
Computational Visual Media
https://doi.org/10.1007/s41095-021-0211-2 Vol. 7, No. 2, June 2021, 267–281

Research Article

Efficient fastest-path computations for road maps

Renjie Chen1 (�), Craig Gotsman2

c© The Author(s) 2021.

Abstract In the age of real-time online traffic informa-
tion and GPS-enabled devices, fastest-path computations
between two points in a road network modeled as a
directed graph, where each directed edge is weighted by
a “travel time” value, are becoming a standard feature of
many navigation-related applications. To support this,
very efficient computation of these paths in very large
road networks is critical. Fastest paths may be computed
as minimal-cost paths in a weighted directed graph,
but traditional minimal-cost path algorithms based on
variants of the classical Dijkstra algorithm do not scale
well, as in the worst case they may traverse the entire
graph. A common improvement, which can dramatically
reduce the number of graph vertices traversed, is the A*
algorithm, which requires a good heuristic lower bound
on the minimal cost. We introduce a simple, but very
effective, heuristic function based on a small number of
values assigned to each graph vertex. The values are
based on graph separators and are computed efficiently
in a preprocessing stage. We present experimental results
demonstrating that our heuristic provides estimates of the
minimal cost superior to those of other heuristics. Our
experiments show that when used in the A* algorithm,
this heuristic can reduce the number of vertices traversed
by an order of magnitude compared to other heuristics.

Keywords shortest-path; road map; heuristic; GPS
navigation; A* search

1 Introduction

1.1 The shortest, minimal-cost, and fastest
path problems

The shortest-path-on-a-graph problem is one of the

1 University of Science and Technology of China, Hefei,
China. E-mail: renjiec@ustc.edu.cn (�).

2 New Jersey Institute of Technology, Newark, NJ, USA.
E-mail: gotsman@njit.edu.

Manuscript received: 2021-01-13; accepted: 2021-02-01

most fundamental algorithms in computer science,
the graph being one of the most basic and common
discrete structures, modeling an abundance of real-
world problems involving networks. In the most
basic scenario, graph vertices represent entities
in a network and an edge between two vertices
indicates the existence of a link between them (e.g., a
communication or social network). The shortest path
between two vertices s and t in the graph is then the
path between s and t containing the minimal number
of edges. In the case of a communication network,
this could be the cheapest way to route a message to t,
originating at s. In the more general case, each edge
is assigned a weight which measures a cost associated
with traversing that edge. The shortest path then
becomes a minimal-cost path, where the cost of the
path is the sum of the costs of its edges. In the case
of a communication network, the associated cost of
an edge may be its conductance.

A very important type of network is a road map,
the graph vertices representing road junctions and the
edges road segments between the junctions. In the
simplest scenario, the graph is planar, so vertices are
embedded in the plane, and have (x, y) coordinates;
each edge is assigned a positive weight measuring its
Euclidean length in the plane. The minimal-cost path
between two vertices s and t is then the edge path
of minimal Euclidean length between s and t, which
could indicate the shortest drive (or walk) between
these two points. In practice, in vehicle navigation
applications, not all the edges of the road map having
the same length are equivalent for a driver, since the
possible driving speed on roads may vary, depending
on the category of the road. Highways are usually
preferred, as they allow higher speeds, thus a faster
trip. Consequently, the more relevant weight assigned
to a road segment is the so-called “travel time”, which
is the segment length divided by the maximal speed

267

268 R. Chen, C. Gotsman

possible on that segment. The resulting minimal-
cost path in this weighted graph is sometimes called
the “fastest path”. The more realistic variant of this
problem is when the graph edges are directed, namely
the travel time along an edge may depend on the
direction of the edge. In the special case of a one-
way road, the edge exists in just one direction (or,
equivalently, the travel time in the opposite direction
is infinite).

1.2 Precomputation and dynamic fastest
path problems

Traditional minimal-cost path algorithms do not
scale well to very large networks. More practical
algorithms rely on (typically heavy) preprocessing
of the graph, resulting in extra information to
store along with the basic graph data, which is
exploited in answering online (s, t)-minimal-cost
queries efficiently. While effective, this approach
introduces a complication. Using travel time as the
costs of road network edges is useful to correctly
model a real-world navigation problem, but it also
imposes a dynamic character on the problem, as
the maximal speed on a road segment is rarely a
constant—it changes with traffic conditions—so the
travel time is dynamic. Consequently, an algorithm
which relies on preprocessing the graph data to speed
up online (s, t)-fastest-path queries must deal with
the dynamic nature of the data by periodic repetition
of the preprocessing. This rules out the use of unduly
heavy preprocessing.

1.3 Objective

The computation of minimal-cost paths in dynamic
weighted graphs has been the subject of intense study
over the past decades, and many techniques have been
proposed to solve different variants of the problem. A
complete survey of the state-of-the-art is beyond the
scope of this paper and we refer the interested reader
to the survey and comparison of Bast et al. [1].

Our contribution is a very effective heuristic
function which can be used in the well-known A*
algorithm for minimal-cost path computation on
weighted directed graphs. Computation of the
heuristic is fast and can easily be repeated periodically
to accommodate dynamic traffic conditions in road
networks. A* using this heuristic can be used in
conjunction with many other techniques to provide a
more complete solution to the general problem.

