.17 1.42 1.10 3.12 1.54
13 ∗ 3.89 ∗ 0 5.74 3.76 3.83 13.9 6.70
14 ∗ 3.85 ∗ 0 4.33 3.78 3.26 13.2 6.14
15 ∗ 0.95 ∗ 0 2.46 1.07 1.21 1.36 2.24
16 410 0.51 ∗ 0 0.54 0.32 1.44 3.81 4.84
17 ∗ 0.36 ∗ 0 0.46 0.40 2.00 1.38 0.27
18 ∗ 1.75 ∗ 0 2.38 1.77 2.74 2.67 5.83
19 ∗ 7.46 ∗ 0 4.06 7.36 3.75 16.3 6.27
20 ∗ 3.25 ∗ 0 1.51 3.10 2.65 3.21 2.34
21 ∗ 3.13 ∗ 0 0.71 2.95 1.85 4.26 1.50
22 ∗ 5.73 ∗ 0 4.61 5.09 3.11 11.3 4.03
23 ∗ 2.84 ∗ 0 4.46 4.02 5.99 8.89 14.3
24 ∗ 1.12 ∗ 0 0.62 1.78 0.66 1.77 7.00
25 ∗ 0.62 ∗ 0 0.30 0.78 1.17 1.42 4.24
Average ∗ 2.17 ∗ 0 2.06 2.26 2.34 5.59 4.82

Non-convex Man 2
1 194 0.31 ∗ 0 0.06 0.46 0.80 1.99 7.70
2 ∗ 0.85 ∗ 0 0.32 1.09 1.49 2.05 5.84
3 ∗ 1.41 ∗ 0 0.85 2.64 1.15 2.08 8.92
4 ∗ 2.13 ∗ 0 3.71 2.77 5.20 7.68 13.4

(continued on next page)
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Table B.1 (continued)

W MV L H MLS P ME GW PGW

5 ∗ 3.69 ∗ 0 3.88 3.30 2.70 9.50 1.85
6 240 1.91 ∗ 0 0.77 1.82 1.30 2.80 1.24
7 ∗ 1.45 ∗ 0 0.97 1.41 1.35 1.76 1.07
8 ∗ 3.26 ∗ 0 3.52 3.12 3.00 11.0 3.49
9 ∗ 1.04 ∗ 0 1.49 0.98 3.13 4.49 5.63
10 ∗ 0.42 ∗ 0 1.02 0.61 2.40 1.46 0.71
11 417 0.71 ∗ 0 0.64 0.52 1.78 5.89 6.09
12 ∗ 0.93 ∗ 0 2.06 0.99 0.96 2.37 1.26
13 ∗ 3.33 ∗ 0 5.10 3.24 3.98 12.5 6.44
14 ∗ 1.55 ∗ 0 5.19 1.49 3.26 8.28 2.41
15 ∗ 0.62 ∗ 0 2.42 0.66 1.98 1.22 3.31
16 ∗ 0.37 ∗ 0 0.44 0.21 1.48 3.16 4.55
17 ∗ 0.30 ∗ 0 0.24 0.29 1.20 1.20 0.18
18 ∗ 3.09 ∗ 0 5.41 3.18 3.87 4.83 8.30
19 ∗ 6.58 ∗ 0 7.13 6.50 3.84 15.5 12.6
20 ∗ 8.10 ∗ 0 2.28 8.35 6.84 11.5 9.59
21 ∗ 17.4 ∗ 0 7.89 17.5 3.97 18.3 15.7
22 ∗ 9.89 ∗ 0 5.87 9.62 2.45 11.1 6.70
23 729 5.99 ∗ 0 0.74 6.02 2.79 9.97 3.45
24 ∗ 5.89 ∗ 0 4.98 5.24 2.78 11.3 6.62
25 ∗ 2.78 ∗ 0 4.53 3.96 6.14 8.92 16.4
26 329 1.16 ∗ 0 0.65 1.76 0.68 1.76 8.29
27 222 0.62 ∗ 0 0.30 0.78 1.16 1.42 4.20
Average ∗ 3.17 ∗ 0 2.68 3.28 2.66 6.44 6.15

Table B.2
Error measure E2 (×100) – the relative absolute difference between the Dirichlet energy of the barycentric coordinate function and the Dirichlet energy of 
the harmonic (H) coordinate function (∗ denotes > 104). Red rows correspond to the coordinate functions in Figs. 2–6. Minimal values for each coordinate 
function are in bold. (For interpretation of the references to color in this table, the reader is referred to the web version of this article.)

