
Content-Aware Image Resizing by Quadratic Programming

Renjie Chen
Math Dept, Zhejiang University

Hangzhou, China
renjie.c@gmail.com

Daniel Freedman
Hewlett-Packard Labs

Haifa, Israel
daniel.freedman@hp.com

Zachi Karni
Hewlett-Packard Labs

Haifa, Israel
zachi.karni@hp.com

Craig Gotsman
Computer Science Dept, Technion

Haifa, Israel
gotsman@cs.technion.ac.il

Ligang Liu
Math Dept, Zhejiang University

Hangzhou, China
ligangliu@zju.edu.cn

Abstract

We present a new method for content-aware image resiz-
ing based on a framework of global optimization. We show
that the basic resizing problem can be formulated as a con-
vex quadratic program. Furthermore, we demonstrate how
the basic framework may be extended to prevent foldovers of
the underlying mesh; encourage the magnification of salient
regions; and preserve straight line structures. We show re-
sults demonstrating the effectiveness of the proposed method
by comparing with four leading competitor methods.

1. Introduction
In many applications, it is desirable to change the dimen-

sions of an image or video, sometimes altering the aspect
ratio of the content in the process. This is already com-
mon in photographic printing on different paper sizes, and in
the conversion of video content from one format to another,
such as standard 4:3 to HD 16:9. It will become even more
common as improvements in printing technologies encourage
customized printing, which in turn will require the embed-
ding of given image content into different template sizes, on
demand.

The simplest solution to the problem of changing the di-
mensions of an image is uniform resizing, which stretches all
parts of the image equally along each dimension. More so-
phisticated algorithms for converting 4:3 format to 16:9 for-
mat stretch the image non-uniformly: the stretch is minimal
in the center of the image, where it is more noticeable by the
viewer, and gradually increases towards the periphery.

However, it may be desirable to resize different parts of
the image differently, depending on the image content. For
example, where there is interesting detail, we may not wish
to deform the image too much; namely, we will desire a close
to isotropic scaling. However, where there is not much in the
way of interesting detail, we will not mind stretching. Indeed,
the stretching in these regions may be even greater than that
implied by the original user constraint. This idea is typically
referred to as content-aware image resizing, and was first in-

troduced in the Seam Carving work of Avidan and Shamir
[1].

Karni et al. [6] presented a technique for content-aware
image resizing which performed well compared to existing
methods, including Seam Carving [1, 8, 10, 9] and Optimized
Scale and Stretch [13]. This technique proposed an energy
function, which was then minimized by an iterative technique
which was guaranteed to reach a local minimum. While the
technique possessed many advantages, it also had a key dis-
advantage: it did not compute the global minimum of its en-
ergy function. This issue manifested itself in two ways. First,
there is the standard problem with local optimization, namely
that the local optimum may be far from the global optimum;
in practice, there are cases when the local minimum reached
by the algorithm in [6] does not lead to ideal results. Second,
there are extra terms which one may wish to add to the en-
ergy function to encourage certain desirable behavior in the
algorithm; these include terms to prevent the formation of
foldovers, and to magnify important regions (both of which
will be described in greater depth shortly). Within a local op-
timization framework, the addition of such terms often serves
to confuse the algorithm, producing local optima which are
even further from the global optimum.

In this paper, we present a new method for content-aware
image resizing, with four main contributions:

1. Global Optimization: We describe an energy func-
tion for resizing which can be globally optimized, as
it is based on a convex programming – in particular,
quadratic programming – formulation.

2. Foldover Prevention: Foldovers occur when the under-
lying mesh representing image blocks is not properly
embedded in the plane. Several methods, such as [13, 6],
try to discourage foldovers, but to our knowledge, our
method is the first to guarantee no foldovers.

