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Figure 1: A smooth path from a source point z (green) to a target point y (red) inside a planar domain can be generated by following the
negative gradient of a shape-aware distance function d(y,z) that measures some distance between the Poisson kernels at y and z. While the
L2-distance (left) works well for simple shapes, for complex domains it has local minima where the gradient-descent path terminates. In
contrast, the f -divergence (right) is guaranteed to be void of local minima and can be implemented efficiently using reduced coordinates.

Abstract
Path generation is an important problem in many fields, especially robotics. One way to create a path between a source point z
and a target point y inside a complex planar domain Ω is to define a non-negative distance function d(y,z), such that following
the negative gradient of d (by z) traces out such a path. This presents two challenges: (1) The mathematical challenge of
defining d, such that d(y,z) has a single minimum at z = y for any fixed y, because the gradient-descent path may otherwise
terminate at a local minimum before reaching y; (2) The computational challenge of defining d, such that it can be computed
efficiently. Using the concepts of harmonic measure and f -divergence, we show how to assign a set of reduced coordinates to
each point in Ω and to define a family of distance functions based on these coordinates, such that both the mathematical and
the computational challenge are met. Since in practice, especially in robotics applications, the path is often restricted to follow
the edges of a discrete network defined on a finite set of sites sampled from Ω, any method that works well in the continuous
setting must be discretized appropriately to preserve the important properties of the continuous case. We show how to define
a network connecting a finite set of sites, such that a greedy routing algorithm, which is the discrete equivalent of continuous
gradient descent, based on our reduced coordinates is guaranteed to generate a path in the network between any two sites. In
many cases, this network is close to a planar graph, especially if the set of sites is dense. Guaranteeing the existence of a greedy
route between any two points in the graph is a significant advantage in practical applications, avoiding the complexity of other
path-planning methods, such as the shortest-path and A* algorithms. While the paths generated by our algorithm are not the
shortest possible, in practice we found that they are close to that.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry and Object
Modeling—Geometric algorithms G.2.2 [Computer Graphics]: Graph Theory—Network problems

1. Introduction

Path generation in complex planar domains is an important and
challenging problem in robotic navigation. The objective is for the

robot to move from one point (the source) in the domain to another
(the target) along a short and smooth path that stays within the do-
main and avoids obstacles. Practical implementations discretize the
domain as a dense graph and “route” along the edges of this graph,
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ideally generating such paths. Common algorithms are the classi-
cal Dijkstra algorithm for shortest-path computation and the more
sophisticated A* [HNR68] and its variants. The interested reader
is referred to Souissi et al. [SBD∗13] for a recent survey of these
methods. The simple shortest-path algorithm, while generating an
optimal path, can be notoriously slow, and in principle may search
the entire graph in order to find the path. Using heuristic functions
to provide a lower-bound estimate of the remaining distance in the
A* algorithm may speed this up by avoiding traversal of irrelevant
portions of the graph, but, depending on the accuracy of the heuris-
tic function, may still incur significant overhead. In terms of com-
plexity, the best situation to hope for is the existence of a distance
function, which can guide the robot from the source to the target
by systematically minimizing this distance. Ideally, a path is gen-
erated by gradient descent on this function, where the robot moves
from a node in the graph to the neighboring node which reduces the
distance function the most, until the target is reached. This method,
sometimes called greedy routing, is an extremely simple algorithm.
It requires no priority queue and incurs no extra overhead of ex-
ploring other nodes of the graph, as opposed to A* and its variants.
The small price to pay is that the paths are not the shortest possible.
But shortest paths may not be desirable anyway at times, since they
have sharp corners. However, greedy routing assumes quite opti-
mistically that the distance function has no local minima, otherwise
the procedure could get stuck there (namely, reach a vertex from
which all neighbors increase the distance to the target). Indeed, if
the shortest-path distance from the target to every other node in
the graph was known in advance, following a gradient-descent path
on this distance would immediately (by definition) trace out the
shortest path. As this distance is obviously not known in advance,
a second best is to use a different distance function, which is easy
to compute, void of local minima and generates paths not too much
longer than the shortest path. Defining and implementing such dis-
tance functions is the topic of this paper.

The idea of path-planning based on gradient descent is not new.
A well-known family of path generation algorithms, inspired by the
physics of electrical force fields, is based on potential functions.
These were first proposed by Khatib [Kha86] and developed by a
number of authors [KB91, KK92, RK92, CG93] soon after. As de-
scribed above, the main idea is, given the target point, to construct
a scalar function on the domain, such that a path to the target point
from any other source point may be obtained by following the neg-
ative gradient of the function. For this to work as planned, the scalar
function must have a global minimum at the target and be void of
local minima elsewhere in the domain. Other critical points, such
as saddles, are undesirable but not fatal, since a negative gradient
can still be detected by probing around the saddle. Designing and
computing potential functions for complex planar domains, possi-
bly with holes (representing obstacles), has been a topic of intense
activity for decades. Perhaps the most elegant type of potential
function is the harmonic function [ABR01], which has very use-
ful mathematical properties, most notably the guaranteed absence
of local minima, in both the continuous and discrete settings. Alas,
the main problem preventing widespread use of this potential func-
tion is the high complexity of computing the function, essentially
the solution of a very large system of linear equations on a dis-
cretization of the domain every time the target point is changed, and

the fact that very high precision numerical methods are required,
as the functions are almost constant, especially in regions distant
from the target. A recent paper by Chen et al. [CGH17] addresses
the first of these issues. They describe a new family of continuous
distance functions, which, while quite distinct from the harmonic
potential function, also possess no local minima and generate ex-
actly the same gradient descent paths as the harmonic potential. The
present paper expands on these functions, in particular for the dis-
crete setting. Since the discrete version of these distance functions
are not completely void of local minima, we show how to remedy
that. More importantly, we show how to compute variants of these
distance functions, based on the concept of reduced coordinates,
extremely efficiently.

