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a b s t r a c t

Mesh denoising is a fundamental yet open problem in geometry processing. The main challenge is
to remove noise while recovering the shape of the underlying surface as accurately as possible. In
this paper, we propose a novel joint bilateral filter on the face normal field. The key is to estimate a
reliable guidance normal field by constructing a shape-aware consistent patch for accurately describing
the local shape of each face. To this end, we first select a candidate patch for each face by using a newly
defined consistent metric considering both patch flatness and face-to-patch orientation similarity.
Then, spectral analysis is used in combination with ℓ0 minimization to refine the candidate patches
in a shape-aware manner. The refined patches do not contain any features, and therefore they can
accurately describe the local shape of the underlying surface. After smoothing the face normal field,
vertex positions are reconstructed to match the filtered face normals. Our mesh denoising method is
theoretically rooted and practical for dealing with the meshes containing corners with low sampling
rates, multi-scale features, or narrow structure regions. Extensive experimental results demonstrate
that our method can significantly improve the feature preserving capability of joint normal filter and
outperforms state-of-the-art methods visually and quantitatively.

© 2021 Elsevier Ltd. All rights reserved.
1. Introduction

Triangular meshes are widely used in various fields, e.g., com-
uter graphics, 3D computer vision, urban modeling, etc. Re-
ently, because of the rapid development of scanning devices
e.g., Microsoft Kinect, Xtion pro), the geometric modeling process
as been dramatically simplified, resulting in triangular meshes
cquired in quantity from the real world. However, even with
igh-fidelity devices, the acquired meshes are inevitably contam-
nated by noise introduced in capturing and reconstruction pro-
esses. The noise not only degrades the visual quality of meshes,
ut also causes troubles in downstream applications [1–3]. Thus,
esh denoising has become an essential and increasingly im-
ortant task of geometry processing. The main challenge is to
emove noise while maximally preserving geometric features.
his problem gets more difficult for meshes containing corners
ith low sampling rates, multi-scale features, or narrow structure
egions.

∗ Corresponding author.
E-mail address: liu.zheng.jojo@gmail.com (Z. Liu).
ttps://doi.org/10.1016/j.cad.2021.103088
010-4485/© 2021 Elsevier Ltd. All rights reserved.
Mesh denoising has been studied in the last decade exten-
sively. Researchers have proposed many remarkable methods
[1,4–8] to tackle this problem. Although these state-of-the-art
methods have gained success in some respects, they still have
limitations when handling meshes with some special charac-
teristics including corners with low sampling rates, multi-scale
features, or narrow structure regions. For example, bilateral nor-
mal filtering [4] tends to blur sharp features, since it cannot
distinguish sharp features from noise clearly; guided normal fil-
tering [6] can preserve sharp features, but it is hard to produce
desired results when handling meshes containing narrow struc-
ture regions; The sparse optimization methods [1,5] can effec-
tively remove noise while preserving sharp features. However,
these methods suffer from staircase artifacts in smoothly curved
regions for their sparsity requirements. The performance of the
data-driven method [7] is highly dependent on the completeness
of training data. The low-rank method [8] can recover pattern
similarity patches of the surface, but cannot preserve sharp fea-
tures, especially in the case of high noise. The limitations of these
denoising methods degrade the quality of results produced by

them.
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We propose a joint bilateral normal filter because of the issues
mentioned above for the existing method denoising methods.
The critical part of our joint bilateral filter is to estimate a re-
liable guidance field from the noisy mesh, which can accurately
describe the shape of the underlying surface. To this end, we pro-
pose a consistent patch construction scheme including two steps,
i.e., candidate patch selection followed by final patch refinement.
Specifically, for each face, we select the relatively smooth patch
with most faces sharing the orientations similar to the current
face, via a new consistency measurement. Then, by using spectral
partitioning, we refine the candidate patch (of the current face)
to match the local shape of the underlying surface. As a result, the
normal guidance field, estimated from the refinement patches,
can accurately describe the shape of the underlying surface in the
presence of noise. We validate our mesh denoising method on a
variety of meshes with either synthetic or raw noise to show its
effectiveness and versatility. The main contributions of this paper
are summarized as follows:

• We design a simple yet effective consistency measurement,
considering both patch flatness and face-to-patch orienta-
tion similarity, to select a candidate patch for each face.
Compared to the consistent patch created by existing meth-
ods, our candidate patch contains more faces having similar
orientations with the current face, which can better describe
the local shape of the current face.