3. Magnification of Important Regions: Content-aware
image resizing typically requires that the aspect ratio
of important regions is mostly preserved; however, this
does not guarantee that the important regions occupy a
significant portion of the final image. Indeed, they may

1

be quite small. Since, in many cases, the essence of
content-aware resizing is emphasizing the most impor-
tant content in the image, we incorporate extra energy
terms which encourage the magnification of important
regions.

4. Straight Line Preservation: (a) Our method encour-
ages the grid lines (horizontal and vertical) to remain
fairly straight. (b) We provide a semi-automatic tool for
the preservation of arbitrary straight line structures in the
image, such as an umbrella handle.

1.1. Related Work
The problem of content-aware image resizing was first ad-

dressed in the Seam Carving work of Avidan and Shamir
[1]. The idea in this work in to remove “seams,” i.e. curved
columns or rows of pixels, from the image such that the least
important seams are removed first. This paradigm was later
extended in a number of ways [8, 10, 9, 2], including for
video. Other techniques which focus on video content are
those of Wolf et al. [14], Wang et al. [12], and Krähenbühl et
al. [7].

Closer in spirit to the technique presented here is the Op-
timized Scale and Stretch method of Wang et al. [13], as
well as the Local-Global algorithm of Karni et al. [6]. Both
of these works pose the problem of resizing as a contin-
uous image deformation problem, rather than the discrete
problem that characterizes Seam Carving. However, both
of these methods minimize the relevant energy by iterative
methods, arriving at a local minimum in both cases. The cur-
rent method, by contrast, emphasizes a global optimization
framework.

We will endeavor to relate the more relevant prior art to
the proposed method in the body of the paper, particularly in
the sections dealing with experimental results.

2. The Quadratic Programming Formulation
In this section, we present the main algorithmic contribu-

tion of the paper: casting the content-aware image resizing
problem as the solution to a quadratic program. The main
advantage of this approach is that the global optimum of the
corresponding energy function can be found. We begin by
fixing notation. We then move on to the definition of the re-
sizing energy function, as well as the formulation the relevant
content-aware constraints. Finally, we show that the resulting
constrained optimization problem is a convex quadratic pro-
gram.

2.1. Problem Setup
Given an image, the bottom right corner is moved from its

original position to a desired location, while the top left cor-
ner is fixed. This essentially rescales the x- and y-axes, which
changes the image aspect ratio. We assume that the origi-
nal image is partitioned into rectangular blocks by horizontal

and vertical grid lines, forming a rectangular mesh. Our goal
is then to compute a new quadrangular mesh for the resized
image. The new quadrangles should be chosen such that as-
pect ratios of the most important rectangles are essentially
preserved, that is they are stretched by the almost the same
amount in both the x- and y-directions; whereas unimportant
rectangles can be stretched and deformed to a greater extent.
Importance will be measured by image saliency, which we
discuss at greater length in the next section.

We denote the original coordinates of the mesh by xki,j .
The indices (i, j) indicate the position in the grid – i is a
discretized x-coordinate which runs from 1 to m and j is a
discretized y-coordinate which runs from 1 to n; the index
k = 1, 2 denotes the x- and y-coordinates, respectively. Sim-
ilarly, we denote the coordinates of the resized quadrangular
mesh by fki,j . The quads themselves are labeled by the index
of their upper left corner, that is by the indices (i, j). Finally,
the stretch factors of the image in the x- and y-directions are
denoted s1 and s2, respectively.

The goal is thus to compute the new quadrangular mesh,
fki,j , by formulating and solving a suitable optimization prob-
lem.