Chen et al. [CGH17] use the concept of harmonic measure
[GM05] and its conformal invariance to define a family of shape-
aware distance functions d f (y,z) on a bounded simply-connected
planar domain Ω. These f -divergence distances (see Section 3) are
defined as the f -divergence [Csi67, KL51] of the two Poisson ker-
nels of Ω at y and z, where f is a strictly convex real function. Fig-
ure 1 shows examples of gradient-descent paths for two bounded
simply-connected domains, using the f -divergence (right) and the
L2-distance (left) between the Poisson kernels. While the latter can
have local minima where the paths may terminate, the paths derived
from the f -divergence always reach the target. Chen et al. [CGH17]
prove that d f (y,z) is symmetric, subharmonic, has a global mini-
mum at z = y and no local minima, and that the paths are invariant
to f . This is because only the magnitude of ∇zd f (y,z) depends
on f , but not its direction. Furthermore, the f -divergence distance
paths are identical to those generated by following the negative gra-
dient of the harmonic potential function.

In practice, we usually consider a discretization of the domain
Ω, that is, a triangulation T with k vertices, where k can be on the
order of hundreds of thousands, and all computations are done on
this triangulation. Given a source point z ∈ T and a target point
y ∈ T , path generation using the harmonic potential function re-
quires solving a large k× k system of sparse linear equations that
stem from the standard Finite Element Method (FEM) discretiza-
tion of Laplace’s equation. This is usually done by computing the
Cholesky decomposition of the system matrix in a preprocessing
step and then at query time, given a target vertex y, using back-
substitution to compute the distances from all x ∈ T to y at once
inO(k logk) time, because the Cholesky factor hasO(k logk) non-
zero entries. In contrast, for f -divergence distance paths, the Pois-
son kernels are determined at all the vertices of T in a preprocess-
ing step, resulting in k coordinate vectors (one per vertex). These
vectors contain one value for each boundary point of T and typi-
cally have length O(

√
k). The path from z to y can then be found

by computing only the distances from the path vertices and their
neighbors to y, where each distance calculation requires O(

√
k)

operations [CGH17].

While a cost of O(
√

k) per distance calculation does not seem
too expensive, in practice it may still be too much for real-time
performance. Furthermore, the coordinate vectors generated by the
preprocessing procedure must be stored for each of the k vertices
of the triangulation T , implying an O(k

√
k) storage requirement,

which could be prohibitive. This paper addresses both issues.
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2. Contribution

This paper makes two main contributions. The first contribution is a
more practical approach to path generation based on f -divergence
distances. The key idea is to replace each of the k coordinate vec-
tors with a very small set of n�O(

√
k) reduced coordinates (see

Section 4), without losing the important property that the distance
function has no local minima (see Section 5). This reduces the cost
of the distance calculations from O(

√
k) to O(n). The small price

to pay is that the generated gradient-descent paths may not be as
natural as before, and we lose the properties of symmetry of the
distance function and independence of the gradient direction on f .

The second contribution shows how to use reduced f -divergence
distances in a purely discrete setting. While reducing the size of the
coordinate vector from O(

√
k) to n makes for an efficient compu-

tation of the distance function d f , the actual path is generated using
the triangulation T , implying a storage requirement of O(kn). In
practice it would often be much more efficient to generate paths on
a sparse network of m� k sites in Ω. This requires building a suit-
able network of edges between the sites, one that supports greedy
routing. In other words, for any site x, there must always be a neigh-
bor of x with a smaller distance to the target y, which is the discrete
analog of the continuous property of not having local minima. In
Section 7 we describe an algorithm for building such a graph.

To illustrate the advantage of both contributions, consider a typi-
cal triangulation T of Ω with k = 200,000 vertices and 700 bound-
ary vertices. In this case, the algorithm of Chen et al. [CGH17] re-
quires storing 1.4× 108 real values, and each distance calculation
calls for 700 basic calculations. In contrast, using n = 30 reduced
coordinates and a network with m = 300 sites requires storing only
9,000 real values and each distance calculation comes at the cost
of just 30 basic calculations.

3. The f -divergence Distance

The f -divergence distance proposed in [CGH17] is based on the
concept of f -divergence, which was first introduced by Kullback
and Leibler [KL51] and later generalized by Csiszár [Csi67], for
measuring the difference between two probability distributions.

Definition 1 Let f be a strictly convex function such that f (1) = 0
and p,q : E → [0,1] be two real functions on some domain E such
that

∫
E p(t)dt =

∫
E q(t)dt = 1. The f -divergence from q to p is

d f (p,q) =
∫

E
p(t) f

(
q(t)
p(t)

)
dt.

It is well known that d f (p,q)≥ 0 and

d f (p,q) = 0 ⇐⇒ p = q,

but d f is not necessarily a metric. Many instances of f have been
proposed over the years, each suitable for some specific applica-
tion, mostly in probability theory, statistics, and information the-
ory. The interested reader is referred to [LV06] for a survey of the
possibilities.

In this context, it is noteworthy to recall the concept of the dual
function

f ∗(x) = x f (1/x).

For example, if f (x) = − logx, then f ∗(x) = x logx, and if f (x) =
|1− x|, then f ∗(x) = f (x). It is well known that

1. f is (strictly) convex if and only if f ∗ is (strictly) convex;
2. d f (p,q) = d f∗(q, p);
3. f (1)≤ d f (p,q)≤ f (0)+ f ∗(0).

The f -divergence distance further relies on the Poisson kernel of
Ω at y ∈Ω,

P(t,y) =
∂D
∂n

(t,y), t ∈ ∂Ω,

which is the derivative of the Green’s function D(x,y) for the
Laplace operator with Dirichlet boundary conditions at the bound-
ary point t, in the direction of the unit outer normal n at t [GM05].
The f -divergence distance is then defined as the f -divergence of
two Poisson kernels.