W MV L H MLS P ME GW PGW

Square
Average 0 0.65 0 0 0.02 0.27 0 1.30 1.30

Circle
Average 98.2 8.77 98.4 0 0 0 10.1 0 39.8

Convex Pentagon
1 67.1 1.41 33.9 0 0.63 0.66 20.0 5.90 3.56
2 78.4 1.66 39.9 0 0.71 0.66 23.0 6.52 4.18
3 4.82 1.37 1.80 0 0.29 0.67 13.5 3.80 2.97
4 3.64 1.06 1.30 0 0.23 0.54 10.5 3.01 2.31
5 3.15 0.11 1.52 0 0.04 0.07 1.44 0.46 0.26
Average 31.4 1.12 15.7 0 0.38 0.52 13.7 3.94 2.66

Non-convex Man 1
1 ∗ 2.97 ∗ 0 0.63 2.68 5.10 30.4 20.4
2 ∗ 3.82 ∗ 0 1.10 3.51 9.44 12.9 23.6
3 ∗ 6.23 ∗ 0 4.79 8.50 8.21 9.14 33.9
4 ∗ 4.74 ∗ 0 5.84 5.28 20.6 34.0 21.3
5 ∗ 4.83 ∗ 0 8.66 4.49 22.3 34.1 18.7
6 ∗ 3.01 ∗ 0 1.28 2.80 14.6 7.91 3.88
7 ∗ 2.86 ∗ 0 1.67 2.79 14.4 5.80 4.25
8 ∗ 7.21 ∗ 0 7.83 6.92 26.2 47.8 16.4
9 ∗ 3.74 ∗ 0 4.99 3.58 16.3 26.2 22.6
10 ∗ 2.20 ∗ 0 2.94 2.51 19.3 11.4 3.91
11 ∗ 2.22 ∗ 0 2.06 1.44 17.1 23.9 20.6
12 ∗ 6.25 ∗ 0 7.26 6.25 7.38 19.1 7.91
13 ∗ 7.04 ∗ 0 9.56 6.71 15.0 44.4 21.5
14 ∗ 6.76 ∗ 0 8.45 6.52 16.6 39.9 18.0
15 ∗ 5.39 ∗ 0 7.74 5.51 6.53 13.6 10.3
16 ∗ 1.86 ∗ 0 1.89 1.10 14.7 13.9 13.9
17 ∗ 1.61 ∗ 0 1.92 1.47 17.0 9.29 2.30
18 ∗ 6.60 ∗ 0 7.90 6.59 13.4 16.0 18.8
19 ∗ 14.9 ∗ 0 9.02 14.7 28.8 58.7 40.9
20 ∗ 3.99 ∗ 0 2.81 3.90 19.4 5.66 8.36
21 ∗ 3.81 ∗ 0 1.08 3.58 18.2 8.51 5.86
22 ∗ 7.10 ∗ 0 10.6 6.59 23.0 37.2 18.4
23 ∗ 5.74 ∗ 0 6.34 6.61 21.0 35.9 28.0

(continued on next page)
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Table B.2 (continued)

W MV L H MLS P ME GW PGW

24 ∗ 6.41 ∗ 0 5.66 7.92 6.03 10.7 36.8
25 ∗ 3.49 ∗ 0 1.34 3.20 7.60 11.3 25.3
Average ∗ 4.99 ∗ 0 4.93 5.01 15.5 22.7 17.8

