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High-quality Cage Generation Based on SDF
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Figure 1: A cage generated by our method for the octopus shape. The two images on the left are the input shape and the generated cage.
The two images on the right show the high-quality cage based deformation results of [LCH∗21].

Abstract
Cages are widely used in various applications of computer graphics, including physically-based rendering, shape deformation,
physical simulation, etc. Given an input shape, we present an efficient and robust method for the automatic construction of
high quality cage. Our method follows the envelope-and-simplify paradigm. In the enveloping stage, an isosurface enclosing
the model is extracted from the signed distance field (SDF) of the shape. By leveraging the versatility of SDF, we propose a
straightforward modification to SDF that enables the resulting isosurface to have better topological structure and capture the
details of the shape well. In the simplification stage, we use the quadric error metric to simplify the isosurface and construct a
cage, while rigorously ensuring the cage remains enclosing and does not self-intersect. We propose to further optimize various
qualities of the cage for different applications, including distance to the original mesh and meshing quality. The cage generated
by our method is guaranteed to be strictly enclosing the input shape, free of self-intersection, has the user-specified complex-
ity and provides a good approximation to the input, as required by various applications. Through extensive experiments, we
demonstrate that our method is robust and efficient for a wide variety of shapes with complex geometry and topology.

CCS Concepts
• Computing methodologies → Computer graphics; Mesh models;

1. Introduction

In computer graphics, it is commonplace to engage in modeling
and processing shapes characterized by intricate geometries to cater
to diverse applications such as animation, physical simulation, and
rendering. Within these scenarios, high-resolution models are typi-
cally employed to meticulously capture the intricate details of com-
plex geometries, thereby enhancing precision and, consequently,
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the quality of these applications. However, performing computa-
tions directly on such high-resolution models in graphics can lead
to significant computational complexity, as it often involves intri-
cate and nonlinear optimization problems. Conversely, users often
require interactive or even real-time computational performance,
particularly when frequent geometric edits are essential. Therefore,
researchers have proposed various geometric proxy structures to
reduce computational complexity and expedite calculations. Cages
represent one prevalent geometric proxy, offering an intuitive rep-
resentation of the original geometric structure.
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In short, a cage is a coarse structure that surrounds and visually
and geometrically approximates a given shape, allowing computa-
tions to transfer from a high-resolution model to a coarse proxy,
namely the cage itself. For example, in cage based deformation,
when the cage is manipulated, the embedded fine shape can be
smoothly deformed accordingly, using the generalized barycen-
tric coordinates [FKR05, JSW05, JMDG07, LLCO08, WPG12]. In
shape transfer, the pose of a source model can be transferred to a
target model through the shape mapping space generated by the
cage [BCWG09, CHSB10]. In collision detection, conservative
culling can dramatically reduce computation time [PT03]. The key
to achieving high performance in all these applications lies in effec-
tively leveraging the cage structure to approximate complex shapes,
thus reducing the dimensionality of the problem.

Although cages are widely used in geometric processing, gener-
ating a cage that meets requirements has always been a challenge.
In many cage-based research studies [JSW05,JMDG07,LLCO08],
the cages are manually constructed, utilizing modeling tools, which
is tedious and time-consuming. This makes it difficult for non-
professionals to grasp, thereby impacting the application and pro-
motion of cage-based techniques.

Existing cage generation algorithms are heuristic mesh simpli-
fication methods that aim to create a coarse proxy mesh that en-
closes the original mesh as closely as possible. However, they lack
a well-defined objective function, such as surface approximation
error and geometric feature preservation, to guide the generation
of high-quality cages. Recently, Sacht et al. [SVJ15] proposed an
method for automatically generating cages using a distance flow,
which reliably ensures the quality of the generated cages. As it
pointed out, an ideal cage should generally possess the following
properties:

1. It is strictly enveloping the shape.
2. It is free of self-intersection.
3. It is geometrically and topologically close to the shape.
4. It is of low complexity.

In various applications of cages, properties 1. and 2. are the most
crucial ones. For instance, when computing various types of gen-
eralized barycentric coordinates [FKR05, JSW05, JMDG07], the
exterior of the cage is poorly defined and can lead to local infinite
values. However, constructing a cage that strictly enveloping the
input shape is a very challenging problem. As stated in [SVJ15,
Appendix A], we can easily construct counterexamples that cause
methods using continuous flow to strictly enclose a shape to fail.