2 Dijkstra’s and A* algorithms

While in practice we typically would like to solve the
“point-to-point” minimal-cost path problem between
a source vertex s and a target vertex t in a directed
graph, it turns out that this indirectly involves
computing the minimal-cost path from s to many
other vertices in the graph. Let G = (V, E, w) be
a directed graph with vertex set V and edge set
E ⊂ V × V , such that the positive real cost of
traversing the directed edge (u, v) is w (u, v) . The
minimal cost of a path from given vertex s ∈ V to
given vertex t ∈ V may be obtained by computing
the entire function cs (v) from s to any other vertex
v ∈ V by solving the following linear program:

max cs (t)
such that cs (s) = 0

∀ edge (u, v) ∈ E(G) : cs(v) − cs(u) � w (u, v)
Thinking of cs(v) as an “embedding” of the graph
vertices on the real line, this means we would like
to “stretch” s and t as far apart as possible on the
line, subject to the constraint that the endpoints of
any edge (u, v) are separated by a distance of at most
w (u, v): the weight of the edge.

Let ∇(u, v) = (cs (v) − cs (u)) /w(u, v) be the
“gradient” of cs along the edge e. In the optimal
solution, ∇(u, v) = 1 for all edges along the minimal-
cost path, and ∇(u, v) � 1 for all other edges. Thus
a gradient-descent path of c starting at s traces out
the minimal-cost path.

In practice, this linear program can be transformed
into a dynamic programming problem, which in turn
can be solved by Dijkstra’s celebrated algorithm [2],
which traverses the graph vertices guided by a priority
queue of vertices. The procedure terminates if t is
reached and a minimal-cost path is then generated
by tracing the path backwards from t. If the
priority queue empties before t is reached, the search
fails and a minimal-cost path does not exist (e.g.,
if the graph is not connected). The complexity
of the most efficient implementation of Dijkstra’s
algorithm [3] is O (m + n log n) , where m is the
number of graph edges and n the number of graph
vertices. Unfortunately, this is prohibitive, for the
number of edges m is typically much larger than the
number of edges along the minimal-cost path.

Dijkstra’s algorithm may be accelerated into a
“guided” A* search [4] if there is additional domain

Efficient fastest-path computations for road maps 269

knowledge in the form of a heuristic function h(v, t)
that estimates the minimal cost from v to t. The
simplest example of a heuristic function for a
planar graph with edge-length weights is the planar
Euclidean distance h (v, t) = ‖p(v) − p(t)‖2 , where
p (v) represents the 2D coordinates of v in the plane.
A* is guaranteed to find the shortest path if h is
admissible, namely is a lower bound on the true
minimal cost. It is easy to see that Euclidean distance
has this property. Like Dijkstra’s algorithm, A*
maintains a priority queue of OPEN vertices. If
h is not admissible, a path is still found, but not
necessarily the minimal-cost path.

If h satisfies the additional consistency (or
monotonicity) condition h(v, t) − h(u, t) � w(u, v)
for every edge (u, v) of the graph and every vertex
t, then A* can be implemented more efficiently—no
node needs to be processed more than once—and A*
is equivalent to running Dijkstra’s algorithm with
the modified (still positive) edge weights: w′(u, v) =
w(u, v) + h(u, t) − h(v, t). In practice, in addition
to the OPEN priority queue, a list CLOSED is
maintained. Once popped from OPEN, a vertex goes
into CLOSED and is never considered again.

Note that Dijkstra’s original algorithm is equivalent
to A* with the trivial admissible and consistent
heuristic h(v, t) ≡ 0.

The following two theorems are useful in
characterizing heuristics.

Theorem 1: Given a heuristic h (u, v), if h is
consistent and h(t, t) = 0, then h is admissible.

Proof: Let {v = v1, . . . , vn = u} be the minimal
cost path between u and v. Firstly, if n = 2,
which means (u, v) is an edge giving the shortest
path between u and v, hence h (u, v) � h (u, u) +
w (u, v) = w (u, v) = c (u, v), where c is the
minimal cost function. Now suppose we have
h (vn−1, v) � c (vn−1, v). Then by induction,
h (u, v) � h (vn−1, v) + w (vn−1, u) � c (v, vn−1) +
w (u, vn−1) = c (u, v) .

Theorem 2: If a heuristic h is derived from a
metric function m, namely h(u, t) = m(u, t) and
m (u, v) � w(u, v) for all edges (u, v), then h is
consistent.

Proof: For any edge (u, v), apply the triangle
inequality and symmetry of m, we get h (v, t) −
h (u, t) = m (v, t) − m (u, t) � m (v, u) = m (u, v) �
w(u, v).

Theorems 1 and 2 imply that the planar Euclidean
heuristic is admissible and consistent. The admissible
heuristic h1 is called more informed than the
admissible heuristic h2 if h1 (v, t) � h2 (v, t) for all
v, t ∈ V.