Definition 2 Let f be a strictly convex function such that f (1) = 0
and y,z ∈Ω. The f -divergence distance from z to y is

d f (y,z) =
∮

∂Ω

P(t,y) f
(

P(t,z)
P(t,y)

)
dt. (1)

Although the f -divergence of two probability functions is not nec-
essarily symmetric, the special nature of the f -divergence distance
implies that it is symmetric. In fact, f and f ∗ generate identical
divergence distances, hence

d f (y,z) = d f∗(y,z) = d f (z,y).

While the f -divergence distance is symmetric, it is not a metric in
general, since it may fail to satisfy the triangle inequality.

For path-generation purposes, the gradient of the f -divergence
distance plays a key role. Chen et al. [CGH17] show that for
bounded and simply-connected domains the gradient field vanishes
only at the target,

∇zd f (y,z) = 0 ⇐⇒ z = y, (2)

and that its direction is independent of f , that is,

arg(∇zd f (y,z)) = arg(∇zdg(y,z)),

for any two strictly convex functions f and g.

4. Reduced Coordinates

Since the Poisson kernel satisfies∮
∂Ω

P(t,z)dt = 1,
∮

∂Ω

P(t,z) t dt = z,

it can be viewed as a continuous “coordinate vector” for z ∈ Ω,
which can be discretized as follows. Let t1, . . . , tn ∈ ∂Ω be a se-
quence of n points along the domain boundary. We then parti-
tion ∂Ω into the n segments E j = [t j, t j+1], j = 1, . . . ,n, where
tn+1 is identified with t1 and define the reduced coordinates
(φ1(z), . . . ,φn(z)) of z ∈Ω as

φ j(z) =
∫

E j

P(t,z)dt, j = 1, . . . ,n. (3)

The quantity φ j(z) is also called the harmonic measure of E j at
z [GM05]. Using reduced coordinates, we can now discretize the
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KL, n = 3 KL, n = 10 KL, n = 30 H, n = 3 H, n = 10 H, n = 30

Figure 2: Paths from several source points (green) to a common target point (red), generated using reduced KL (top) and reduced H (bottom)
divergence distance with respect to a partition of the boundary defined by the n boundary points (blue) for different n. Note that the KL paths
are in general not identical to the H paths, but both converge to the original f -divergence paths (based on the continuous coordinates) in
Figure 1 (right) as n increases.

f -divergence distance in (1), and define the reduced f -divergence
distance from z to y as

d f (y,z) =
n

∑
j=1

φ j(y) f
(

φ j(z)
φ j(y)

)
. (4)

5. The Divergence Gradient Theorem

Our main theoretical result is that the reduced f -divergence dis-
tance can be used for generating gradient-descent paths.

Theorem 1 (Divergence Gradient Theorem) Let Ω be a bounded
and simply-connected domain, f be a strictly convex function, and
n≥ 3. Then the reduced f -divergence distance (4) has property (2).

We prove Theorem 1 for the special case of the unit disk with the
target point at the origin in Appendix A (see Theorem A.1) and
now show how to generalize it to arbitrary bounded and simply-
connected domains. The key is the conformal invariance of the f -
divergence distance, which in turn is implied by the well-known
conformal invariance of the harmonic measure of E ⊂ ∂Ω at z,

φ
Ω(E,z) =

∫
E

PΩ(t,z)dt.

Theorem 2 [GM05] Let Ω1 and Ω2 be two bounded and simply-
connected domains and C : Ω1→Ω2 be a conformal map between
them such that C(∂Ω1) = ∂Ω2. Then,

φ
Ω2(C(E),C(z)) = φ

Ω1(E,z).

Theorem 3 Let C : Ω1→ Ω2 be a conformal map and dΩ1
f : Ω1×

Ω1→R and dΩ2
f : Ω2×Ω2→R be the f -divergence distances for

Ω1 and Ω2, respectively. Then,

dΩ2
f (C(y),C(z)) = dΩ1

f (y,z).

Proof By the definition of d f in (4) and Theorem 2, we have

dΩ2
f (C(y),C(z)) =

n

∑
j=1

φ
Ω2(C(E j),C(y)) f

(
φ

Ω2(C(E j),C(z))
φΩ2(C(E j),C(y))

)

=
n

∑
j=1

φ
Ω1(E j,y) f

(
φ

Ω1(E j,z)
φΩ1(E j,y)

)
= dΩ1

f (y,z)

Now we are ready to prove Theorem 1 for any bounded and simply-
connected domain by conformally mapping it to the unit disk.

Proof of Theorem 1 For a given target point y ∈ Ω, the Riemann
Mapping Theorem [GM05] implies that there exists a conformal
map C : Ω→ D, where D is the unit disk, such that ∂Ω is mapped
to ∂D and C(y) = 0. By Theorem 3,

dΩ
f (y,z) = dD

f (0,C(z)).

The gradients of the two distance functions with respect to their
second argument are related by the chain rule for holomorphic
functions. Dropping the first (fixed) argument, we get

∇dΩ
f (z) =∇dD

f (C(z))
∂C
∂z

(z).

Since the derivative of a conformal map never vanishes, according
to Theorem A.1, we have

∇dΩ
f (z) = 0 ⇐⇒ ∇dD

f (C(z)) = 0 ⇐⇒ C(z) = 0

⇐⇒ z = y.