This paper proposes a universal and robust cage generation algo-
rithm based on the perspective of strictly enclosing the input shape,
leveraging the versatility of signed distance field (sdf). Our method
is consist of the following three steps:

Isosurface extraction In this step, we extract an isosurface from
the SDF of the shape. With a positive isovalue, the isosurface natu-
rally satisfies properties 1. and 2.. The flexibility of SDF allows us
to further modify it as a general shape aware implicit function, so
that the extracted isosurface satisfies property 3. (Section 3.1).

Simplification A cage should describe the shape of the model with
as few degrees of freedom as possible. Simply extracting isosur-

faces from the SDF results in overly dense meshes. Therefore, we
need to simplify this isosurface, while ensuring that properties 1.
and 2. remains intact. This step iteratively simplifies the isosurface
by edge collapsing. Different from Garland and Heckbert [GH97],
we solve a constrained quadratic program, that allows us to eventu-
ally build a coarse cage that strict envelopes the original model and
is self-intersection free. We propose a practically feasible solution
for the constrained quadratic program, allowing the simplification
process to iteratively continue until the user-specified number of
vertices is reached. Unlike the simplification strategy in [SVJ15],
we start with an initial mesh that envelopes the input shape, allow-
ing us to strictly ensure that this property is maintained throughout
each simplification step.

Optimization For the last step, we propose a general optimization
framework to improve various qualities of the cage, using a com-
bination of vertex relocation and edge flipping operations. In this
step, we also strictly enforce the enveloping and no self-intersection
constraints using the IPC barrier function proposed by Li et al.
[LFS∗20] (Section 3.3).

Our method is easy to implement. We experiment our method on
a variety of input shapes, which show that it is effective, robust and
can suit the needs of different applications.

2. Related Work

As an efficient and flexible method for shape editing and anima-
tion generation, free-form deformation (FFD) was first proposed
by Sederberg and Parry [SP86]. It uses a Bézier volume control
lattice as the proxy geometry for the target shape. Although vari-
ous extended FFD methods can utilize irregular hexahedral lattice,
the flexibility of deformation is constrained by the fixed topolog-
ical shape of the control lattice, limiting the flexibility of defor-
mation due to interpolation and smoothness constraints. Therefore,
the exploration of spatial deformation techniques with control lat-
tices possessing more degrees of freedom was triggered. Spatial de-
formation methods [FKR05, JSW05, JMDG07, LLCO08, WPG12]
based on generalized barycentric coordinate interpolation are one
popular approach in this regard. The control meshes no longer has a
fixed topology and geometry but instead approximates the shape of
the target model with fewer vertices, known as a 2-manifold mesh,
referred to as a cage. Although cages are widely used in geomet-
ric processing, generating cages that meet requirements has always
been a challenging task.

Recently, many methods of semi-automatically or automatically
generating cage have been proposed. Chen and Feng [CF14] first
utilizes an adaptive cross-section-based method to construct a cage
from an initial skeleton structure, which is obtained through an
sketching interface. Later, Le and Deng [LD17] suggested us-
ing some user-specified cut slides to optimize the consistent, or-
thogonal orientations of cage cross sections, greatly improving
the cage quality. Calderon and Boubekeur [CB17] introduced a
novel method for approximating bounding shapes and generating
a bounding proxy that tightly fits the input shape. However, these
tasks involve user interaction, which can be tedious for the user and
does not allow to generate cages in batch for a set of mesh.

Xian et al. [XLG12] construct the cage automatically by refining
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the bounding shape of the input shape. It first generates an oriented
bounding box (OBB) tree for the shape, and then merges the OBBs
into a whole entity using the union operation. However, OBB relies
on an initial voxelization of input shape, which is hard to be de-
termined reasonably. Additionally, the resulting cages are not guar-
anteed to envelope the input model, because there exists twisting
among two joint parts of OBB.