2.1 A* heuristics

Much effort has been invested in designing good
heuristics for A*. A complete account would be
lengthy, and much of it is domain-dependent, so we
discuss here just the most generic methods.
2.1.1 The optimal heuristic
In general, it is possible to precompute the optimal
heuristic h (v, t) by solving a convex semi-definite
program (SDP) for the O(n2) values of h, forcing the
conditions necessary for the heuristic to be admissible
and consistent [5]. It relies on the convenient fact
that it is sufficient for the heuristic to be “locally”
admissible on single edges, i.e., h (u, v) � w(u, v) for
every edge (u, v), in order that it be admissible over
arbitrary paths, significantly reducing the number
of linear inequality conditions in the semi-definite
program to O (m), and thus the complexity of the
entire algorithm to O(m3). However, this complexity
is still prohibitive and the method is not applicable to
graphs containing more than a few thousand vertices.
A number of improvements are possible, but the
method still remains quite complicated.
2.1.2 The differential heuristic DH
A very simple, but surprisingly effective differential
heuristic, was proposed by Goldberg and Harrelson
[6] (who called it ALT) and independently by Chow
[7]. It requires some preprocessing of the graph
G = (V, E, w). A small number (usually k � 10)
“landmark” vertices (also called anchors, pivots or
centers) l1, . . . , lk are chosen from V (G). In a
preprocessing step, for each vertex v ∈ V (G), the
vector of minimal costs c (v) = (c (l1, v) , . . . , c (lk, v))
is computed and stored. Then, at the online
computation of the minimal-cost path from s to t,
the heuristic

h (v, t) = max
1�i�k

{|c (li, v) − c (li, t)|} (1)

is used. This heuristic requires O (k (m + n log n))
preprocessing time and O (kn) space to store. Given
v and t, h(v, t) can be computed online in O(k) time.

It is convenient to think of c (v) as an embedding of
v in Rk and h (v) as the embedding distance between

270 R. Chen, C. Gotsman

v and t using the l∞ norm:
h (v, t) = ‖c (v) − c (t)‖∞

It is easy to see that h (v, t) is exact, i.e., h (v, t) =
c (v, t), if v is on one of the minimal-cost paths
between li and t. It is also easy to apply Theorems
1 and 2 to show that the differential heuristic is
admissible and consistent.

The degrees of freedom in this heuristic correspond
to choices of the landmark vertices. Goldberg and
Harrelson [6] showed how to optimize these,
concluding that landmarks which cover the graph
well are a good choice. In the special case of a planar
(or close to planar) graph, a good choice consists of
vertices covering the boundary. In the sequel we will
call this heuristic DH.
2.1.3 The FastMap heuristic FM
Inspired by the interpretation of the differential
heuristic as an embedding distance and by the
FastMap algorithm used in machine learning, Cohen
et al. [8] devised another embedding based on pairs
of landmarks and defined the heuristic using the l1
norm distance between the embeddings.

The algorithm proceeds by finding a pair of furthest
vertices (a1, b1)—those having a large minimal-cost
path between them—and computing for every vertex v:

f1 (v) =
1
2

(c(a1, v) − c (b1, v))

Defining the following function on pairs of vertices:
h1 (u, v) = |f1 (u) − f1 (v)|

the weight w(u, v) of the graph edge (u, v) is then
modified by subtracting h1 (u, v) from it and the
process repeated k − 1 times on the modified
graph to obtain the embedding vector r (v) =
(f1 (v) , . . . , fk (v)) . The final heuristic is the l1
embedding distance:

h(v, t) = ‖r (v) − r (t)‖1

The authors show that this heuristic is also admissible
and consistent. In the sequel we call this heuristic
FM.

3 The separator heuristic SH

3.1 Definition and properties

Since each landmark employed by the differential
heuristic defines a cost field on the graph vertices,
where every vertex is assigned the value of the
minimal cost of a path between the vertex and the

landmark, we first observe that this concept may be
easily generalized. Instead of a landmark being a mere
single vertex, it may be a set of vertices S ⊂ V (G),
with the cost of a vertex v (relative to S) is defined
as

c (v, S) = min
u∈S

c(v, u)

This defines a more complicated distance field per
landmark, to which the triangle inequality may be
applied to obtain an analogous differential heuristic.
Unfortunately, in practice this generalization does
not add much power to that heuristic.

Significantly more power can be obtained if the
set S is a separator of the graph, namely its removal
(along with the edges incident on the removed vertices)
results in V being partitioned into three sets U1, S,
and U2 = V − U1 − S, such that there are no edges
between U1 and U2. This means that S separates U1
from U2 and the separated graph contains at least
two connected components, none of them mixing U1
and U2. We may take advantage of the dichotomy on
V induced by S by defining a signed cost field on V ,
positive in U1 and negative in U2. Denote this signed
cost field by C.

Figure 1 shows the unsigned cost fields induced on
a road network by a single landmark vertex or a set
of 5 landmark vertices, in comparison to the signed
cost field induced by a separator.

As with the differential heuristic, we choose k

separators S1, . . . , Sk, and define the embedding:
r (v) = (C (v, S1) , . . . , C (v, Sk))

and the resulting heuristic is the l∞ embedding
distance:

h(v, t) = ‖r (v) − r(t)‖∞

Using a signed cost boosts the usefulness of this
heuristic significantly. It remains to show that it
is still admissible and consistent. Since the use of
the signed cost changes the rules relative to the
differential heuristic, we provide next a separate proof
of admissibility and consistency. In the sequel we call
this heuristic SH.

Theorem 3: The separator heuristic is admissible
and consistent.

Proof: Assume Si separates G into U1 and U2. Let
ai and bi denote the vertices of Si with minimal cost
to v and t, respectively.