5.1. Examples

Figures 2 and 3 show what happens to the paths in Figure 1 (right)
when the reduced f -divergence distance (4) is used instead of the
original (continuous) f -divergence distance (1), for two choices of
f , the Kullback–Leibler (KL) divergence f (x) = − logx and the
Hellinger (H) divergence f (x) = 2(1−

√
x). The coordinates are

reduced by uniformly partitioning the boundary of the domain. For
polygonal boundaries (as in Figure 3), it seems natural to partition
according to the polygon edges, namely at least one reduced coor-
dinate per edge. Long edges are further partitioned uniformly until
the partition length is less than some threshold. Since reduced coor-
dinates lose the property of being invariant to f , different paths are
obtained for reduced KL and H distances. They are typically not as
natural as the original paths, especially when n is small. Obviously,
for very large n, the reduced paths approach the original paths. The
same behavior can be observed for multiply-connected domains,
as shown in Figure 4. Note that the distance function has saddle
points in this case (typically one per “hole”), but no local minima.
In all these examples, we discretize the domains with dense trian-
gulations of 200,000 vertices, and the number of boundary vertices
are listed in the second column of Table 1.

c© 2018 The Author(s)
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KL, n = 20 KL, n = 30 KL, n = 50 H, n = 20 H, n = 30 H, n = 50

Figure 3: Same as Figure 2, for a non-convex polygonal domain. Convergence to the original f -divergence paths in Figure 1 (right) is more
rapid for the KL divergence than for the H divergence.

Domain Chen et al. [CGH17] f -divergence distance with n reduced coordinates
n preprocessing online memory n preprocessing online memory n preprocessing online memory

Fig. 2 1,200 14.6 2.38 1,827.9 10 0.903 0.023 15.2 30 0.959 0.061 45.7
Fig. 3 3,805 178.5 6.94 5,814.0 20 0.768 0.057 30.6 30 0.895 0.079 45.7
Fig. 4 top 3,581 117.4 6.84 5,466.8 10 0.810 0.022 15.2 30 0.862 0.074 45.8
Fig. 4 bottom 5,604 303.2 10.6 8,551.7 20 0.710 0.044 30.5 50 0.971 0.113 76.3

Table 1: Runtime comparison of Chen et al.’s [CGH17] routing method using a full set of coordinates and our method, using reduced
coordinates: times (in seconds) for preprocessing and online computation of the distance from one vertex to all other vertices, and memory
cost (in megabytes).

KL, n = 10 KL, n = 30 KL, n = 50

KL, n = 20

KL, n = 50

Figure 4: Same as Figure 2, for multiply-connected polygonal do-
mains. The saddle points of the distance function are marked in
magenta.

6. Computing Reduced Coordinates

In practice, if T is a dense triangulation of the domain Ω with k
vertices x1, . . . ,xk, and t1, . . . , tn is a sequence of points along the
boundary of T , then the reduced coordinates φ j(xi), j = 1, . . . ,n of

all vertices can be computed as follows. Let A be the sparse, sym-
metric, and positive definite k× k matrix with the so-called cotan-
gent weights [PP93] corresponding to edges of the triangulation,
that is, the standard FEM discretization of the Laplace operator for
T . Note that all weights are positive, if a constrained Delaunay tri-
angulation of the domain [dBCvKO08, She96] is used. Further let
Φ j = (φ j(x1), . . . ,φ j(xk)) be the vector of all j-th reduced coor-
dinates and b j = (b j,1, . . . ,b j,k) be the “binary indicator” of the
segment [t j, t j+1] of points along the boundary of T between t j and
t j+1,

b j,i =

{
1, if xi ∈ [t j, t j+1],
0, otherwise.

(5)

We then get all reduced coordinates by solving the n linear systems

AΦ j = b j, j = 1, . . . ,n, (6)

which can be done efficiently by pre-factoring A and performing
back-substitution for the different b j [PTVF07]. Note that the re-
duced coordinates are computed once for all vertices in a prepro-
cessing stage. These are then used again and again for each “online”
routing query (consisting of a pair of source and target points).

7. Discrete Routing Graph

We now show how to make path generation with reduced f -
divergence distances even more practical. To this end, let S be a
finite and sparse set of m sites in the domain Ω, and G be a graph
on S, and consider paths running along the edges of G. To be able
to mimic the gradient-descent idea in this discrete setting, we need
a graph G that supports greedy routing to any y ∈ S,

∀s ∈ S\{y} : ∃r ∈ NG(s) : d f (y,r)< d f (y,s), (7)

where NG(s) is the set of neighbors of s in G.

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.



R. Chen, C. Gotsman & K. Hormann / Efficient Path Generation with Reduced Coordinates

(a) (b) (c) (d) (e)

Figure 5: Construction of a greedy routing graph for the reduced KL divergence distance with n = 20 reduced coordinates and m = 200
sites sampled from a simply-connected domain. For the initial Euclidean Delaunay triangulation of the sites (a), it may happen that the local
Voronoi cell (light blue) of a site (red) contains other sites (b,d). In this case, we add an edge (red) between these two sites (c,e), until the
local Voronoi cells contain no other sites. Note how this affects the local Voronoi cells of the neighboring sites.

(a) (b) (c) (d) (e)

Figure 6: Same as Figure 5, for a multiply-connected domain with n = 30 reduced coordinates and m = 400 sites.

To achieve this, and inspired by [BCGGW11], we follow the
logic of Bose and Morin [BM04], who show that the Delaunay
triangulation [dBCvKO08] of S supports greedy routing on the
convex hull of S, using the Euclidean distance between points in
the plane. The reason for the Delaunay triangulation to have this
property is because it is the dual of the Euclidean Voronoi diagram
of S. That is, two sites are connected by an edge if and only if their
two corresponding Voronoi cells share a common edge. The proof
that greedy routing works relies on the fact that the Euclidean dis-
tance is a metric and its Voronoi cells are convex polygons. Since
the Voronoi diagram of S using a reduced f -divergence distance is
more complicated, the condition must be modified, requiring the
concept of a local Voronoi cell of a site in a graph.