The majority of automatic cage generation method is to simplify
and expand the input mesh to produce the coarse proxy. Progressive
decimation, first proposed by Sander et al. [SGG∗00], applies edge
collapse operator and carefully places the new vertices outside the
input mesh by solving a linear program with linear inequality con-
straints. Deng et al. [DLM11] also uses edge collapses, but obtains
the positions for the new vertices by solving a quadratic program
with inequality constraints. Ben-Chen et al. [BCWG09] proposed
a heuristic method for building cages around the input shape by
repeating the offset, reconstruction and simplification operations.
However, these methods do not guarantee to strictly enclose the
target model, while simplification-based methods are prone to self-
intersections in concave regions of the model, such as "U-shaped"
areas.

Sacht et al. [SVJ15] proposed a method for producing series of
cages with strict nesting in-between, by adding two steps of flow
and contact-aware optimization after mesh decimation. It pointed
out that distance flow may not necessarily be reasonable for all
models. Because there exists some singular points without flow di-
rection when more than two ridge-lines meet. Jiang et al. [JSZP20]
provided a more intuitive explanation of the conditions for the ex-
istence of singular points, stating that they can only be bypassed
without being processed.

In this work, we propose to construct cages using the isosurface
of SDF, which is the most widely used implicit surface representa-
tion in computer graphics [BA05,XB14], as it allows easy determi-
nation of whether a point is inside or outside the shape based on the
sign of SDF. In general, the implicit shape representation is popu-
lar for surface reconstruction [OBA∗03] and rendering [CK10], and
we show that it can be useful for other geometry processing appli-
cations as well.

In Figure 2, we compare the cages generated by the state-of-the-
art methods and our method for two input shapes. It can be seen that
the cages generated by the competing methods do not fit the input
shape as well as ours under the same resolution.

3. Method

Our method accepts inputs in the form of 3D solids or watertight
surfaces. For other types of inputs, such as point clouds or triangle
soups, one can first use mesh reconstruction methods like Poisson
reconstruction [KBH06] to generate a fitted watertight surface be-
fore applying our method. In a nutshell, our method follows the
envelope-and-simplify paradigm. Intuitively, we first expand the
surface to envelope the shape, and then simplify the expanded sur-
face to obtain the resulting cage.

Given a watertight surface represented by a triangle mesh M =
(V,T ), with vertices V and faces T . To obtain a geometry that
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Figure 2: A comparison of various cages generated for the horse
shape and anchor shape using the methods from some previous
works and ours. Each of the shown cages contains about 500 ver-
tices. The last column records the distances from the vertices of the
cages generated by the three different methods to the input shape.
The horizontal axis represents the vertex index, which is sorted in
descending order of distance.

can enclose the surface, the natural approach is to expand the mesh
surface, i.e., to offset each vertex along its normal direction, as
Ben-Chen et al. [BCWG09] did. This simple strategy works in 2D,
where the offset curve is guaranteed to contain, i.e. envelope, the
input curve and is free of self-intersection, as long as the offset
distance is small enough. However, this is no longer true in 3D,
as the normals of vertices are not always well-defined in three di-
mensions. Even on rugged and complex vertices, moving the vertex
in any direction can result in intersections with the original mesh.
Sacht et al. [SVJ15] provided an example of a star-shaped figure to
illustrate the existence of such vertices in 3D..

Therefore, in this work, we utilize implicit shape representation,
particularly the signed distance field (SDF), and use the isosurface
to envelop the input shape. Furthermore, we can locally modify the
SDF so that the resulting isosurface will be homeomorphic to the
input surface, without having to specify tiny isovalues, especially
for input shapes with nearly-touching parts.

Input (a) (b) (c) (d) (e)

Figure 3: The pipeline of our method. Given an input shape, our
method will sequentially compute the SDF (a), modify the SDF (b),
extract the isosurface (c), apply simplification to obtain a cage (d)
and optionally perform further optimization (e).

In general, the extracted isosurfaces are as dense as, or even more
dense than the input surface mesh. To obtain a low-complexity
cage, we need to simplify the isosurface, and apply further opti-
mizations to improve its quality. Figure 3 shows the pipeline of
our method.