Case 1: v, t ∈ U1 or v, t ∈ U2. In this case C (v, ai)

Efficient fastest-path computations for road maps 271

Fig. 1 Cost fields on an undirected graph with edges weighted by Euclidean edge lengths. Left: unsigned cost field induced by a single
(magenta) landmark. Center: unsigned cost field induced by a set of 5 landmarks. Right: signed cost field induced by a separator.

and C(t, bi) have the same sign and this case is similar
to that of the differential heuristic. By definition:

c (v, ai) � c (v, bi) and c (t, bi) � c (t, ai)
By the triangle inequality:

c (v, bi) � c (t, bi) + c (v, t)
so

c (v, t) � c (v, bi) − c (t, bi) � c (v, ai) − c(t, bi)
Again by the triangle inequality:

c (t, ai) � c (v, ai) + c (v, t)
so

c (v, t) � c (t, ai) − c (v, ai) � c (t, bi) − c (v, ai)
Putting these two together:
c (v, t) � |c (v, ai) − c (t, bi)| = |C (v, ai) − C (t, bi)|

= |C (v, Si) − C (t, Si)|
Case 2: v ∈ U1 and t ∈ U2 or vice versa. See
Fig. 2(left). Since Si separate U1 and U2, the minimal-

cost path between v and t must contain at least one
vertex si ∈ Si. By definition:

c (v, ai) � c (v, si) and c (t, bi) � c (t, si)
By the subpath property of the minimal-cost path:

c (v, t) = c (v, si) + c (t, si) � c (v, ai) + c (t, bi)
= C (v, ai) − C (t, bi)
= C (v, Si) − C (t, Si)

Since c (v, t) is always positive, we can, without loss
of generality, flip the signs of C so that:

c (v, t) � |C (v, Si) − C (t, Si)|
Since this is true for all Si, we have

c (v, t) � max
i

|C (v, Si) − C (t, Si)| = h(v, t)

Note that the separator itself may not be connected,
and even if it is, it may separate the graph into more
than two connected components, as in Fig. 3. This
does not change any of the arguments above.

Fig. 2 Left: Case 2 of proof of Theorem 3. Blue path: minimal-cost path between vertices v and t, which must cross the separator Si at some
vertex si. Vertices ai and bi are those on the separator having minimal cost to v and t, respectively. Right: analogous scenario for the planar
Euclidean distance function. If Si is approximately parallel to the (dotted) bisector between v and t, c (ai, bi) is small and h (v, t) is more
informed.

272 R. Chen, C. Gotsman

Fig. 3 A separator may disconnect the graph into (left) two or (right)
more connected components.

3.2 Computing the SH heuristic

Although computing the heuristic is done in a
preprocessing stage, it is still important that it
be computable somewhat efficiently. In many
applications (e.g., traffic-sensitive navigation) the
edge weights are dynamic, so change over time, and
the heuristic must be updated periodically to reflect
the new weights. Hence efficiency is important.

At first glance, it seems that computing SH
is much more complex than computing DH. DH
requires a single-source minimal-cost computation
over the entire graph for each of the k landmarks,
costing O (k (m + n log n)) time. Using the same
logic, it would seem that computing SH requires
similar computation for each vertex in the separators,
whose size in a planar graph is O (

√
n) [9],

thus costing O (k
√

n (m + n log n)) time, which is
significantly more than the complexity of computing
DH. Fortunately, a straightforward “trick” reduces
this complexity back down to the same proportions as
DH. For each separator S, introduce a new “virtual”
vertex wS to the graph, connected to all vertices
of S, and assign a zero weight to all these edges.
Then computing the heuristic associated with S is
easily seen to be reduced to computing a single-source
minimal-cost path computation over the entire new
graph for wS .

3.3 Choosing good separators

The quality of the SH heuristic very much depends
on the choice of separators. It seems that the most
informed value of h(v, t) is obtained when v and t

are separated by one of the Si and the separator is
compact, in the sense that it contains few vertices
and these vertices are “close” to each other, i.e., the
“cost diameter” of the separator is small. In this case
the separator functions as a “bottleneck”, through
which the minimal-cost path between v and t must

pass, and the three points ai, bi, and si mentioned in
the proof of Theorem 2 are very close to each other.
Indeed, by the triangle inequality
c (v, t)�c (v, ai)+c (ai, bi)+c (t, bi)=h (v, t)+c (ai, bi)
so

c (v, t) − h (v, t) � c (ai, bi)

and if ai and bi are connected by a path of small cost,
c (ai, bi) is probably small.

If the separator is not very compact it is difficult to
guarantee that c(ai, bi) will always be small. Indeed,
it is easy to construct simple examples where c (ai, bi)
is very large. In analogy to the planar Euclidean case,
a good rule of thumb is that if the separator is more or
less parallel to the bisector of v and t, c(ai, bi) will be
small. See Fig. 2(right). If the graph is a road network
that contains highways with small travel time, it is
quite effective to use these highways as separators,
as they are typically also minimal-cost paths, so all
the vertices of the separators are very “close” to each
other. Care must be exercised to completely separate
the graph along the highway, as typically there are
overpasses and underpasses related to the highway,
i.e., the graph may not be planar close to the highway.

When the highways do not cover the road network
in a systematic manner, it is more practical to
take advantage of the planar layout of the network
and simply “slice up” the network using straight
lines. The simplest approach is to use equally-
spaced horizontal and vertical lines. Each such line
defines a separator as the vertices on the set of edges
intersecting the line, on one side of the line. However,
based on the analogy to planar bisectors mentioned
above, it is also advantageous if these lines span
a variety of angles. It may also be more practical
to use a piecewise-linear polyline to manually (i.e.,
interactively) define the separator, as this allows it
to be better adapted to the features of the network.