2.2. The Energy Function
Recall that we would like to place constraints, for each

rectangle, on the amount of relative stretching in each of the
x- and y-directions. We begin, therefore, by quantifying the
amounts of stretch of the (i, j)-th rectangle in the x- and y-
directions, through the introduction of the new variables aki,j ,
which we refer to as the stretch variables. Specifically, we
would like the transformation of each rectangle to be as close
as possible to an axis-aligned affine transformation, which
would leave the new quad as close to a rectangle as possible.
This is captured by the following energy or cost term:

Eki,j =
[
(fki+1,j − fki,j)− aki,j(xki+1,j − xki,j)

]2
+
[
(fki+1,j+1 − fki+1,j)− aki,j(xki+1,j+1 − xki+1,j)

]2
+
[
(fki,j+1 − fki+1,j+1)− aki,j(xki,j+1 − xki+1,j+1)

]2
+
[
(fki,j − fki,j+1)− aki,j(xki,j − xki,j+1)

]2
≡ Ek,1i,j + Ek,2i,j + Ek,3i,j + Ek,4i,j (1)

The per-quad energy Eki,j ensures that for each of the 4
edges of the quad (i, j), the edge in the new mesh is close
to a stretch of the corresponding edge in the old mesh by a
factor of aki,j . (In fact, Eki,j looks at the kth coordinate, so
there are two such energy terms, one for x and one for y.)

The total energy is then the sum of all the per-quadrangle
energies:

E(f, a) =
m−1∑
i=1

n−1∑
j=1

2∑
k=1

4∑
l=1

Ek,li,j (2)

where f is shorthand for the entire collection of variables
{fki,j}, and likewise for a.

2.3. The Constraints
We now introduce three types of constraints.

Boundary Constraints These constraints ensure that the
coordinates of points on the rectangular boundary of the orig-
inal image remain on the rectangular boundary of the new
image. There are 4 groups of such constraints, corresponding
to each side of the rectangular boundary; for example, for the
left side we have that f1

1,j = 0 for all j. The other 3 sets of
boundary constraints are similar.1

Saliency Constraints The second set of constraints are
more interesting, and encode the key idea in content-aware
image resizing: that more important quads should better pre-
serve their aspect ratio, and less important quads can be more
severely stretched or deformed. Suppose that for each quad
(i, j), we have a scalar measure of its importance or saliency,
given by λi,j . Practically, the saliency measure can be as sim-
ple as a measure of the magnitude of the image gradient, or
it can be a more complex measure, such as that found in the
recent work on saliency, e.g. [4]. It may even be provided in
semi-automatic fashion by the user. For the moment, we will
take the saliency as given.

Now, assume, without loss of generality, that the user
chooses to stretch the x-axis more than the y-axis; the re-
verse situation can be treated analogously, by switching the
roles of the variables. The stretch per quad, which may be
computed as a1

i,j/a
2
i,j , will ideally be close to 1 if a quad is

very important. We thus impose an upper bound ψi,j on the
amount of stretch we allow per quad, which varies inversely
with the importance/saliency λi,j . If the quad is very impor-
tant, namely λi,j is large, then ψi,j will be just a little above
1; whereas if the quad is unimportant so that λi,j is small,
then ψi,j will be large. Thus, the constraints are

1 ≤ a1
i,j/a

2
i,j ≤ ψi,j

In practice, we take ψi,j to be the following piecewise linear
function of λi,j :

ψi,j =

ψmax if λi,j ≤ λ1(
λ2−λi,j

λ2−λ1

)
ψmax + λi,j−λ1

λ2−λ1
if λ1 ≤ λi,j ≤ λ2

1 if λi,j ≥ λ2

which involves the choice of three parameters, namely ψmax,
λ1, and λ2.

Non-negativity Constraints The third set of constraints
are simple non-negativity constraints on the stretch variables:
aki,j ≥ 0.

1Recall that the index (i, j) is essentially a discretized (x, y), not a ma-
trix index.

2.4. The QP Structure of the Problem Elucidated
First, begin by rewriting the energy function from Equa-

tions (1) and (2). For convenience, let us stack the variables
we need to optimize over, that is the {fki,j} and the {aki,j} in a
big2 vector, denoted by z. Then each termEk,li,j can be written
as

Ek,li,j = (ck,li,jz)
2

where ck,li,j is a sparse (only three non-zero entries) row vector
having the same length as the column vector z. Let us then
stack all of the row vectors ck,li,j on top of each other, to get a
matrix C. Then the energy can be simply written as

E = ‖Cz‖2

Note that z is a column vector of length 2mn+2(m−1)(n−
1), andC is matrix of dimensions 8(m−1)(n−1) × 2mn+
2(m− 1)(n− 1).