3.1. Isosurface Extraction

In this step, we first convert the input shape representation into the
SDF to the surface of the shape M, which is assumed to be water-
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tight. More specifically, the SDF is given by function ξ : R3 → R,

ξ(x) =

{
−dM(x), x ∈ I

dM(x), x ∈ Ic , (1)

where I is the interior of M, while Ic denotes its complement,
and dM(x) := miny∈M ∥x− y∥ is the undirected distance from
a point to the surface. ξ(x) measures how far a point x is away
from the surface M and the sign distinguishes whether x is in-
side or outside the surface. We further define a projection operator
PM(x) := argminy∈M ∥x− y∥. For any point x, the operator PM
projects x to a point on the surface which is closest to x. SDF pos-
sess numerous favorable properties, with one of the most significant
being its continuity and ability to effectively distinguish between
inside and outside of meshes.

Through the SDF, it is straightforward to extract the isosurface
of the mesh, which is a surface consisting of points with a con-
stant field value c: Sc = {p|ξ(p) = c}. As a special case, S0 coin-
cides with the original surface M. Due to the continuity of the SDF,
the isosurface has no self-intersection and is strictly enveloping the
original mesh for any c > 0.

Figure 4: An example of isosurface extraction in 2D. The left col-
umn shows the input horse shape. Top-center and top-right show a
visualization of the SDF and our modified version. Bottom-center
and bottom-right show the isosurfaces extracted from the corre-
sponding fields. In the modified SDF, the distance in the zoom-in
area are magnified locally, allowing us to extract an isosurface that
is homeomorphic to the input.

While the isosurface envelops the input mesh well, it often ex-
hibits geometric and topological inconsistencies with the input
mesh, particularly in nearly-touching parts on the mesh, as an ex-
ample in Figure 4 shows. Such topological inconsistencies can lead
to significant issues in cage based deformation, such as the inabil-
ity to independently edit regions of the mesh with different seman-
tic meanings. A simple strategy is to reduce the selection of the
c value, but this would rely on a highly dense discrete SDF. This
would significantly increase computational resource consumption
and result in the generation of more high-degree isosurfaces, con-
straining our subsequent simplification steps in Section 3.2. Hence,
we propose a simple local modification to the SDF which allows the
isosurface to cut through the narrow channel between these nearly-
touching parts, and make sure the topology of the enclosed surface
is kept. We first try to locate the regions of the surface which are

nearly-touching with some other regions of the surface, and then
amplify the SDF locally near these regions.

To locate the nearly-touching regions of the surface, we iden-
tity and construct a set of active points, by comparing the interior
(geodesic) distance and the Euclidean distance between each pair
of points. Let g(x,y) be the geodesic distance between x and y, i.e.
through the interior of the surface M, d(x,y) = ∥x− y∥ be the Eu-
clidean distance, and denote the neighborhood of a point p ∈M in
M as BM

p,r := {x|d(x, p) < r}. A point p is an active point if there
exists a point q ∈ BM

p,r such that g(p,q) > l, where r and l are user
specified parameters, with r being related to the isovalue c and l
related to the diameter of M.

Let A be the set of all active
points (see inset), whose existence in-
dicates that there are narrow channels
between some different parts of the
shape, which will not be separated by
the isosurface. Therefore, we locally
modify the SDF near the set A so that
the extracted isosurface will be closer
to A and can separate the nearly-touching parts. Intuitively, we
multiply the SDF by a radial function which quickly increases near
the active points so that isosurfaces becomes more densely dis-
tributed there. Formally, we construct the radial function using the
projection operator PM and geodesic distance g.

Let gA(p) = minq∈A g(p,q) be the distance from a point on the
surface to the set A. We define the following distance function d̂
for x ∈ R3,

d̂(x) = gA
(
PM(x)

)
+dM(x). (2)

For simplicity, we choose a variant of the Gaussian kernel function
as the radial function:

φ(x) = (α−1)e−β
2d̂2(x)+1, (3)

where α > 1 and β are two parameters related to the diameter of
M. φ obtains its maximum value α when d̂(x) = 0, and stays close
to 1 for sufficiently large d̂. To this end, we modify the SDF as
ξ̂(x) = φ(x)ξ(x), where ξ̂ is kept close to ξ in most regions, ex-
cept near the active point, for which the value of ξ̂ becomes much
larger. From the modified SDF, we can now extract the isosurface
Sc =

{
p|ξ̂(p) = c

}
. Since our modified 3D scalar field remains

continuous, the extracted isosurface Sc is free of self-intersections.
Figure 4 shows an example of isosurfaces extracted from the origi-
nal SDF and the modified SDF for the planar case. Figure 7 shows
an example for a 3D shape input.