Definition 3 The local Voronoi cell of s ∈ S relative to the graph
G is the set of all points in Ω for which s is closer than any of the
neighbors of s in G,

LVG(s) = {z ∈Ω : d f (z,s)< d f (z,r)∀r ∈ NG(s)}.

The greedy routing property now guarantees that (7) is satisfied.

Definition 4 The graph G has the greedy routing property, if for
every site s ∈ S, LVG(s) does not contain any site other than s,

∀s, t ∈ S : t ∈ LVG(s) ⇐⇒ t = s.

Constructing a graph G on S having the greedy routing property
is not as straightforward as it seems. It is not sufficient to merely
take the dual of the Voronoi diagram of S, because the local Voronoi
cells of the reduced f -divergence distance may have irregular struc-
ture. They need not even be connected and can have so-called or-

phan cells, and the reduced f -divergence distance may be asym-
metric. This is especially true when the number n of coordinates is
small. On the other hand, the clique graph, which connects all sites
with each other, obviously has the greedy routing property, but this
is a gross overkill, as we would like to have a graph that is as sparse
as possible, with edges as short as possible. A planar graph would
be the most desirable.

In order to build a greedy routing graph G, given S and d f , we
propose an incremental algorithm. Starting with the Euclidean De-
launay triangulation, constrained to a polygonal approximation of
the domain, we augment this initial graph with additional edges un-
til it becomes greedy. Given a site s ∈ S, edges are added to G be-
tween s and other sites, until LVG(s) contains only s. By definition,
each addition of an edge shrinks LVG(s). Obviously, this procedure
eventually terminates when the worst case of s being connected to
all other sites is obtained. A good heuristic is to add edges between
s and other sites in order of increasing Euclidean distance to s. We
call the resulting greedy graph the augmented Delaunay triangula-
tion. In practice, no Voronoi diagrams are computed, and the only
data structure required to support the graph construction algorithm
is the m×m matrix of pairwise reduced f -divergence distances be-
tween the m sites, sampled from the dense underlying triangulation
that we use to precompute the coordinates. Note that this matrix is
not symmetric if d f is not symmetric.

8. Experimental Results

We implemented our method in Matlab R2018a on a PC with In-
tel Xeon (6 cores) CPU E5-2643 v4 3.40Ghz and 32GB RAM. For

c© 2018 The Author(s)
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n
=

27
n
=

40
n
=

60

m = 200 m = 400 m = 600 m = 2,000

Figure 7: Discrete greedy routing graph using the KL divergence distance with n reduced coordinates and m sites on a simply connected do-
main for different values of n and m. The greedy routing property is obtained after augmenting the initial constrained Delaunay triangulation
(black) with additional edges (red). Note how the number of augmented edges decreases with increasing n.

Domain n m = 200 m = 400 m = 600 m = 2,000
distances augmenting distances augmenting distances augmenting distances augmenting

Fig. 7 27 0.033 0.0149 0.090 0.0084 0.191 0.0138 1.344 0.1247
40 0.059 0.0142 0.111 0.0082 0.243 0.0109 1.732 0.0837
60 0.078 0.0118 0.147 0.0089 0.319 0.0092 2.472 0.0757

Fig. 8 40 0.050 0.0152 0.103 0.0063 0.234 0.0117 1.707 0.0808
60 0.081 0.0165 0.177 0.0056 0.329 0.0122 2.675 0.0783

Table 2: Runtime for generating discrete routing graphs. For each configuration of m and n, we list the times (in seconds) for computing the
pairwise reduced f -divergence distances between the m sites and for augmenting the constrained Delaunay triangulation.

all the examples throughout the paper, the underlying constrained
Delaunay triangulation T of the domain on which the n coordi-
nates are computed contains k = 200,000 vertices. Table 1 lists the
runtimes for computing n reduced coordinates and f -divergence
distances (from one vertex to all other vertices of T ), and the mem-
ory footprint for storing the reduced coordinates, in comparison to
Chen et al. [CGH17], where n is the number of boundary vertices
of T . We observe that our method is faster both in preprocessing
and online distance computation, and the memory requirement is

much lower. Note that the system matrices involved in the two ap-
proaches are identical, yet the preprocessing takes significant more
time for Chen et al. [CGH17], since they need to solve for signifi-
cantly more right hand sides in order to get a good approximation
of the harmonic measure.

Figures 5 and 6 show parts of the greedy routing graphs gen-
erated by our algorithm on a few sites sampled in two different
domains with 3,805 and 3,581 boundary vertices, respectively. The
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n
=

40
n
=

60

m = 200 m = 400 m = 600 m = 2,000

Figure 8: Same as Figure 7, for a multiply-connected domain.

Figure 9: Routing path tree (thick black edges) for three different
target sites (red) for the multiply-connected domain and graph of
Figure 8 for n = 40 reduced coordinates and m = 400 sites using
the KL (top) and the H (bottom) divergence distance. The domain is
color-coded according to the f -divergence distance of the reduced
coordinates to the target site. Note the subtle differences between
the two rows.

black edges are the initial constrained Delaunay triangulation, and
the red edges are those augmented by our algorithm for three select
sites to obtain the greedy routing property.

Figures 7 and 8 show the greedy augmented Delaunay triangula-
tion on three increasing sets of sites with increasing sets of reduced
coordinates using a similar coloring of the edges. As before, the
boundary polygon was naturally partitioned to its edges, and then
each edge further partitioned to segments until the length of each
segment is below a predefined threshold. The results demonstrate

how the Delaunay triangulation is already very close to greedy, re-
quiring only a slight augmentation, for large values of n. Table 2
lists the runtimes for generating the greedy routing graphs of the
augmented Delaunay triangulations. Note that all this is done in a
preprocessing stage. Figure 9 shows routing trees for three target
vertices on the resulting graph for two different distance functions
on a multiply-connected shape.