Another way to obtain compact separators is to use
the very effective METIS [10] software package for
computing compact balanced separators in graphs.
See Fig. 4 for an example of a polyline separator
and one generated by METIS. While we found
that METIS generates very compact separators,
it completely ignores the “cost diameter” of the
separator, so is not optimal for our purposes. We
also found that it is difficult to control METIS to
generate a variety of separators at different locations
and angles.

Efficient fastest-path computations for road maps 273

Fig. 4 Example separators in the Bay area. Left: a separator defined by the dotted pink polyline effectively cutting through bridges across
the bay and mountain ridges. The separator is the set of pink vertices incident on the cut edges to the left of the polyline. Blue, green regions:
largest connected components in the network after the separator is removed. Black regions: union of the other (usually very small) connected
components. Right: a more compact and balanced separator computed by METIS.

3.4 Directed graphs

The preceding discussion is valid for directed graphs in
which the minimal-cost function is symmetric (thus
also a metric): c (u, v) = c(v, u). In reality, road
networks are directed graphs, traffic flowing with
different velocities in opposite directions, with one-
way roads as an extreme case of zero flow in one
direction—a fact that cannot be ignored in a real-
world application. Thus c (u, v)—the travel time from
u to v—is typically different from c (v, u) .

The DH and SH heuristics described above may
be generalized to the directed case, by storing two
values per coordinate, representing minimal costs in
opposite directions. For example, given a landmark
vertex l, the directed triangle inequalities relating to
c (s, t) are (see Fig. 5):

c (s, l) � c (s, t) + c (t, l)

c (l, t) � c (l, s) + c (s, t)
implying:

c (s, t) � c (s, l) − c (t, l)

c (s, t) � c (l, t) − c (l, s)
Thus the analog to Eq. (1) for the DH heuristic in
the directed case is

h (s, t) = max {c (s, l) − c (t, l) , c (l, t) − c (l, s)}
� d (s, t)

Note that, as opposed to the undirected case, h(s, t)
may (in rare cases) be negative, so it should be capped
at zero:

h (s, t) = max {c (s, l) − c (t, l) , c (l, t) − c (l, s) , 0}
As in the undirected case, using SH in the directed

case requires separators. These are defined and

Fig. 5 Computation of the DH heuristic based on the landmark
l in the directed case. Costs of minimal-cost paths from l in both
directions are stored for all vertices.

274 R. Chen, C. Gotsman

generated in the same way as for the undirected case,
i.e., the separation property ignores the directionality
of the edges. Since the cost is no longer symmetric, it
is not as useful to use the concept of “cost field”, but
just the concept of (undirected) connected components.
Figure 6 summarizes the computation of our SH
heuristic based on a separator S in the directed case.

Computing c (S, t) for all vertices t is easy, as
discussed in Section 3.2, through the use of a virtual
vertex connected with edges of weight zero to all
vertices of S, and then performing a one-to-all
minimal-cost computation from that vertex. At first
glance, it would seem that directly computing the
opposite c(t, S) is not that straightforward, but this
may be solved by reversing the directions of all the
graph edges.

4 Experimental results

We have implemented the heuristics discussed in
this paper, namely the differential heuristic (DH),
FastMap (FM), and our separator heuristic (SH), and
compared how informed they are when approximating
the travel time on a number of road networks whose
edges are weighted with realistic travel time. We were
not able to use the popular benchmark road networks
from the 9th DIMACS Implementation Challenge—
the Shortest Paths dataset [11]—because these are
undirected graphs, so do not reflect reality. Instead,
we extracted directed graphs on the equivalent areas
of New York, Colorado, and the Bay Area from
OpenStreetMap [12]. Table 1 shows summarises those
graphs. We were surprised to discover that these

Table 1 Statistics of graphs used in our experiments, as extracted
from OpenStreetMap

Graph
New York Colorado Bay Area

(NY) (COL) (BAY)
Vertices 1,579,003 5,154,659 3,092,249
Undirected edges 1,744,284 5,400,186 3,351,919
Directed edges 3,104,365 10,454,829 6,279,871

were 10× more detailed than those in the DIMACS
Challenge. The edges of the graphs were weighted by
the minimal travel time along that edge,
which was computed as the Euclidean length of the
edge (as computed from the latitude and longitude
information per vertex) divided by the maximal speed
on that edge, as extracted from OpenStreetMap. In
our experiments, we randomly chose 10,000 pairs
of vertices from each map by randomly choosing
two points (s, t) uniformly distributed within the
bounding box of the map, and then “snapping” those
two points to the closest map vertex, as long as
the snap was not too far. We then compared the
true fastest path time c (s, t) to the heuristic h(s, t),
when varying the number of “coordinates” used in
the heuristics between 4, 6, and 8. We performed this
experiment for the directed graph and an undirected
version of the same graph, where the weight of an
edge was taken as the minimal weight of the edges
in each direction. In the directed case, we compared
SH only to DH, as it is unclear how to generalize FM
to the directed case. The DH landmarks were spread
uniformly around the boundary of the network. The
FM landmark pairs were computed in the manner
described by Cohen el al. [8], as pairs with distant

Fig. 6 SH heuristic hS (u, v) for a directed weight graph based on a separator S.

Efficient fastest-path computations for road maps 275

travel time between them. The SH separators were
chosen as a mix of METIS separators and polyline
separators specified interactively to take advantage
of bottlenecks in the networks.