Now, let us turn to the constraints. The boundary con-
straints are of the form f1

1,j = 0 for all j for the left side of
the image, with similar expressions for the other three sides.
These are linear equality constraints. The content-based con-
straints are of the form 1 ≤ a1

i,j/a
2
i,j ≤ ψi,j , which can be

rewritten as two linear inequality constraints:

a1
i,j ≥ a2

i,j and a1
i,j ≤ ψi,ja2

i,j

Of course, the non-negativity constraints on the stretch vari-
ables, aki,j ≥ 0, are also linear. We can thus write all
of the constraints together3 as the matrix-vector expression
H̃z ≥ h. The problem is then compactly rewritten as

min
z
‖Cz‖2 subject to H̃z ≥ h

This is a standard quadratic program (QP).

3. Extensions
3.1. Prevention of Foldovers

Up until now, we have not guaranteed that the quadrangu-
lar mesh we compute is embeddable in the plane. In fact, this
is a central difficulty with methods that embed mesh graphs,
either triangular or quadrangular: it is often a challenge to
guarantee that the mesh will be properly embedded in the
plane, without folding over on itself. Examples of the prob-
lems caused by foldovers are given in [6].

Within our framework, however, it turns out to be rela-
tively straightforward to explicitly prevent foldovers. In par-
ticular, what is needed is extra constraints, of the form

f1
i+1,j − f1

i,j ≥ 0, i = 1, . . . ,m− 1; j = 1, . . . n

f2
i,j+1 − f2

i,j ≥ 0, i = 1, . . . ,m; j = 1, . . . n− 1

2Recall that for {fk
i,j}, the indices range as follows: i = 1, . . . , m; j =

1, . . . , n; k = 1, 2. For {ak
i,j}, the indices range as follows: i =

1, . . . , m− 1; j = 1, . . . , n− 1; k = 1, 2.
3Note that the equality constraints are written as inequality constraints

using the usual trick: Az = b becomes Az ≥ b and −Az ≥ −b.

(a) (b) (c) (d)
Figure 1. Scaling by a factor of two, with different wsize values. (a) Original image. (b) wsize = 0. (c) wsize = 10. (d) wsize = 100.

The first constraint ensures that we do not have vertical
foldovers, and the second constraint prevents horizontal
foldovers.

In the above set of constraints, it is theoretically possible
for an entire column or row to collapse: it will not fold over
onto itself, but its width will become 0. If we wish to avoid
this situation, we can be more conservative, and require that
quads have a minimum positive dimension:

f1
i+1,j − f1

i,j ≥ δ1, i = 1, . . . ,m− 1; j = 1, . . . n

f2
i,j+1 − f2

i,j ≥ δ2, i = 1, . . . ,m; j = 1, . . . n− 1

Adding these constraints to the set of constraints already
given, i.e. H̃z ≥ h, gives a larger set Hz ≥ h. Now, our
quadratic program becomes

min
z
‖Cz‖2 subject to Hz ≥ h

and foldovers are explicitly disallowed.

3.2. Encouraging Salient Regions to Be Large
The energy function described in Equations (1) and (2)

is designed to preserve the aspect ratio of highly important,
or salient, regions. However, the actual size of the result-
ing quad does not affect the energy. This is clearly undesir-
able: we would prefer to encourage the more salient regions
of the image to be larger, since emphasizing the most impor-
tant content in the image is perhaps the essence of content-
aware resizing. We therefore add a term to the energy which
precisely achieves this effect.