3.2. Simplification

For the majority of applications, the cage should be of low com-
plexity. However, the isosurface that we extracted above has sim-
ilar, and often higher, complexity comparing to the input surface
mesh. Hence, we need to apply simplification to the isosurface, in
order to obtain an usable cage.

In the standard mesh simplification routine, edges are collapsed
iteratively, with a quality measure, e.g. QEM [GH97], guiding the
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collapsing order. In each iteration, the edge e, with the lowest cost
among all remaining edges is chosen, and collapsed to a new vertex
p, whose position is determined by solving a quadratic program to
minimize the collapsing cost ∆(v) = vT Qv, with Q being a symmet-
ric matrix and v is the position of vertex p. We denote Mp (M̂p)
as the surface before (after) edge e is collapsed to the point p.

The QEM simplification can produce a high fidelity approxima-
tion to the original mesh. However, it does not guarantee that the
simplified mesh is:

1. strictly enveloping the original mesh M;
2. free of self-intersection.

which are important properties that the cage should satisfy, as
we have pointed out. Therefore, we transform the unconstrained
quadratic program into a constrained problem, similar to the for-
mulation proposed by Xian et al. [XLG12],

argmin
v

vT Qv

s.t. N(p)∩M= ∅

M̂p is self-intersection free

(4)

where N(p) contains all the triangles in M̂p, which are incident to
vertex p.

The quadratic problem now becomes much more difficult to
solve, due to the added hard constraints. We propose a heuristic
solution guided by the SDF. While it is not guaranteed to succeed,
it turns out to be highly effective in practice. In the rare case that
our solution fails, or even there exists no solution to problem (4) for
some edges, we set the cost of these edge to infinity to avoid col-
lapsing them and allow the simplification process to continue with
other edges.

In order to solve problem (4), we initialize p with its position
determined by the unconstrained problem argminv vT Qv, and then
try to project the solution into the feasible region under the hard
constraints. Formally, we introduce a function Ψ which measures
the potential for vertex p to satisfy the constraints and then update
p by iteratively applying gradient descent to Ψ until the constraints
are met. Note that it is extremely rare in practice for N(p) to self-
intersect, hence to simplify the problem, we ignore this situation
when designing Ψ.

Note that if N(p) falls outside (or onto) the surface Mp, then
the obtained M̂p is guaranteed to satisfy both of the constraints in
problem (4). Hence, we construct Ψ in a way similar to Sacht et
al. [SVJ15]. We define Ψ as the signed distance to Mp integrated
over N(p),

Ψ(p) =−
∫

x∈N(p)
ξp(x)dA, (5)

where ξp(x) denotes the signed distance to Mp. The integral can
be approximated with a finite sum over a sample set xi,

Ψ(p) = ∑
i=1···h

wiξ(xi), (6)

where h is the sample size and wi is the area weight.

We minimize Ψ with gradient descent, which stops when the

constraints are satisfied (or if the iteration count exceeds a user
specified number). The cost of this edge is then set to ∆(v) = vT Qv
(or ∆(v) = ∞). Note that, after an edge collapses, the cost of all
the incident edges will be updated, therefore even if an edge is not
collapsible in one iteration, it may be collapsed later after its cost
gets updated. Figure 5 compares the simplification results of an
isosurface with and without the no intersection constraints.

Input Isosurface (a) (b)

Figure 5: A comparison of cages produced by simplifying the iso-
surface with (b) and without (a) the no intersection constraints. The
bright yellow region in (a) indicates that the cage does not fully en-
close the input shape.

3.3. Cage Optimization

We can further optimize various qualities of the cage, to suit the
needs of different applications. Let E(M̂,M) be a quality measure
for the cage, with exact expression depending on the application. In
the following, we propose two local operations to improve the cage
quality. During the execution of each operation, we ensure that the
enveloping property is maintained and no self-intersection occurs.