For each pair of vertices (s, t), we measured the
relative quality of the heuristic:

qual (s, t) =
h (u, v)
c (u, v)

which is a value in [0, 1] reflecting how informed
the heuristic is. Tables 2 and 3 show mean and
standard deviations of the heuristic qualities for the
experiments we performed, on the undirected and
directed graphs, respectively. Good values should be
between 80% and 100%. The results show that in the
undirected case, the SH heuristic is consistently more
informed by 3% to 13% than the DH heuristic, which
in turn is also 3% to 13% more informed than the
FM heuristic. The results are similar in the directed
case: SH is 3% to 12% more informed than DH.

Although a 3% improvement in the quality of the
SH heuristic over the DH heuristic would seem rather
small, it can make a surprisingly big difference in
the performance of the A* algorithm. The effect of a
good heuristic is to reduce the number of road network
vertices traversed during the search for the fastest
path. Thus the efficiency of a heuristic in conjunction
with A* is measured as the number of vertices on the
fastest path divided by the total number of vertices
traversed by A*:

eff (s, t) =
#vertices (fastest path(s, t))
#vertices(A∗ traversal(s, t))

The closer this number is to 1, the more efficient the
heuristic is. The efficiency of the heuristic is the mean
of this quantity over all possible pairs (s, t). The best
possible efficiency on a road network is typically 40%–
50%, since any variant of A* must traverse at least
the fastest path vertices and also their immediate
neighbors. When a heuristic is used, the efficiency
can drop dramatically to close to 1%, meaning 100
vertices of the graph are explored for every one vertex
along the fastest path. Tables 4 and 5 compare the
efficiencies of the different heuristics using the same
formats as Tables 2 and 3. SH is more efficient than
DH by a factor between 1.35 and 2.4 in the undirected
case, and between 1.26 and 2.67 in the directed case.

Figures 7 and 8 give more details of the results
for the simplest case of k = 4 on undirected and
directed road networks. The left column of each
table illustrates the four DH landmarks in red, the
four FM pairs in blue, and the four SH polyline
separators in four other colors. The middle column
shows histograms of the distribution of the qualities
of DH, FM, and SH values in red, blue, and green,
respectively. The right column shows histograms of
the efficiencies, color-coded in the same way.

To illustrate better the efficiency of the SH heuristic
compared to that of the DH heuristic, Figs. 9 and 10
show the vertices traversed by A* when searching for
the fastest path using these different heuristics on
the same (s, t) pair, in undirected and directed cases.
Despite the modest improvements in quality between
DH and SH, the efficiency is improved by anywhere
between a factor of 2.9 and 30.

Table 2 Mean and standard deviation of heuristic quality (%) as measured in our experiments, over 10,000 pairs of vertices on an undirected
road network

Graph New York (NY) Colorado (COL) Bay Area (BAY)

k SH DH FM SH DH FM SH DH FM

4 89 ± 13 84 ± 14 82 ± 17 87 ± 14 84 ± 13 71 ± 22 90 ± 15 77 ± 15 67 ± 21

6 91 ± 11 85 ± 13 84 ± 16 90 ± 12 85 ± 12 73 ± 21 91 ± 13 80 ± 15 71 ± 20

8 92 ± 10 87 ± 12 84 ± 16 92 ± 11 86 ± 12 75 ± 21 93 ± 10 83 ± 13 72 ± 20

Table 3 Mean and standard deviation of heuristic quality (%) as measured in our experiments, over 10,000 pairs of vertices on a directed road
network

Graph New York (NY) Colorado (COL) Bay Area (BAY)

k SH DH SH DH SH DH

4 88 ± 14 83 ± 15 87 ± 14 84 ± 13 89 ± 15 77 ± 15

6 91 ± 11 85 ± 13 90 ± 12 85 ± 12 91 ± 13 80 ± 15

8 92 ± 10 87 ± 12 92 ± 11 86 ± 12 93 ± 11 83 ± 13

276 R. Chen, C. Gotsman

Table 4 Mean and standard deviation of heuristic efficiency (%) for A* as measured in our experiments, over 1,000 pairs of vertices on an
undirected road network

Graph New York (NY) Colorado (COL) Bay Area (BAY)

k SH DH FM SH DH FM SH DH FM

4 6.0 ± 9.9 3.6 ± 9.4 3.2 ± 6.7 3.4 ± 5.9 2.9 ± 6.4 1.5 ± 3.1 4.8 ± 8.9 3.5 ± 10.4 2.0 ± 5.1

6 7.1 ± 11.0 5.7 ± 11.9 3.7 ± 7.4 5.8 ± 8.5 3.8 ± 8.6 1.9 ± 4.9 8.1 ± 15.3 3.9 ± 10.8 2.7 ± 6.5

8 8.1 ± 12.5 6.0 ± 12.0 3.7 ± 7.5 7.3 ± 9.3 4.4 ± 9.7 2.2 ± 5.5 11.3 ± 17.7 4.7 ± 11.5 3.0 ± 7.1

Table 5 Mean and standard deviation of heuristic efficiency (%) for A* as measured in our experiments, over 1,000 pairs of vertices on a
directed road network

Graph New York (NY) Colorado (COL) Bay Area (BAY)

k SH DH SH DH SH DH

4 5.6 ± 9.8 3.1 ± 7.9 3.4 ± 6.0 2.7 ± 5.6 4.8 ± 9.5 3.3 ± 10.8

6 6.7 ± 11.3 6.0 ± 12.3 5.8 ± 8.0 3.6 ± 8.2 8.0 ± 15.3 3.6 ± 11.2

8 8.2 ± 13.2 6.1 ± 12.3 7.4 ± 9.0 4.2 ± 9.4 11.2 ± 18.3 4.2 ± 11.9

Fig. 7 Comparison of heuristics using k = 4 coordinates on undirected weighted road networks. Red points are DH landmarks. Blue points
joined by line segments are FM pairs. SH separators are in other colors. Above: New York (NY). Center: Colorado (COL). Below: Bay Area
(BAY). Left: road network. Center: heuristic quality histogram. Right: heuristic efficiency histogram.