Our new term is of the form

Esize = −
∑
i,j

λi,j(a1
i,j + a2

i,j)

which encourages quads (i, j) with high saliency to have
large stretch variables aki,j , and hence to be large themselves.
In order to bound the effect of this term, we add constraints
of the form

aki,j ≤ max{s1, s2}

where sk is the stretch of the image in the kth direction.
We then replace our original energy E by

E′ = E + wsizeEsize

where wsize is a scalar which emphasizes how important the
size term is compared the original energy term. Note that
the resulting energy is still convex, and the new constraints
are linear, thus resulting in a convex program as before. In
Figure 1, we show the effect of the new term with different
values for wsize; the child’s face, which is the most salient
region of the image, is magnified as desired.

There is an additional advantage to this new term. As we
have already noted, the original energy termE has a degener-
acy, namely that the energy is only concerned with the ratio
of the stretch variables, a1

i,j/a
2
i,j , and not with the values of

the individual stretch variables a1
i,j and a2

i,j . This degener-
acy can lead to numerical instabilities when searching for the
minimum. (This is akin to the problem of searching for the
minimum of a function of two variables which is shaped like
a trough.) The addition of the new term, Esize, removes the
degeneracy, and leads to better numerical behavior; indeed,
the time required to find the global optimum is observed to
actually decrease.

3.3. Preservation of Straight Lines
Structure preservation during image retargeting is gaining

more and more attention lately [15, 11]. With our general
QP framework, we can easily incorporate extra terms to pre-
serve the structures, by casting the structures as some linear
combination of the underlying grids. The following sections
will show how we preserve the most common and simplest
structures i.e. straight lines.

3.3.1 Encouragement of Straight Grid Lines

In image resizing applications, it is often important to en-
courage the grid lines of the underlying rectangular mesh to
remain straight. Grid lines which are noticeably curved can

lead to significant artifacts, which are easily seen; see, for in-
stance, the examples given in [13]. In our case, straight grid
lines come essentially for free. The per-quad energy of Equa-
tion (1) is designed to encourage the resulting quad to be a
rectangle. In particular, it contains terms of the form[

(f2
i+1,j − f2

i,j)− a2
i,j(x

2
i+1,j − x2

i,j)
]2

Note that x2
i+1,j − x2

i,j = 0, which results in a term of the
form

(f2
i+1,j − f2

i,j)
2

which encourages a horizontal edge in the original mesh to
remain horizontal in the final mesh. Similarly, terms of the
form [

(f1
i+1,j+1 − f1

i+1,j)− a1
i,j(x

1
i+1,j+1 − x1

i+1,j)
]2

become, on noticing that x1
i+1,j+1 − x1

i+1,j = 0,

(f1
i+1,j+1 − f1

i+1,j)
2

This term encourages the preservation of vertical edges.
For an example of this phenomenon in a real image, see

Figure 3(b); the lines in this grid have been kept quite straight.
The preservation of straight grid lines does not occur natu-
rally with many other methods, as is noted in [13]. For ex-
ample, Wang et al. [13] add an extra term to their energy to
achieve this effect.

3.3.2 Preservation of Arbitrary Straight Lines

We have noted that the optimization problem we solve en-
courages the preservation of straight axis-aligned grid lines.
However, there are often straight lines present in images that
do not fall on grid lines; for example, the umbrella in the left
image of Figure 2. Nothing in our algorithm guarantees that
such straight lines will remain straight; in fact, it is often ob-
served that the algorithm (and indeed all resizing algorithms)
will bend such lines, see the right image of Figure 2. In this
section, we outline a semi-automatic technique for preserving
arbitrary straight lines.

Figure 2. Resizing does not respect arbitrary straight lines. Left:
original image. Right: stretching the x-axis by a factor of 1.5 results
in a broken umbrella handle.