• We introduce an ℓ0 minimization method, incorporating
the spectral analysis theory, to refine a shape-aware patch
for each face from its corresponding candidate patch. The
refined patch can more accurately match the local shape in
a manner that does not contain any geometric features.

• We conduct a variety of experiments to show that our
denoising method outperforms the state-of-the-art methods
on synthetic and raw scanned data.

2. Related works

As a vital tool in computer graphics, mesh denoising has
een extensively studied in the past decades. There are rich
esh denoising methods in the literature, categorized into three

ypes: filter-based methods, optimization-based methods, and
ata-driven methods. It is beyond our scope to review all existing
ork. Here, we mainly review those techniques that are closely
elevant to our work.

Filter-based methods for mesh denoising. The filter-based
ethods, divided into isotropic and anisotropic ones, have domi-
ated mesh denoising for a long time. The key idea is to filter each
esh vertex or face normal with its local neighborhood, which is
traightforward and efficient. However, isotropic methods [9,10]
end to over-smooth geometric features while removing noise.
hus, many anisotropic methods [4,11–14] have been proposed to
ackle this problem, which can preserve geometric features well
hen suppressing noise, However, if meshes are corrupted by

arge-scale noise, these methods may blur features more or less,
specially for those sharp features. In order to improve this sit-
ation, [6] presents a guided normal filter, which adopts reliable
uidance instead of the original signal in the range kernel of the
ilateral filter; [15] presents a high-fidelity method by utilizing
ukey’s bi-weight function instead of Gaussian function in the
ange kernel of the bilateral filter. These two approaches preserve
harp features and suppress large-scale noise effectively. But,
he former is sensitive to surface sampling, and the latter over-
moothes fine details. Besides, [16,17] study the bilateral filter
ith proper guidance signals for more geometry applications,
uch as geometric texture removal and editing.
Optimization-based methods for mesh denoising. Optimiza-

ion methods have been introduced for feature-preserving mesh
2

denoising with priors about underlying surfaces. These methods
formulate the denoising process as an optimization problem to
find the solutions that satisfy the given priors. For example,
the sparsity prior has been widely used in methods [1,5,18–
22], due to its excellent edge-preserving property [23,24]. As
we know, methods [1,5,18,19,22] can recover sharp features,
but suffer from undesired staircase effects on smooth features
due to the sparsity requirements. To address this issue, [20,25]
present a high order regularizer that can preserve both sharp and
smooth features; [21] combines total variation and anisotropic
Laplacian regularizations. However, these two methods cannot
handle large-scale noise effectively. Besides the sparsity prior,
the nonlocal similarity prior has been recently explored for mesh
denoising [8,26]. The method [8] can effectively remove noise
while recovering fine details. But it is limited to handle meshes
with sharp features. In contrast, the method [26] can keep sharp
features. But it is time-consuming for large-scale models. Be-
sides, [27,28] apply low-rank recovery for point cloud denoising
and mesh texture smoothing.

Data-driven methods for mesh denoising. Recently, data-
driven approaches have been applied to mesh denoising [7,29–
34]. [7] presents a cascade normal regression method that can
learn the mapping from noisy inputs to their corresponding
ground truth. [30] proposes a two-step method that avoids blur-
ring fine details. [32] presents a deep neural network for smooth-
ing face normals. Besides, [29,31,33,34] adopt convolutional
neural networks for mesh denoising. In short, without any as-
sumptions about underlying features and noise patterns, these
methods can remove noise effectively while recovering features
well. However, the performance of these data-driven methods
relies on the completeness of the training dataset.

Graph spectral methods for geometry processing. Due to the
uccess of spectral graph in image processing [35,36], it has been
xtended to 3D data in [37–39]. For example, in the task of mesh
enoising, [39] exploits the fact that sharp features reside in a low
imensional structure hidden in the noisy meshes, by cutting off
igher frequencies and attenuating frequencies of the spectrum of
graph. [38] transforms feature detection into a graph-cut prob-

em, and iteratively applies the normalized cut (NCut) algorithm
o dependent patches according to those detected features; in
he task of mesh segmentation, [37] applies a spectral analysis
ramework on the mesh to obtain a coarse segmentation result.
nspired by [37], we also adopt spectral partitioning with the
iedler vector for patch refinement. Our method is based on the
bservation that, the ordered Fiedler vector can be optimized
nto a piecewise constant solution, where the coordinate values
ndicate the segmentation result, and the discontinuities match
he underlying geometric features. Fig. 1 shows such examples.