Non-convex Man 2
1 ∗ 2.97 ∗ 0 0.70 2.68 5.33 29.8 23.6
2 ∗ 3.81 ∗ 0 1.17 3.50 9.99 12.7 31.6
3 ∗ 6.22 ∗ 0 5.03 8.50 8.55 9.11 36.1
4 ∗ 4.76 ∗ 0 5.77 5.33 21.2 33.4 25.7
5 ∗ 4.71 ∗ 0 8.78 4.38 21.5 35.1 8.86
6 ∗ 2.95 ∗ 0 1.43 2.74 14.9 7.52 5.10
7 ∗ 2.81 ∗ 0 1.83 2.74 14.4 5.71 4.58
8 ∗ 7.61 ∗ 0 8.57 7.32 24.5 48.9 22.6
9 ∗ 3.49 ∗ 0 4.29 3.34 17.5 23.7 19.7
10 ∗ 1.95 ∗ 0 3.08 2.26 19.8 10.2 3.95
11 ∗ 2.09 ∗ 0 2.05 1.42 16.1 25.2 19.3
12 ∗ 5.31 ∗ 0 7.54 5.30 7.05 19.7 7.01
13 ∗ 7.07 ∗ 0 9.45 6.67 21.0 46.6 24.4
14 ∗ 3.83 ∗ 0 12.4 3.67 18.0 34.2 9.99
15 ∗ 3.04 ∗ 0 6.73 3.05 10.4 8.11 11.1
16 ∗ 1.70 ∗ 0 2.06 0.99 16.1 16.5 16.3
17 ∗ 1.52 ∗ 0 1.65 1.35 14.7 10.4 2.14
18 ∗ 25.8 ∗ 0 28.3 27.0 15.3 54.3 32.0
19 ∗ 14.2 ∗ 0 15.9 14.0 26.9 57.7 49.2
20 ∗ 13.8 ∗ 0 3.38 14.8 30.1 30.7 34.0
21 ∗ 11.5 ∗ 0 12.0 11.7 13.7 15.3 45.8
22 ∗ 9.26 ∗ 0 8.98 9.43 12.7 13.9 13.1
23 ∗ 16.6 ∗ 0 1.27 17.4 26.0 39.7 23.9
24 ∗ 7.12 ∗ 0 11.6 6.69 21.2 34.0 25.7
25 ∗ 5.89 ∗ 0 6.53 6.76 22.2 38.2 31.8
26 ∗ 6.49 ∗ 0 6.20 8.02 6.06 10.8 44.2
27 ∗ 3.49 ∗ 0 1.45 3.19 7.40 12.0 26.8
Average ∗ 6.67 ∗ 0 6.60 6.83 16.4 25.3 22.2

Table B.3
Error measure E3 (×106) – the l2 norm of the Laplacian of the barycentric coordinate function (∗ denotes > 1000). Red rows correspond to the coordinate 
functions in Figs. 2–6. Minimal values for each coordinate function are in bold. (For interpretation of the references to color in this table, the reader is 
referred to the web version of this article.)

W MV L H MLS P ME GW PGW

Square
Average 0 0.08 0 0 0.02 0.03 0 0.13 0.14

Circle
Average 255 16.7 256 0 0 0 22.1 0 60.6

Convex Pentagon
1 120 4.38 97.8 0 1.48 1.94 58.2 10.4 13.2
2 103 3.90 84.5 0 1.26 1.63 50.1 8.90 11.7
3 4.52 2.38 2.18 0 0.51 0.78 19.4 4.23 5.43
4 3.59 1.91 1.59 0 0.42 0.64 15.7 3.44 4.36
5 1.46 0.07 1.12 0 0.02 0.03 0.90 0.18 0.20
Average 46.6 2.53 37.4 0 0.74 1.01 28.9 5.43 6.98

Non-convex Man 1
1 ∗ 3.73 ∗ 0 0.94 2.58 6.74 58.3 19.2
2 ∗ 3.43 ∗ 0 1.13 2.66 10.1 23.7 24.4
3 360 5.20 ∗ 0 4.62 5.81 9.01 10.1 29.0
4 ∗ 16.2 ∗ 0 13.4 16.3 139 193 104
5 ∗ 16.9 ∗ 0 29.7 16.3 193 224 168
6 114 4.73 ∗ 0 3.16 4.27 60.5 19.8 12.6
7 170 4.59 ∗ 0 3.11 4.32 51.8 14.8 12.0
8 ∗ 25.4 ∗ 0 23.9 24.6 199 304 183
9 ∗ 9.40 ∗ 0 8.13 9.14 56.6 86.6 59.2
10 484 2.69 ∗ 0 2.49 2.44 29.7 15.8 6.16
11 217 2.42 ∗ 0 2.48 1.59 31.1 34.2 20.3
12 ∗ 9.77 ∗ 0 8.75 9.48 15.9 38.5 18.1
13 ∗ 15.9 ∗ 0 15.0 15.1 51.2 121 104
14 ∗ 17.0 ∗ 0 20.3 16.2 85.9 201 91.9
15 ∗ 9.81 ∗ 0 9.34 9.37 13.1 38.4 16.8