In principle, we can detect the dominant feature lines in
the image automatically [3]. Alternatively, the user can iden-
tify a line segment that s/he wishes to preserve by speci-
fying its two end points. This line segment intersects the
edges of the original quadrangular mesh in a number of

places. A particular such edge will have endpoints xi,j and
xi′,j′ , so that the point of intersection P of the edge with the
line segment may be denoted γxi,j + (1 − γ)xi′,j′ , where
γ ∈ [0, 1]. In fact, we will denote the `th such point
P` = γ`xi`,j` + (1 − γ`)xi′`,j′` , and its transformation as
P̃` = γ`fi`,j` + (1− γ`)fi′`,j′` .

Our goal is to ensure that the set of intersection points re-
main colinear after the resizing transformation; that is, that
the set {P̃`} lies on a line. Now, suppose that the normal to
the line in the transformed image is known to us, and may
be written α = [α1 α2]T . In reality we will not have this
information, but let us proceed as if we had, and return to the
issue of estimating it shortly. Then we must have that

αT (P̃`+1 − P̃`) = 0

It can be verified by simple substitution that this leads to a
linear constraint on the fi,j’s in which there are exactly 8
terms. There is one such constraint for each pair of consec-
utive intersection points of the original line segment with the
original quadrangular mesh edges. We may then add these
constraints, which are linear, to the quadratic program with-
out difficulty.

Let’s now revisit the issue of estimating the normal to the
line segment in the transformed image. There are several pos-
sibilities here, and we sketch one simple method. We first run
the resizing algorithm without the above straight line con-
straints. We then collect all transformed intersection points
{P̃`} – which in general, will not lie on a line – and extract
the principal direction of the line using PCA. We have found
that this heuristic yields very good results. Another possibil-
ity is to perform an L1 type minimization for fitting the best
normal.

The proposed QP framework is flexible, and allows for
arbitrary linear constraints, among which the straight line
preservation constraint is but one example.

4. Results
We present experimental results comparing the proposed

Quadratic Programming (QP) method with several competing
techniques: Optimized Scale and Stretch (OSS) [13], Local-
Global (LG) [6], Seam Carving (SC) [1, 10], and the multiop-
erator extension of Seam Carving (MOP) [9]. These results
were generated using code acquired from the respective au-
thors.

We briefly discuss some implementation details for our QP
method. The initial quadrangular mesh is a grid of identical
squares of between 10-32 pixels in both dimensions. We set
the maximum aspect ratio ψmax allowed for each quad to
be 3 times the average scaling ratio of the whole image. To
make the comparison fair, we use the same method as [13]
to compute the saliency of the images, and use this saliency
as input for all the methods. After we normalize the saliency
to lie in the range [0, 1], we set λ1 = 0.25 and λ1 = 0.75.
That is, the quarter of the quads with lowest saliency have

ψi,j = ψmax, while the quarter of the quads with highest
saliency have ψi,j = 1. Our QP approach was implemented
using the quadratic programming solvers in the CVX MAT-
LAB toolbox [5]; in this environment, the resizing operation
takes 2-12 seconds (depending on the grid size) on an image
of size 1024× 768.

Due to the large number of competing methods, we do not
have sufficient space to show the deformations of the under-
lying grids in all cases. Instead, we show just one example
generated by QP in Figure 3

(a) (b)
Figure 3. Brasserie image from Figure 4. (a) Image resized by QP.
(b) The deformed quadrangular mesh overlaid on the image.

The results are shown in Figure 4. As discussed by [6], the
aspect ratio of the deformation is the only thing that matters
for energy-based methods, including OSS [13], LG [6] and
our QP method. Since expansion in one dimension can be ef-
fectively achieved by contraction in the other dimension fol-
lowed by uniform scaling in both dimensions, we only show
results of contraction in the horizontal dimension. In the first
row, the Brasserie example shows the power of the energy
term in our QP approach which encourages the magnifica-
tion of salient regions: the Brasserie, which is the clear fo-
cal point of this image, is enlarged, while at the same time
its aspect ratio is maintained.4 This contrasts with the other
four methods: OSS maintains the aspect ratio, but produces a
much smaller Brasserie; while SC, MOP, and LG squash the
Brasserie. A similar result may be seen in the second row,
in which the fish is the most salient object; QP produces the
largest fish, while maintaining its aspect ratio.