. Preliminaries

.1. Joint bilateral normal filtering framework

Our mesh normal filtering method is designed based on the
ell-known joint bilateral mesh normal filter, which has been

requently used in geometry processing problems [6,16,17,38,40],
or its simplicity and effectiveness. Specifically, this framework is
n iterative scheme, where each iteration consists of two stages:
ormal filtering followed by vertex updating. Here, we introduce
hese two stages in detail as follows:

(i) Normal filtering. Given the two variables, N and G, as the
ace normal field and guidance face normal field, the joint bi-
ateral normal filtering framework first update N based on the
ollowing formula:

i = Γ (
∑

ajWd(∥ci − cj∥)Ws(∥Gi − Gj∥)Nj), (1)

j∈D(i)
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Fig. 1. Shape-aware patch refining via ℓ0 minimization on the Fiedler vector. All the Fiedler vectors are sorted in increasing order, and each point colored in red
represents the central face of the corresponding patch. In the first row, we give the top (T) and bottom (B) side views of the patch for better visualization. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
g
m
D
w
d
·

n
t
p

P
e
B
.

w

1

I
s
v
w

.

n
o
m
d
w
m

L

w
e
v
e

where Γ (·) is the normalization operator, D(i) is the 1-ring neigh-
bors of the face i, aj is the area of face j, ci, cj are centroids of faces
i and j, and Wd, Ws are two Gaussian functions with kernel sizes
σd and σr , respectively.

(ii) Vertex updating. This stage needs to reconstruct vertex
positions to match the filtered face normals. Researchers have
proposed many vertex updating methods using the orthogonality
between the face and its corresponding normal direction [41,42],
or by minimizing the difference between the orientation of the
face and its corresponding normal direction [21]. In this work,
we adopt the vertex updating method presented in [42] for its
efficiency handling flipped triangles.

From (1), we can see that the performance of the filtering
process relies on guidance face normal field G. The reason is
hat the proximity between the guidance signal values Gi and
Gj provides the prediction for the proximity between desired
output signals Ni and Nj. Compared to bilateral mesh normal
filter [4], this proximity can preserve geometric features much
better. Though many methods [6,16,38] have tried to compute a
proper guidance signal within the context of mesh normal filter-
ing, it is still challenging to estimate an accurate guidance field
when handling meshes containing corners with low sampling
rates, multi-scale features or narrow structure regions. Therefore,
in this paper, we focus on computing the shape-aware guidance
field from the noisy input, which is capable of providing more
reliable normal information about the local shape of the desired
result.

3.2. Spectral graph partitioning with fiedler vector

Our method produces shape-aware consistent patches from
candidate patches by utilizing spectral graph partitioning with
Fiedler vector. Here, we briefly introduce the background of our
method, which includes some necessary notations and results.

Let G = (V , E) be a general, undirected, and non-negatively
weighted graph, where V and E are the sets of vertices and edges,
respectively. Assume |V | be the number of vertices, and |E| be
the number of edges. Edges are represented by pairs of vertices
(i, j) for i, j ∈ V . The edges are associated with non-negative
3

weights ω = {w(i, j), ∀(i, j) ∈ E}. To capture information of
raph G, spectral related methods need to define its adjacency
atrix AG as AG(i, j) ≜ w(i, j), its diagonal degree matrix D as
ii ≜

∑
j∈V AG(i, j), and its Laplacian matrix LG as LG ≜ AG −DG. As

ell known Laplacian matrix LG is symmetric and positive semi-
efinite. Assume the spectrum of LG is denoted by 0 = λ1 < λ2 ≤

· · ≤ λ|V |. Then, the eigenvector corresponding to the smallest
onzero eigenvalue (the second smallest eigenvalue) λ2 is called
he Fiedler vector. The eigensystem of LG can describe valuable
roperties of graph G [43]. Some results are given as follows.

roposition 1 ([43]). The multiplicity k of eigenvalue λ1 (i.e., 0)
quals the number of connected components G1,G2, . . . ,Gk in G.
esides, the eigenspace of λ1 is spanned by indicator vectors 11, 12,

. . , 1k of those components. Formally, the indicator vectors are
ritten as

i ∈ R|V | and (1i)j =

{
1, if vertex j ∈ Gi

0, otherwise.

n our task, we first construct a graph for each candidate patch, then
egment the graph into several subgraphs according to the indicator
ectors. Note that each indicator vector corresponds to one subgraph,
hich can be seen as a connected component.