(continued on next page)
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Table B.3 (continued)

W MV L H MLS P ME GW PGW

16 66.1 2.44 ∗ 0 2.29 1.51 24.3 21.4 13.1
17 412 1.96 ∗ 0 2.17 1.46 24.5 16.1 4.83
18 ∗ 17.5 ∗ 0 17.0 17.3 56.2 58.8 49.7
19 ∗ 45.3 ∗ 0 26.5 44.8 223 301 553
20 ∗ 9.21 ∗ 0 8.19 8.94 106 19.4 30.9
21 ∗ 6.88 ∗ 0 2.99 6.37 95.0 24.9 22.6
22 ∗ 24.5 ∗ 0 40.4 23.4 223 249 188
23 ∗ 15.7 ∗ 0 11.4 16.1 126 156 120
24 805 3.96 ∗ 0 4.29 4.10 5.70 8.37 23.3
25 ∗ 2.89 ∗ 0 1.16 2.09 7.30 17.4 21.4
Average ∗ 11.1 ∗ 0 10.5 10.7 73.7 90.2 75.8

Non-convex Man 2
1 85.1 3.64 ∗ 0 1.03 2.65 6.23 52.8 19.8
2 808 3.35 ∗ 0 1.21 2.67 9.76 19.0 27.4
3 ∗ 4.98 ∗ 0 4.80 5.62 8.81 9.64 25.9
4 ∗ 14.6 ∗ 0 11.4 14.9 125 135 104
5 ∗ 17.8 ∗ 0 33.7 17.3 203 257 107
6 75.2 5.00 375 0 3.39 4.52 66.9 20.9 17.8
7 ∗ 4.94 ∗ 0 3.48 4.67 55.1 14.8 11.9
8 ∗ 25.6 ∗ 0 27.4 24.7 220 314 367
9 ∗ 10.4 ∗ 0 9.39 10.0 78.9 85.4 63.5
10 483 2.29 ∗ 0 2.68 2.22 28.5 16.6 6.10
11 72.0 2.52 432 0 2.63 1.79 30.5 36.6 17.7
12 511 8.87 ∗ 0 9.36 8.56 17.8 46.6 16.4
13 ∗ 19.7 ∗ 0 20.6 18.1 102 179 131
14 ∗ 16.1 ∗ 0 43.3 15.0 143 152 75.2
15 ∗ 8.42 ∗ 0 10.4 8.13 32.7 27.7 22.6
16 186 2.33 ∗ 0 2.79 1.51 32.0 22.4 15.5
17 609 2.34 ∗ 0 2.72 1.89 36.4 19.6 5.31
18 ∗ 83.8 ∗ 0 116 87.2 85.2 214 153
19 ∗ 51.0 ∗ 0 53.2 50.3 224 329 470
20 ∗ 155 904 0 31.0 170 638 360 448
21 ∗ 40.0 ∗ 0 40.3 40.8 121 63.5 205
22 ∗ 38.5 ∗ 0 33.4 39.7 201 65.9 107
23 240 105 896 0 6.16 112 346 266 208
24 ∗ 28.7 ∗ 0 43.4 28.0 212 218 215
25 ∗ 15.1 ∗ 0 11.2 15.7 113 130 133
26 92.6 4.37 ∗ 0 5.04 4.60 5.18 8.93 29.7
27 77.4 2.80 621 0 1.44 2.13 6.63 15.8 24.0
Average ∗ 25.1 ∗ 0 19.7 25.7 117 114 112
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