In the third row, the motorcycle example shows the prob-
lems that can be caused by SC, and by extension MOP: im-
portant details can be removed. In the case of SC, both wheels
(though particularly the front one) have been deformed; in the
case of MOP, the back of the motorcycle has been cropped.
Close inspection reveals that LG also deforms the wheels
somewhat, but in a smoother manner than SC. QP and OSS
produce similarly good results; QP yields a slightly larger
motorcycle, thus perhaps is slightly better.

4To observe that the aspect ratio is maintained, inspect Figure 3(b), in
which the quads over the Brasserie remain squares.

In the fourth row, the table with wine bottles shows defi-
ciencies of OSS, as well as SC and MOP. In all three cases,
the table and wine bottles – the most salient part of the im-
age – do not maintain their aspect ratios; they are stretched
vertically. Furthermore, the tables gain a measure of asym-
metry. LG produces a good result in this case, comparable to
the result of QP. As in the previous example, QP produces a
slightly larger table, yielding a slightly better result than LG.
Note that the vertical lines (chairs, windows) in this example
are well preserved by QP due to the fact that QP encourages
straight grid lines.

The fifth row shows an example where SC performs well.
Here the most salient object is the woman, and the result
of the SC algorithm is to remove some of the less salient
wall. QP produces an almost identical result, though with
less deformation of the background graffiti and bricks. (SC
shrinks a particular column of bricks, while leaving others
untouched; this type of behavior is not surprising, given the
way SC operates By contrast, QP shrinks the bricks much
more uniformly.) The other three methods, OSS, LG, and
MOP produce inferior results, in which the woman is not as
large.

In the eagle example of the sixth row, QP produces an ea-
gle which is much closer in aspect ratio to the original. This
is noticeable in particular in the wing on the right side of the
image, which is quite strongly deformed by each of the four
competing methods.

We now illustrate the effect of the semi-automatic straight
line preservation method outlined in Section 3.3.2. In Figure
5, we show two examples in which the proposed method has
destroyed a straight line structure in the image. In the top tow,
the umbrella handle has effectively been broken; while in the
bottom row, the wand in the child’s mouth has been more
subtly curved (see the ends, in particular). In both cases, as
described in Section 3.3.2, we have selected the endpoints of
the line segment that we wish to preserve. The results, shown
in the third column of Figure 5, demonstrate the effectiveness
of the approach.

Instead of using a quadratic penalty, we might use a p-
norm penalty:

Ek,li,j = |ck,li,jz|
p

In this case, it is easy to verify that the resizing problem be-
comes

min
z
‖Cz‖p subject to Hz ≥ h

where ‖·‖p denotes the usual vector p-norm. In principle, any
p ≥ 1 results in a convex programming problem, for which
a global minimum may be found. We have tried the cases
p = 1 and p =∞, but have not found substantial differences
in the results compared to p = 2.

Our QP approach works well for most images, however,
like all the competing methods, it is also quite dependent on
the quality of the saliency map, and can perform poorly when
presented with bad saliency maps. Additionally, if too many
hard linear constraints are imposed, the global optimum of

(a) (b) (c) (d) (e) (f)
Figure 4. Comparing the proposed resizing method with other competing methods. (a) Original image. (b) Optimized Scale and Stretch
(OSS) [13]. (c) Local-Global (LG) [6]. (d) Seam Carving (SC) [1, 10]. (e) Multioperator extension of Seam Carving (MOP) [9]. (f) Our
Quadratic Programming (QP) method.