Suppose that graph G is segmented into k subgraphs G1,G2,

. . ,Gk, and its vertices are ordered in accordance with the con-
ected components they belong to. Let LGi be the Laplacian matrix
f Gi, i = 1, 2, . . . , k. Suppose that Ğ = ∪

k
i=1Gi. Then the Laplacian

atrix of Ğ is LĞ = diag(LG1 , LG2 , . . . , LGk ). Since graph Ğ is
erived from graph G by removing the edges with small weights,
e can regard the above Laplacian matrix LG as a perturbation of
atrix LĞ, i.e.,

G = LĞ + P,

here P is the perturbation matrix. Then, we know that the
igenspace corresponding to the k smallest eigenvalues of LG is
ery close to the eigenspace corresponding to the k smallest
igenvalues of L when the perturbation ∥P∥ is small (i.e., the
Ğ
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igenvalue λ1 with multiplicity k). Therefore, by using Davis–
ahan Theorem [43], we can represent the Fiedler vector of
aplacian matrix LG, called u0, as

0 = c111 + c212 + · · · + ck1k + e ≜ u + e, (2)

where u ∈ Rn is a linear combination of the indicator vectors
11, 12, . . . , 1k, c1, c2, . . . , ck are values defined on subgraphs, and
e ∈ Rn is a small error vector (a residual vector). Since u is
the linear combination of the indicator vectors, it is a piecewise
constant vector. Therefore, if u can be decomposed from u0,
we can segment graph G by checking the entry values of u.
Specifically, for ∀j ∈ V , we have

j ∈ Gi ⇔ uj = ci, i = 1, 2, . . . , k.

The aforementioned prior knowledge of the Fiedler vector has
been proved helpful for mesh segmentation, even in the presence
of noise [37]. Inspired by that, we segment each candidate patch
into a refined shape-aware patch, which can accurately describe
the local shape of the underlying surface.

4. Guided normal filtering via shape-aware patches

Following works [6,17,40,44], we compute each guidance face
normal based on a properly constructed patch. For example, given
a well-constructed patch Pi of face i, its guidance normal can be
computed as:

Gi = Γ (
∑
j∈Pi

ajNj),

where aj is the area of face j. As can be seen, guidance normals
are computed based on the constructed patches. Hence, the guid-
ance normal needs to be computed for each face by building a
consistent local patch around the face, which does not contain
any geometric features. However, how to build a consistent patch
for each face in the presence of noise is difficult, because the
mesh may contain corners with low sampling rates, multi-scale
features, or narrow structure regions. To address these issues,
we propose a two-stage consistent patch construction method.
In the first stage, we can select a candidate patch for each face by
introducing a novel patch consistency measurement. In the sec-
ond stage, based on spectral analysis theory, we optimize these
candidate patches to generate refined patches in a shape-aware
manner for estimating more robust guidance normals. Note that,
for each face, its candidate patch would be not only as flat as
possible, but also have the orientation most similar to it.

4.1. Candidate patch selection

We compute candidate patches under the assumption: the
underlying surface of a noisy mesh consists of many piecewise
smooth regions, and each feature lies at the intersection of mul-
tiple smooth regions. Furthermore, the faces belonging to the
same smooth region tend to have similar orientations. With these
prior knowledge, we first decompose the input mesh into many
overlapping small patches, then select a patch from those as the
candidate patch for each face. Details are elaborated as follows.