The idea of using distance functions for path planning in robotic
applications promises to remain a popular methodology. Indeed, a
recent paper of Chen et al. [CLL∗16] uses diffusion distances for
this objective. Similarly to our divergence distances, diffusion dis-
tances may be computed efficiently using a small set of “embedding
coordinates” derived from the eigenvectors of the graph Laplacian
having the largest eigenvalues, computed in a preprocessing stage.
However, this distance function is not void of local minima, so
the “best-first-search” algorithm is used to generate paths on a dis-
crete network, incurring overhead by examining many neighboring
nodes in the vicinity of the path and maintaining a priority queue.
Note that if the distance function is void of local minima, best-first-
search reduces to gradient descent and a priority queue is not re-
quired. In principle, we could have adopted a similar approach and
applied best-first-search instead of gradient descent, avoiding the
need to augment the graph. However, as our experimental results
indicate, the augmentation required is minimal for sparse triangu-
lation and most of the time unnecessary for sufficiently densely
triangulated domains, due to the fact that the continuous version of
our reduced divergence distance is greedy, as compared to the con-
tinuous diffusion distance, which does not have this desirable prop-
erty. Thus we believe it is preferable to pay the small price of aug-
menting the graph when necessary in the preprocessing stage and
benefiting significantly from a very simple routing algorithm in the
online query stage. Figure 10 compares our method with harmonic
potential, A* search [HNR68] (with the Euclidean distance as a
heuristic function), and diffusion search [CLL∗16] (based on 18
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n = 20 reduced coordinates
N = 3,266, `= 1,059.5, t = 0.046+0.0024

harmonic function planning [WRGZ16]
N = 3,304, `= 1,072.5, t = 0.544+0.0028

A* search [HNR68]
N = 109,792, `= 858.0, t = 5.044

diffusion search [CLL∗16]
N = 2,978, `= 1,030.8, t = 0.026+0.077

Figure 10: Comparison of different path planning algorithms. The black polyline marks the path between the source (green) and target (red)
found by each algorithm. To determine this path, each algorithm needs to compute the distance function for the N vertices in the blue region
around the path. We report N, the length ` of each path, and the planning time t (in seconds). Note that t does not include the preprocessing
time (0.737s for our method and 93s for diffusion search), but for harmonic function planning we include the linear solve time of 0.544s, as
it has to be computed online after the routing target is selected, and for our method and diffusion search we include the 0.046s and 0.026s
that it takes, respectively, to compute the distance from the target to every other vertex.

eigenvectors) for the laboratory map from Wray et al. [WRGZ16].
For harmonic function planning, we directly compute the poten-
tial function by a sparse linear solver instead of its logarithm as
in [WRGZ16], as it is more efficient and provides sufficient accu-
racy for greedy routing in this case. For diffusion search, we used a
time step of 200 times the width of the domain, because the factor
of 50 suggested in [CLL∗16] gives significantly worse values of N
and t.

9. Conclusion and Discussion

We have described a practical method for generating paths between
pairs of points in planar domains by following the negative gra-
dient of a suitable distance function. The key is to use a discrete
version of the f -divergence distance, based on reduced coordinate
vectors. Our reduced coordinate vectors are the harmonic measures
of a partition of the boundary into n segments, which are just the
inner products of the Poisson kernel with a “box” indicator function
for each segment. We speculate that the Divergence Gradient Theo-
rem 1 also holds for other sets of coordinates, derived from an inner
product of the Poisson kernel with more sophisticated basis func-
tions, such as the piecewise linear “tent” function over two adjacent
boundary segments. This is the method used to construct harmonic
barycentric coordinates on a polygonal domain [JMD∗07]. An-
other possible choice are Gaussian basis functions over the bound-
ary, as long as they are not too narrow or too wide. These variants of
reduced coordinates may be computed similarly to the reduced co-
ordinates used in this paper merely by changing the right hand sides
b j of the linear equations in (6) to something more sophisticated
than the binary vector in (5). Figure 11 shows the gradient-descent

trees generated by these coordinates using the KL divergence dis-
tance function.

The proof of our Divergence Gradient Theorem 1 holds only for
bounded and simply-connected domains, as it relies on conformal
reduction to the canonical case of a unit disk with the target at the
origin. We do not have a proof for the absence of local minima for
multiply-connected domains, where the holes in the domain cor-
respond to obstacles in a real-world scenario, but speculate that
the theorem still holds. This is supported by all our experiments,
as well as a recent result on the f -divergence distance for the χ

2-
divergence f (x) = x2−1 in the continuous setting [CGH18]. Note
that for multiply-connected domains, the distance function may
contain saddle points, where the continuous gradient vanishes, but
as these are not local minima, they are not fatal for path generation.

Our experimental results also indicate that as the number of re-
duced coordinates increases, the augmentation of the Delaunay tri-
angulation of the sites decreases. We wonder if there exists a con-
dition, possibly dependent on n, the number of coordinates, and m,
the number of sites, which guarantees that the Delaunay triangu-
lation is greedy in its own right. Alternatively, under which con-
ditions does there exist a planar graph, possibly a non-Delaunay
triangulation, of the sites, which is greedy? This may well be the
dual of the Voronoi diagram for d f .

It is worth noting that the harmonic potential with pole at the
target point y ∈Ω, which has traditionally been used for path plan-
ning, can also be expressed as a boundary integral once the Poisson
kernel of the domain has been computed:

D(y,z) =− log|z− y|+
∮

∂Ω

P(t,z) log|t− y|dt.
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Figure 11: Same as in Figure 9, for n = 40 reduced coordinates
and m = 400 sites using the KL divergence distance and reduced
coordinates based on box (top), tent (middle), and Gaussian (bot-
tom) basis functions over the boundary.