(a) (b) (c)
Figure 5. Preserving straight line structures. (a) Original image. (b) Resizing with QP without straight line preservation. (c) Resizing with
QP with straight line preservation.

the energy may be infeasible. In this case, we can always
transform these hard constraints into soft ones by incorporat-
ing them into the quadratic energy. Then QP can still achieve
the global minimum while preserving the linear structures as
much as possible.

5. Conclusions
We have presented a new method for content-aware image

resizing based on a convex programming approach to com-
puting the deformation of the underlying quadrangular mesh;
as a result, a global optimum of the corresponding energy
function may be found. We have shown how foldover pre-
vention, magnification of salient regions, and preservation of
straight line structures may be easily incorporated within this
framework. A comparison of the proposed method with four
leading competitor approaches has shown its effectiveness.

It would be interesting to see whether the preservation
of more geometric structures could be incorporated into the
same framework, and whether this method could be used for
other image deformation applications, e.g. for animating 2D
content.

References
[1] S. Avidan and A. Shamir. Seam carving for content-aware

image resizing. ACM Transactions on Graphics (Proc. SIG-
GRAPH), 26(3):10, 2007.

[2] W. Dong, N. Zhou, J.-C. Paul, and X. Zhang. Optimized image
resizing using seam carving and scaling. ACM Transactions
on Graphics (proceedings of ACM SIGGRAPH Asia), 28(5),
2009.

[3] L. Fernandes and M. Oliveira. Real-time line detection through
an improved hough transform voting scheme. Pattern Recog-
nition, 41(1):299–314, 2008.

[4] V. Gopalakrishnan, Y. Hu, and D. Rajan. Random walks on
graphs to model saliency in images. IEEE Computer Soci-

ety Conference on Computer Vision and Pattern Recognition
(CVPR), pages 1698–1705, 2009.

[5] M. Grant, S. Boyd, and Y. Ye. CVX: Matlab software for dis-
ciplined convex programming. Available at http://www. stan-
ford. edu/boyd/cvx.

[6] Z. Karni, D. Freedman, and C. Gotsman. Energy-Based Image
Deformation. In Computer Graphics Forum, volume 28, pages
1257–1268, 2009.

[7] P. Krähenbühl, M. Lang, A. Hornung, and M. Gross. A sys-
tem for retargeting of streaming video. ACM Transactions on
Graphics (TOG), 28(5):1–10, 2009.

[8] M. Rubinstein, A. Shamir, and S. Avidan. Improved seam
carving for video retargeting. ACM Trans. Graph., 27(3):1–
9, 2008.

[9] M. Rubinstein, A. Shamir, and S. Avidan. Multi-operator me-
dia retargeting. ACM Transactions on Graphics, (Proceedings
SIGGRAPH 2009), 28(3), 2009.

[10] A. Shamir and S. Avidan. Seam carving for media retargeting.
Commun. ACM, 52(1):77–85, 2009.

[11] S.-F. Wang and S.-H. Lai. Fast structure-preserving image
retargeting. IEEE International Conference on Acoustics,
Speech and Signal Processing, pages 1049–1052, 2009.

[12] Y.-S. Wang, H. Fu, O. Sorkine, T.-Y. Lee, and H.-P. Seidel.
Motion-aware temporal coherence for video resizing. ACM
Transactions on Graphics (proceedings of ACM SIGGRAPH
Asia), 28(5), 2009.

[13] Y.-S. Wang, C.-L. Tai, O. Sorkine, and T.-Y. Lee. Optimized
scale-and-stretch for image resizing. ACM Transactions on
Graphics (Proc. ACM SIGGRAPH Asia), 27(5), 2008.

[14] L. Wolf, M. Guttmann, and D. Cohen-Or. Non-homogeneous
content-driven video-retargeting. In Proc. ICCV, pages 1–6,
2007.

[15] Q. xing Huang, R. Mech, and N. Carr. Optimizing struc-
ture preserving embedded deformation for resizing images and
vector art. Computer Graphics Forum, 28:1887–1896, 2009.