First, we define the patch as a union of one face with its
1-ring neighbor faces that share vertices with it. Based on this
definition, for each face i, we can collect a set of nearby patches
C(i) = {Pj|i ∈ Pj}. We can observe that, if patch Pj does not contain
any geometric features, all the faces of Pj have similar orientations
with face i. Thus, for face i, we compute its candidate patch by
selecting one patch from C(i) which is as flat as possible. To meet
these requirements, we perform a patch-shift procedure on patch
4

set C(i) with the newly defined patch consistency measurement
R(Pi), which is written as

R(Pi) = F(Pi) · S(Pi), (3)

where F(Pi) is the flatness term used to estimate surface varia-
tions within patch Pi, S(Pi) is the similarity term for measuring
face-to-patch orientation similarity between the current face and
patch Pi.

Flatness term F(Pi): The flatness term F(Pi), taking both local and
global surface variations within patch Pi into account, is designed
as:

F(Pi) = FL(Pi) · FG(Pi), (4)

where FL(Pi) and FG(Pi) are two functions defined on the face
ormal field of patch Pi for measuring its degree of local and
lobal surface variations. To achieve this, FL(Pi) is defined as the
verage magnitude of face normal differences over the edges of
atch Pi. Formally, it can be written as:

L(Pi) =
1

4
∑

e∈E(Pi)
le

∑
e∈E(Pi)

le∥Ne,1 − Ne,2∥2,

where E(Pi) is the set of edges contained in patch Pi, Ne,1 and
Ne,2 are normals of two faces sharing the common edge e, and
le is the length of edge e. The value of FL(Pi) can be used to
describe the local flatness of patch Pi. Furthermore, considering
the accumulation of surface variances, we define global flatness
FG(Pi) as the maximum normal difference between two faces:

G(Pi) = max
j,k∈Pi

∥Nj − Nk∥2.

s a result, a small value of F (Pi) indicates that the patch is
mooth and does not contain features, while a large value implies
he patch may contain extra features.

rientation similarity term S(Pi): We further measure the ori-
ntation similarity between face i and patch Pi using a newly
efined metric S(Pi), which is called face-to-patch similarity:

(Pi) = SL(Pi) · SG(Pi), (5)

here SL(Pi) and SG(Pi) are used to describe the local and global
rientation similarity between face i and the other faces con-
ained in patch Pi. Specifically, SL(Pi) measures the local similarity,
hich directly computes the sum of variations between face i and
he other faces. We formulate SL(Pi) as:

L(Pi) =
1

2
∑

k∈Pi
ak

∑
k∈Pi

ak∥Ni − Nk∥2.

A smaller value of SL(Pi) means that more faces have orientations
similar to face i. Ideally, when SL(Pi) = 0, all the other faces of Pi
have the same orientation as face i. That also means patch Pi is a
flat region. However, when the SL(Pi) value is slightly greater than
ero, patch Pi may contain small-scale noise or shadow features.
hus, this metric cannot clearly distinguish the above two surface
ariations. To address this ambiguity, we further introduce metric
G(Pi) to measure the global similarity, which is written as:

G(Pi) =
1
2
∥Ni − NPi∥2,

where NPi is the area-weighted average normal of patch Pi. A
lower SG(Pi) value is likely to indicate the patch with a more
similar orientation to face i. Thus, the global similarity ampli-
fies the difference between these two types of patches, which
can solve the above ambiguity problem. As a result, by using
the similarity term, we can identify the patch with more faces
having orientation similar to the current face, and be capable of
distinguishing shadow edges from small-scale noise.
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Fig. 2. Comparison of the selected candidate patch using consistency measurement H in [6] and R proposed in this paper. The current face is colored in red. For
ach patch of current face, we calculate its corresponding two measurement values of H and R. The patch bounded with a blue box is the candidate patch identified
sing the measurement H, while the patch bounded with a red box is the candidate patch selected using our consistency measurement R. (For interpretation of
he references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 3. The pipeline of the proposed spectral analysis framework.

emark. By combining flatness term F(·) and orientation similar
erm S(·), the proposed patch consistency measurement R(·) can
e used to select the candidate patch with the smallest value of
(·). The selected patch contains as few geometric features as

possible. Compared to the patch consistency measurement H(·)
proposed in [6], our measurement is more robust in handling
meshes with complicated geometric features. The reasons are
as follows. Although H(·) can estimate the global flatness of a
patch, it cannot fully measure the local flatness. The reason is
that H(·) computes the maximum edge saliency instead of the
sum of the local surface variations. A comparison of selecting the
candidate patch using these two metrics is demonstrated in Fig. 2.
As can be seen, the candidate patch selected using R(·) contains
ewer features than the patch selected by H(·). On the other
hand, due to the proposed face-to-patch similarity S(·), we select
the candidate patch containing as many faces as possible that
have orientations similar to the current face. Thus, by using S(·),
he selected candidate patch can provide more faces to compute
he guidance normal, making the guidance normal to be more
ccurate.