So theoretically, we could compute this potential quite efficiently
at any given point z ∈ Ω as a boundary integral (once the Poisson
kernels are computed in a preprocessing stage), instead of solving
a large system of linear equations. Thus the natural question arises:
Why is it better to compute the divergence distance as a boundary
integral and not the harmonic potential?

One reason is that, in the discrete case, the harmonic potential
computed as a boundary integral is not discrete harmonic (namely,
does not satisfy the discrete Laplace equation), thus may contain
local minima. This is in contrast to explicitly solving the discrete
Laplace equation. So, to use it in practice, we will have to apply
graph augmentation, which may be more excessive than in the case
of the augmentation of the graph by divergence distance.

More importantly, the harmonic potential is much less attractive
because we cannot apply coordinate reduction to reduce the com-
plexity of the boundary integral, which we can do for the diver-
gence distance, thanks to Theorem 1.
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Appendix A:

In this appendix, we prove Theorem 1 for the special case of the
unit disk domain with the target point at the origin.

Figure 12: Notation used in Sections A.1 (left) and A.2 (right).

A.1. Some circle geometry

In what follows we use complex number algebra in the plane. Let z
be some point in the unit disk D. As shown in Figure 12 (left), we
denote by ψ(θ) ∈ (−π,π] the antipode of θ ∈ (−π,π] relative to z,
that is, eiψ(θ) is the intersection of the chord through eiθ and z with
the unit circle. We further let v = eiθ− z and w = eiψ(θ)− z.

Lemma A.1 For any θ ∈ (−π,π],

1
v
=− w

1−|z|2
.

Proof By the intersecting chords theorem, |v||w| = 1−|z|2. Since
v and w are collinear, this implies −vw = |v||w|= 1−|z|2.

Lemma A.2 For any θ ∈ (−π,π],

ψ(θ) =−i log
(
− v

v
e−iθ

)
.

Proof By the definition of ψ(θ), we have ψ(θ) =−i log(w+z), and
it follows from Lemma A.1 that w+ z =−ve−iθ/v.

Note that for z = 0, we have ψ(θ) = π+θ, as expected.

A.2. Reduced coordinates

Given a partition −π < θ1 < · · · < θn ≤ π of the unit circle, the j-
th reduced coordinate of z ∈ D is the harmonic measure of the arc
(θ j,θ j+1) at z, that is,

φ j(z) =
∫ θ j+1

θ j

PD(θ,z)dθ =
1

2π

(
2α j(z)− (θ j+1−θ j)

)
, (8)

where PD(θ,z) is the Poisson kernel of the unit disk,

PD(θ,z) =
1

2π

1−|z|2

|z− eiθ|2
,

and α j(z) denotes the angle the arc forms with z, as shown in Fig-
ure 12 (right). Note that since eiθ is a 2π-periodic function, we may
use θn+1 = θ1 + 2π, so that θ j+1 − θ j always gives the positive
length of the arc, and then φ j(z)≥ 0 and ∑ j φ j(z) = 1.

Lemma A.3 The harmonic measure in (8) can also be expressed as

φ j(z) =
1

2π
(ψ j+1−ψ j), (9)

where ψ j = ψ(θ j) is the antipode of θ j relative to z.

Proof By the intersecting chords theorem, θ j+1−θ j+ψ j+1−ψ j =
2α j(z), and the statement then follows directly from (8).

Lemma A.4 The gradient (by z) of φ j(z) is

∇φ j(z) =
i

π(1−|z|2)
(eiψ j+1 − eiψ j ).

Proof By Lemma A.3 and viewing ψ j as a function of z, we get

∇φ j(z) =
1

2π
∇(ψ j+1(z)−ψ j(z)).

Using Lemma A.2 and the complex form of the gradient then gives

∇ψ j(z) =−i∇ log
(−v j

v j

)
=−2i

(
∂

∂z
log
(−v j

v j

))
=− 2i

v j
,

so

∇φ j(z) =−
i
π

(
1

v j+1
− 1

v j

)
.

Applying Lemma A.1, we finally get

∇φ j(z) =
i

π(1−|z|2)
(w j+1−w j) =

i
π(1−|z|2)

(eiψ j+1 − eiψ j ).

A.3. Reduced f -divergence distance

Given a partition −π < θ1 < · · · < θn ≤ π of the unit circle and a
strictly convex function f , the reduced f -divergence distance in (4)
from z ∈ D to y = 0 can be written as

d f (z) = d f (0,z) =
n

∑
j=1

φ j(0) f
(

φ j(z)
φ j(0)

)
, (10)

with φ j(z) in (9). By the chain rule and Lemma A.4,

∇d f (z) =
n

∑
j=1

φ j(0)∇ f
(

φ j(z)
φ j(0)

)
=

n

∑
j=1

f ′
(

φ j(z)
φ j(0)

)
∇φ j(z)

=
i

π(1−|z|2)

n

∑
j=1

f ′
(

ψ j−ψ j+1

θ j−θ j+1

)(
eiψ j+1 − eiψ j

)
.

Without loss of generality, let us now assume that z is on the pos-
itive x-axis, so that z = z = |z|. Any other case can be reduced to
this setting by a simple rotation of the plane.

Lemma A.5 The function g(ψ) = f ′
(
1/θ
′(ψ)

)
is strictly increas-

ing for ψ ∈ (0,π) and strictly decreasing for ψ ∈ (−π,0), if z 6= 0,
and constant, if z = 0.