Efficient fastest-path computations for road maps 277

Fig. 8 Comparison of heuristics using k = 4 coordinates on directed weighted road networks. Red points are DH landmarks. Blue points
joined by line segments are FM pairs. SH separators are in other colors. Above: New York (NY). Center: Colorado (COL). Below: Bay Area
(BAY). Left: road network. Center: heuristic quality histogram. Right: heuristic efficiency histogram.

It is interesting to understand better the effect of
the location of the separator on the efficiency of A*
using SH. Figure 11 shows how A* traverses a road
network when searching for the fastest path between
two vertices using SH based on a single separator, in
three different locations. For simplicity, this network
is undirected and its edges are weighted by Euclidean
edge lengths. The separators are all parallel to the
“bisector” between the two vertices, but at different
distances from the target. As long as the vertex under
consideration is separated from the target vertex, the
heuristic seems to be quite informed. This changes,
sometimes quite dramatically, when the separator is
crossed, indicating that the true power of the heuristic
is in its separation property, as opposed to, e.g., the
DH heuristic, which is based on no more than the
very basic triangle inequality.

5 Summary and conclusions

We have proposed a relatively simple way to compute
an admissible and consistent heuristic, SH, for the
A* algorithm for computing the minimal-cost path
in a weighted directed graph. In some sense, this
heuristic may be viewed as a powerful generalization
of the differential heuristic DH (originally called
ALT), which has proven to be very effective in its own
right. SH is based on the notion of graph separators,
which may be generated automatically or manually
for road networks. It is shown experimentally to be
of higher quality (i.e., more informed) than DH by
about 10%, but this results in an increase in efficiency
of up to an order of magnitude, when used by A* to
generate fastest paths in directed road networks with
edges weighted by travel time.

278 R. Chen, C. Gotsman

Fig. 9 Efficiency of the heuristics with k = 4 coordinates on different weighted undirected road networks. Above: NY. Center: COL. Below:
BAY. Colored vertices were traversed during A* search for the fastest path from the black vertex to the magenta vertex. Green: SH. Red: DH.
Blue: FM. Magenta dotted lines indicate SH separators. Cyan: fastest path, usually taking advantage of highways.

SH is applicable to both undirected and directed
graphs and seems to perform similarly on both.

Like DH, SH may be used in conjunction with

other types of optimizations of the A* algorithm (e.g.,
bi-directional search, reach-based and hierarchical
methods) to independently boost its performance.

Efficient fastest-path computations for road maps 279

Fig. 10 Efficiency of the heuristics with k = 4 coordinates on different directed road networks. Above: NY. Center: COL. Below: BAY.
Colored vertices were traversed during A* search for the fastest path from the black vertex to the magenta vertex. Green: SH. Red: DH. Blue:
FM. Magenta dotted lines indicate SH separators. Cyan: fastest path, usually taking advantage of highways.

280 R. Chen, C. Gotsman

Fig. 11 Effect of the separator location on SH heuristic efficiency in an undirected road network with edges weighted by Euclidean edge
lengths. Green vertices are those traversed by A* using SH with a single separator, marked in magenta, when computing the fastest path from
the black source to the magenta target vertex. The separator is parallel to the bisector between the two vertices, but at different distances from
the target. Note the deterioration in efficiency once the separator is crossed.

Acknowledgements

We would like to thank the anonymous reviewers for
their constructive suggestions and comments. This
work was partly supported by the Anhui Provincial
Natural Science Foundation (2008085MF195), the
National Natural Science Foundation of China
(62072422), and Zhejiang Lab (2019NB0AB03).

References

[1] Bast, H.; Delling, D.; Goldberg, A.; Müeller-
Hannemann, M.; Pajor, T.; Sanders, P.; Wagner, D.;
Werneck, R. Route planning in transportation networks.
In: Algorithm Engineering. Lecture Notes in Computer
Science, Vol. 9220. Kliemann, L.; Sanders, P. Eds.
Springer Cham, 19–80, 2016.

[2] Dijkstra, E. W. A note on two problems in connexion
with graphs. Numerische Mathematik Vol. 1, No. 1,
269–271, 1959.

[3] Fredman, M. L.; Tarjan, R. E. Fibonacci heaps and
their uses in improved network optimization algorithms.
In: Proceedings of the 25th Annual Symposium on
Foundations of Computer Science, 338–346, 1984.

[4] Hart, P. E.; Nilsson, N. J.; Raphael, B. A formal basis
for the heuristic determination of minimum cost paths.
IEEE Transactions on Systems Science and Cybernetics
Vol. 4, No. 2, 100–107, 1968.

[5] Rayner, C.; Bowling, M.; Sturtevant, N.
Euclideanheuristic optimization. In: Proceedings of
the 25th AAAI Conference on Artificial Intelligence,
81–86, 2011.