Vertex Relocation In order to strictly enforce the no self-
intersection constraints, we include the IPC barrier function B(v)
proposed by Li et al [LFS∗20] in the energy E(v) = E(M̂,M)+
λB(v) with B(v) given by,

B(v) = ∑
i∈C

b(di, d̂), (7)

where v is the vertex to be relocated, d̂ is a user specified distance
that the barrier repulsions starts to response to, C contains all the
non-incident point-triangle and non-adjacent edge-edge pairs be-
tween N(p) and M∪M̂, di is the unsigned distance between the
pair i and b(d, d̂) = max

(
(d − d̂)2 ln( d̂

d ),0
)
. The IPC barrier effec-

tively avoids the intersection between any primitive pair from C in
the process of vertex relocation.

We choose the gradient descent to optimize the energy for vertex
relocation, in which a line search is performed to obtain a proper
step size along the descent direction such that it

1. reduces the energy,
2. all pairs in C do not intersect

In order to satisfy condition (2), we use the continuous collision
detection (CCD) to compute the maximum collision free step for
all the pairs in C.
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Edge Flipping. We can also improve the quality of the cage by
flipping edges. In this case, we only need to check if the quality
improves with the edge flipping while making sure that the con-
straints stay satisfied.

Cage Quality We briefly introduce the cage quality measures that
we have experimented with.

• Meshing quality. One of the widely used energies in geome-
try processing is the MIPS energy, proposed by Hormann and
Greiner [HG12]. Given a pair of compatible triangulation M
and M̂, the MIPS energy is defined in terms of the Jacobians of
the piecewise linear mapping between them,

E(M̂,M) = ∑
T∈T̂

Tr(JT
T JT )

det(JT )
(8)

By choosing equilateral triangles as the reference, MIPS can be
used to measure the meshing quality of the cage, which allows
us to push the triangles of the cage to be well-shaped during the
optimization.

• Cage Spacing. In general, it is preferred that the cages are en-
veloping the shape as tightly as possible. Yet, there are some ap-
plications which requires having some spacing/distance between
the cage and shape. For example, when performing shape defor-
mation using the boundary element method [CW17,LCH∗21], to
avoid singularities of the mapping near the cage, it is typical that
the cage is constructed away from the deforming shape. Hence,
we propose the cage spacing energy, which allows us to roughly
specify the distance between the cage and the surface,

E(M̂,M) =
∫

x∈M̂
(ξ(x)−h)2dA (9)

with h being the specified distance. It is worth noting that while
the isovalue in Section 3.1 can be set to match the target distance
h. However, practical constraints arise due to the discretization of
the SDF through grid interpolation, which limits the selection of
the isovalue, particularly preventing very small values. Despite
this limitation, we allow for more flexibility in choosing the final
target distance h. Figure 6 shows a comparison of a cage before
and after optimizing the cage spacing energy. Figure 8 shows a
series of cages obtained with different cage spacings.

0 100 200 300
Sample

Distance

0.034

0.038

0.042

0.046

0.05

Before optimization

After optimization

Figure 6: A comparison of a cage before and after optimizing the
cage spacing energy. We specify h as 0.35. It can be seen that after
the optimization, the distance between the samples on the cage and
the input mesh is evenly distributed around 0.35.

4. Experimental Results

We implemented our method in C++, and performed the exper-
iments on a Windows 10 machine with an Intel i5-8500 CPU
3.0GHz with 32GB RAM. As preprocessing, we normalize all the
input meshes by scaling them into unit circle. For all the results pre-
sented in this paper, we use the following default parameters unless
stated otherwise. We set the isovalue c to 0.01. The thresholds used
to determine whether a point pair is in the different semantic part
of the model are r = 0.025, l = 0.15. The parameters for the radial
function are α = 3 and β = 8. The weight for barrier function is
λ = 0.1. The SDF and its gradient are computed using OpenVDB
[Ope21]. Additionally, OpenVDB provides an implementation of
the Marching Cubes algorithm [LC87], which can be used to ex-
tract isosurfaces from a 3D scalar field. In the final optimization
process, to balance efficiency, we execute these two optimization
steps only once.