.2. Shape-aware patch refinement

Due to the worse-case mesh quality or topology, although
e have obtained the candidate patch for each face, some of
hese patches still contain geometric features that need to be
reserved; see Fig. 2 for example. As a result, the guidance signal,
irectly estimated from these patches, may blur features or even
estroy geometric structures. To circumvent this limitation, we
urther present a shape-aware patch refinement method using
he spectral analysis framework. The key idea is that, for each
ace i, we cut its candidate patch into multiple sub-patches ac-
ording to the shape of the underlying surface, and choose the
ub-patch containing face i as its shape-aware patch that does
ot contain any geometric features. The pipeline of our spectral
nalysis framework is shown in Fig. 3. Details of each module in

he pipeline are elaborated as follows.

5

Algorithm 1: Fiedler vector optimization

Input: Fiedler vector x̂′

;
Output: Optimized Fiedler vector x̂;
Initialization: β = 10−3;
repeat

fix x̂, solve for z in (9).
fix z, solve for x̂ in (10).
β = 2 × β .

until β ≥ 103;

Spectral decomposition. We perform spectral analysis on each
selected candidate patch. We first build a proper Laplacian ma-
trix of each patch reflecting its local geometric and topological
attributes, and then generate the refined patch by optimizing
the Fiedler vector of the Laplacian matrix. In the following, we
elaborate on spectral analysis of each candidate patch.

Now we construct the Laplacian matrix, which serves as the
primary tool for spectral analysis. First, we construct dual graph
Gd = (Vd, Ed), where vertex set Vd is the face set of patch P , and Ed
s the set of dual edges, i.e., every pair of adjacent faces in patch
corresponds to an edge of Gd. Note that, we build the Laplacian

matrix based on faces instead of vertices, since first-order face
normal variations can better describe surface variations than
vertex position variations [2]. Then, we construct the Laplacian
matrix of Gd. The key is to define the weights associated with
edges Ed. To do that, we measure the difference between a pair
of adjacent faces i, j as

d(i, j) =
ξ

2
∥Ni − Nj∥

2
2,

where Ni and Nj are two normals of faces i and j, ξ is a positive
weight. In this work, we typically set ξ = 1.0, if ̸ (Ni,Nj) ≥ σθ ;
therwise, ξ = 0.1. σθ is a user-specified angle threshold for
ecognizing features from noise. Let d̄ be the average value of all
he differences. Let e be the common edge of a pair of adjacent
aces i, j. We define the weight associated with edge e as

(i, j) = le exp(−d(i, j)/d̄).

fter obtaining all the weights, we further compute Laplacian
atrix LGd of graph Gd, by the way introduced in Section 3.2. By
erforming eigen-decomposition on Laplacian matrix LGd , we can
btain its spectrum, i.e., eigenvalues.

iedler vector optimization. Let the Fiedler vector of Laplacian
atrix L be x′

= {x′ , x′ , . . . , x′
}, where |P| is the number of
Gd 1 2 |P|
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aces contained in patch P . According to (2), we have

x′
= x + ep,

where x, ep ∈ R|P| are piecewise constant vector and error
(residual) vector. In order to recover x from x′, we optimize x′

using ℓ0 minimization. However, it is time-consuming to directly
solve ℓ0 minimization problem over the mesh. Thus, for better
efficiency, we use one approximation strategy as follows. First,
we sort the elements of the Fiedler vector x′ in increasing order,
and denote the sorted vector as

x̂′
= {x̂′

1, x̂
′

2, . . . , x̂
′

|P|
}.

Then x̂′ is a 1-dimensional vector, where similar values have
been grouped together. Then, we induce the sparsity on x̂′, and
formulate the problem as

min
x̂

1
2
∥x̂ − x̂′

∥
2
2 + λ

|P|−1∑
i=1

|x̂i+1 − x̂i|0, (6)

where x̂ = (x̂1, x̂2, . . . , x̂|P|)T. The first term of (6) is a fidelity term
minimizing the approximation error between x̂ and x̂′, the second
term is a regularization term measuring the sparsity of the vector,
and λ is a positive parameter balancing these two terms.