Proof It follows from Lemma A.2 that

ψ(θ) =−i log
(
− eiθ− z

e−iθ− z
e−iθ

)
,
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Figure 13: Notation used in the proof of Theorem A.1.

hence

ψ
′(θ) =

eiθ

eiθ− z
+

e−iθ

e−iθ− z
−1 =

z
eiθ− z

+
z

e−iθ− z
+1

= 2zRe
(

1
eiθ− z

)
+1

and

ψ
′′(θ) =− izeiθ

(eiθ− z)2 +
ize−iθ

(e−iθ− z)2 = 2z Im
(

eiθ

(eiθ− z)2

)

=
−2z(1− z2)

|eiθ− z|4
sinθ


= 0, if z = 0,
< 0, if z 6= 0 and θ ∈ (0,π),
> 0, if z 6= 0 and θ ∈ (−π,0).

Since θ(ψ) and ψ(θ) are antipodes of each other, they have the
same behavior, and therefore

θ
′′(ψ)


= 0, if z = 0,
< 0, if z 6= 0 and ψ ∈ (0,π),
> 0, if z 6= 0 and ψ ∈ (−π,0).

(11)

Applying the chain rule to g(ψ), we find that

g′(ψ) =− f ′′
(

1
θ′(ψ)

)
θ
′′(ψ)

θ′(ψ)2 ,

and as f ′′ > 0, since f is strictly convex, we conclude that the sign
of g′ is opposite to the sign of θ

′′(ψ). The statement then follows
from (11).

Note that both g(ψ) and ψ
′(θ) are even functions.

Theorem A.1 (Divergence Gradient Theorem for the unit disk)
For any partition−π< θ1 < · · ·< θn ≤ π of the unit circle with n≥
3, the reduced f -divergence distance to the origin in (10) satisfies

∇d f (z) = 0 ⇐⇒ z = 0.

Proof For each arc (θ jθ j+1), the mean-value theorem states that
there exists some τ j ∈ (θ j,θ j+1), such that ψ

′(τ j) =
ψ j−ψ j+1
θ j−θ j+1

. Now
let ρ j = ψ(τ j) ∈ (ψ j,ψ j+1) ⊂ (−π,π] and define the piecewise
constant periodic function w(ψ) = g(ρ j), ψ ∈ (ψ j,ψ j+1]. Obvi-
ously there exist k and l such that |ρk| ≤ |ρ j| ≤ |ρl | for all j, that
is, the indices k and l correspond to the leftmost and rightmost ρ’s,
respectively. In particular, as shown in Figure 13, l is either 1, n−1,
or n. Since g is strictly increasing in (0,π) and strictly decreasing

in (−π,0) by Lemma A.5, w(ψ) is monotonically (but not strictly)
increasing in (ψl ,ψk] (if ψk > 0, otherwise we use (ψl ,ψk + 2π]
and the same principle applies below), and monotonically decreas-
ing in (ψk,ψl ] by construction. Now let [eiψa ,eiψb ] be the diameter
orthogonal to [eiψk ,eiψl ]. The gradient of d f can then be written as

∇d f (z) =
i

π(1−|z|2)

∮
C

w(ψ)deiψ

=
i

π(1−|z|2)

(∫ ψk

ψl

w(ψ)deiψ +
∫ ψl

ψk

w(ψ)deiψ
)

=∇d1
f +∇d2

f

and the projection of∇d1
f onto [eiψl ,eiψk ] be expressed as〈

ieiψa ,∇d1
f
〉

=

〈
ieiψa ,

i
π(1−|z|2)

∫ ψk

ψl

w(ψ)deiψ
〉

=
−1

π(1−|z|2)

〈
eiψa ,

∫ ψk

ψl

iw(ψ)eiψdψ

〉
=

−1
π(1−|z|2)

∫ ψk

ψl

Re
(
−iw(ψ)ei(ψa−ψ))dψ

=
−1

π(1−|z|2)

∫ ψa

ψl

w(ψ)sin(ψa−ψ)dψ

+
−1

π(1−|z|2)

∫ ψk

ψa

w(ψ)sin(ψa−ψ)dψ

=
−1

π(1−|z|2)

∫ ψa

ψl

(
w(ψ)−w(2ψa−ψ)

)
sin(ψa−ψ)dψ.

Now observe that for ψ ∈ (ψl ,ψa) we have

2ψa−ψ ∈ (ψa,2ψa−ψl) = (ψa,ψk),

and therefore, since w is monotonically increasing in (ψl ,ψk],

w(ψ)≤ w(2ψa−ψ).

Moreover, sin(ψa−ψ)> 0, because ψa−ψ∈ (0,ψa−ψl)⊂ (0,π).
Overall, we conclude that∫ ψa

ψl

(
w(ψ)−w(2ψa−ψ)

)
sin(ψa−ψ)dψ≤ 0,

hence 〈ieiψa ,∇d1
f 〉≥ 0, with equality if and only if w(ψ) is constant

on (ψl ,ψk), which happens only in the case k = l + 1, when the
harmonic measure of the arc (θl ,θk) reduces to a single coordinate.
Similarly, the projection of∇d2

f onto [eiψl ,eiψk ] satisfies〈
ieiψa ,∇d2

f
〉
=

〈
ieiψa ,

i
π(1−|z|2)

∫ ψl

ψk

w(ψ)deiψ
〉
≥ 0,

again with equality if and only if w(ψ) is constant on (ψk,ψl), or
equivalently l = k + 1. Overall, we conclude 〈ieiψa ,∇d f (z)〉 > 0,
hence ∇d f (z) 6= 0, as long as n > 2. If n = 2, then w is constant
over the two integral intervals, hence 〈ieiψa ,∇d f (z)〉= 0.

Remark A.1 For n = 2, the proof of Theorem A.1 shows that
∇d f (z) is orthogonal to [eiψl ,eiψk ] and may vanish for certain z. In
fact, Eq. (8) implies that the harmonic measure of the arc (θ1,θ2)
at any z on the circle through eiθ1 , eiθ2 , and the origin is equal to
the harmonic measure at the origin itself, so that d f (z) = 0 and
∇d f (z) = 0.
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