[6] Goldberg, A. V.; Harrelson, C. Computing the shortest
path: A* search meets graph theory. In: Proceedings of

the 16th Annual ACM-SIAM Symposium on Discrete
Algorithms, 156–165, 2003.

[7] Chow, E. A graph search heuristic for shortest distance
paths. In: Proceedings of the Association for the
Advance of Artificial Intelligence, 2005.

[8] Cohen, L.; Uras, T.; Jahangiri, S.; Arunasalam, A.;
Koenig, S.; Kumar, T. K. S. The FastMap algorithm
for shortest path computations. In: Proceedings of
the 27th International Joint Conference on Artificial
Intelligence, 1427–1433, 2018.

[9] Lipton, R. J.; Tarjan, R. E. A separator theorem for
planar graphs. SIAM Journal on Applied Mathematics
Vol. 36, No. 2, 177–189, 1979.

[10] Karypis, G.; Kumar, V. A fast and high quality
multilevel scheme for partitioning irregular graphs.
SIAM Journal on Scientific Computing Vol. 20, No.
1, 359–392, 1998.

[11] Information on http://www.diag.uniroma1.it/challenge9/.
[12] Information on https://www.openstreetmap.org/.
[13] Dibbelt, J.; Strasser, B.; Wagner, D. Customizable

contraction hierarchies. In: Experimental Algorithms.
Lecture Notes in Computer Science, Vol. 8504.
Gudmundsson, J.; Katajainen, J. Eds. Springer Cham,
271–282, 2014.

[14] Geisberger, R.; Sanders, P.; Schultes, D.; Vetter, C.
Exact routing in large road networks using contraction
hierarchies. Transportation Science Vol. 46, No. 3, 388–
404, 2012.

[15] Geisberger, R.; Sanders, P.; Schultes, D.; Delling,
D. Contraction hierarchies: Faster and simpler
hierarchical routing in road networks. In: Experimental
Algorithms. Lecture Notes in Computer Science, Vol.
5038. McGeoch, C. C. Ed. Springer Berlin Heidelberg,
319–333, 2008.

Efficient fastest-path computations for road maps 281

[16] Delling, D.; Goldberg, A. V.; Pajor, T.; Werneck,
R. F. Customizable route planning. In: Experimental
Algorithms. Lecture Notes in Computer Science, Vol.
6630. Pardalos, P. M.; Rebennack, S. Eds. Springer
Berlin Heidelberg, 376–387, 2011.

[17] Delling, D.; Goldberg, A. V.; Pajor, T.; Werneck,
R. F. Customizable route planning in road networks.
Transportation Science Vol. 51, No. 2, 566–591, 2017.

[18] Maue, J.; Sanders, P.; Matijevic, D. Goal directed
shortest path queries using precomputed cluster
distances. In: Experimental Algorithms. Lecture Notes
in Computer Science, Vol. 4007. Àlvarez, C.; Serna, M.
Eds. Springer Berlin Heidelberg, 316–327, 2009.

[19] Efentakis, A.; Pfoser, D. Optimizing landmark-based
routing and preprocessing. In: Proceedings of the
6th ACM SIGSPATIAL International Workshop on
Computational Transportation Science, 25–30, 2013.

[20] Delling, D.; Wagner, D. Landmark-based routing in
dynamic graphs. In: Experimental Algorithms. Lecture
Notes in Computer Science, Vol. 4525. Demetrescu, C.
Ed. Springer Berlin Heidelberg, 52–65, 2007.

Renjie Chen is a professor at the
University of Science and Technology of
China (USTC). He holds a Ph.D. degree
from Zhejiang University, China. Before
joining USTC, he was a postdoctoral
fellow at the Technion–Israel Institute
of Technology, a postdoctoral research
associate at the University of North

Carolina at Chapel Hill, a key researcher in the BeingThere
Center in Nanyang Technological University, Singapore, and
a senior researcher heading a research group working on
3D geometry and images at the Max Planck Institute for
Informatics (MPII) in Saarbrucken, Germany. His research
interests include computer graphics, geometric modeling,
computational geometry, and glasses-free 3D display.

Craig Gotsman is a Distinguished
Professor and Dean of the Ying Wu
College of Computing at New Jersey
Institute of Technology, specializing
in computer graphics and geometric
modeling. He was previously a co-
founder of Cornell Tech, a New York
City graduate-level campus dedicated to

innovation and entrepreneurship in information technologies.
Prior to that, he was the Hewlett-Packard Professor of
Computer Engineering at the Technion in Israel. He received
his Ph.D. degree from the Hebrew University of Jerusalem in
1991. Gotsman has published over 160 papers, received eight
best paper awards, and served on the editorial boards of all
the leading journals and on the program committees of all
the top conferences in computer graphics. Gotsman holds 11
U.S. patents, some commercialized through his four startup
companies, of which three were acquired by technology
giants. Gotsman is a Fellow of the U.S. National Academy
of Inventors and a Fellow of the Academy of Europe.

Open Access This article is licensed under a Creative
Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduc-
tion in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link
to the Creative Commons licence, and indicate if changes
were made.

The images or other third party material in this article are
included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and
your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission
directly from the copyright holder.

To view a copy of this licence, visit http://
creativecommons.org/licenses/by/4.0/.
Other papers from this open access journal are available
free of charge from http://www.springer.com/journal/41095.
To submit a manuscript, please go to https://www.
editorialmanager.com/cvmj.