Figure 7 shows that for a shape with nearly-touching parts, ex-
tracting the isosurface directly from the SDF will result in having
different topology from the input shape. In contrast, our modified
SDF allows to extract isosurface and generate cage homeomorphic
to the input isosurface.

Input (a) (b) (c) (d)

Figure 7: Isosurfaces extracted from the SDF (a) and the modified
SDF (c) and the resulting cages (b and d accordingly). The cage
generated from the modified SDF has the nearly-touching parts
separated, therefore is shape-aware.

For certain applications, it is preferable to have a cage whose
distance from the input mesh is evenly distributed and controllable.
For example, in the cage based deformation [CW17, LCH∗21], it
is needed to have some offset between the cage and the deform-
ing shape in order to avoid singularities with the harmonic basis
functions. With our method, it is easy to control the offset distance
by specifying the cage spacing h in the optimization step. Figure 8
shows multiple cages obtained with different cage spacings. Figure
1 shows the deformation results of [LCH∗21] of the octopus shape
by utilizing the cage generated by our method.

h=0.015 h=0.02 h=0.025

Figure 8: Cages with different spacings h to the input shape.
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For some applications such as collision proxies, there is a need to
have a multi-resolution hierarchy of cages with strict nesting struc-
ture. By repeating our method on the generated cages, it is easy
to construct a sequence of cages with the coarser layers strictly
encaging the finer layers, nesting one another. Figure 9 shows an
example.

Figure 9: The man head shape with two nested cages. We generate
a cage (blue) from the input shape, and then rerun our algorithm
(on the blue cage) to create another cage (red).

Figure 10 compares the cages between those generated
by [SVJ15] and those from our method. It can be seen that our
results can better capture the appearance of the input shape with
fewer vertices. In Figure 2, we compare the results of our method

#V = 3000 #V = 500 #V = 500 #V = 200
[Sacht et al. 2015]  Ours

Figure 10: A comparison of cages with different resolutions gen-
erated by Nested Cage [SVJ15] and our method. The two images
on the left show cages generated by Nested Cage, which contain
3000 and 500 vertices respectively. The 3rd and 4th images show
the cages generated by our algorithm with 500 and 200 vertices.

with Sacht et al. [SVJ15] and Sander et al. [SGG∗00]. This figure
shows that our cage ensures the distance to the input shape remains
within an appropriate range. In many 3D barycentric coordinate
applications, such as Green’s barycentric coordinates [LLCO08], if
the cage vertices are too close to the input shape, it may cause sin-
gularities in the barycentric coordinate values. Maintaining a suit-
able distance helps to prevent this issue. In Figure 11, we compare
a hand made cage from [JSW05] and a series of cages generated
from our method for the Armadillo shape. It can be seen that our
results have similar quality to the hand made cage, and they are still
acceptable at very low resolutions. Finally, we include an additional
set of cages generated for various shapes in Figure 12.

5. Summary and Discussion

We have presented a simple, efficient and robust cage generation
method. Following the envelop-and-simplify paradigm, an isosur-
face is first extracted from the signed distance field to the input
shape, which is guaranteed to be strictly enveloping, free of self-
intersection and geometrically and topologically close to the input
shape, allowing it to be easily simplified to a coarse cage struc-
ture in the second stage and further optimization to the quality can
be performed if needed. Furthermore, the versatility of SDF as a
shape-aware implicit function allows us to design a simple modifi-
cation so that the extracted isosurface is homeomorphic to the input
shape, which is important for many applications.

Maximally simplified cage For most applications, our simplifica-
tion step can produce cages that are sufficiently coarse, i.e. having
few enough vertices. If there is a need to further compress the cage,
it can be achieved by either increasing the isovalue of the surface
or repeating the simplification and optimization steps.

Limitation If the shape has extremely close-by parts, then the ex-
tracted surface will not be able to separate these parts in practice.
This is due to that, the SDF has finite resolution with its underlying
representation, which cannot be increased indefinitely.

Future work We have demonstrated an interesting and practical
application of the implicit shape representation, in particular, SDF.
In the future, it is interesting to see how this representation can help
with other geometry processing problems.
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Figure 12: Additional results of cages generated from various shapes. Each triplet shows: input shape, a slice through the cage, and the
cage.