Due to the nondifferentiability of problem (6), it is challenging
to directly solve it. The studies [1,23] show that variable-splitting
and alternating optimization solver have achieved great success
in solving ℓ0 related problem. Here, we first introduce auxiliary
variable z = {z1, z2, . . . , z|P|−1}, and reformulate (6) as

min
x̂,z

1
2
∥x̂ − x̂′

∥
2
2 + λ

|P|−1∑
i=1

|zi|0 + β

|P|−1∑
i=1

|x̂i+1 − x̂i − zi|
2
. (7)

The above problem can be solved using alternating optimization.
First, we fix x̂ constant and perform minimizing for z as

min
z

λ

|P|−1∑
i=1

|zi|0 + β

|P|−1∑
i=1

|x̂i+1 − x̂i − zi|
2
. (8)

This problem is easy to solve since (8) can be spatially separated,
where the minimization problem with respect to each first-order
variation is performed individually. Thus, for each zi, we just need
to solve the following problem

min
zi

λ|zi|0 + β|x̂i+1 − x̂i − zi|
2
. (9)

In this minimization, each entry zi will either be 0 or x̂i+1 − x̂i.
When

√
λ
β

> x̂i+1 − x̂i, zi = 0; otherwise zi = x̂i+1 − x̂i. Next, we
hold z fixed and optimize x̂ by solving the following problem

min
x̂

1
2
∥x̂ − x̂′

∥
2
2 + β

|P|−1∑
i=1

|x̂i+1 − x̂i − zi|
2
. (10)

This is a quadratic problem, which can be solved by existing
sparse linear solvers, such as MKL and Taucs. The two optimiza-
tions (8) and (10) alternate until convergence, and parameter β

is multiplied by 2 in each iteration to eventually force zi to match
x̂i+1 − x̂i. The whole procedure is outlined in Algorithm 1.

Shape-aware patch cutting. The solution x̂ is a piecewise con-
tant vector due to its sparsity prior. We segment each candidate
atch into some sub-patches according to the entry value of x̂,
nd then select the sub-patch that contains the current face as
he refined patch; see Fig. 1 for example.
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Fig. 4. Denoising results for different σθ with other parameters fixed. From left
to right: noisy input (σ = 0.5l̄e), and results with σθ = 0.01π, 0.1π, 0.4π, π .

Fig. 5. Denoising results for different λ with other parameters fixed. From left
to right: noisy input (σ = 0.15l̄e), and results with λ = 0.01, 0.4, 0.7, 10.

. Experimental results

In this section, we report numerical experiments on vari-
us kinds of CAD, nonCAD and raw scanned meshes. The syn-
hetic noise is generated by a zero-mean Gaussian function with
tandard deviation proportional to the mean edge length of the
round truth shape. We denote this standard deviation as σ .
e compare the proposed method with seven state-of-the-arts

ncluding local bilateral filtering [4], ℓ0 minimization [1], robust
nd high fidelity mesh denoising [15], low-rank based normal
iltering [8], cascade normal filtering [7], and guided normal
iltering [6], abbreviated as LBF, L0, RHM, LRNF, CNR, and GNF. For
HM, LRNF, CNR, and GNF, we run the codes provided by their au-
hors; For the other three methods, we have implemented them
ased on their published articles in C++. To show the faceting
ffect, all of the examples are rendered in the flat-shading model.

.1. Parameter choosing

Like previous methods, to generate satisfactory results, our
ethod also needs to tune parameters including σθ , α, σd, and
r . Since Gaussian kernel sizes σd and σr are parameters of the
oint bilateral filter, their effects on filtering results have been
ully explored in previous works [4,6]. Thus, we only discuss the
ffects of the first two parameters on final denoising results.

σθ is used to construct Laplacian matrices. The value of σθ

s highly related to feature recognition. Fig. 4 shows results of
ifferent σθ with other parameters fixed. As we can see, if σθ is
oo small or too large, sharp features will be blurred; see Figs.
b and 4e. This is because that, if σθ is too small or too large,
ost edges will be recognized as features or non-features, and
ur algorithm cannot identify the shape of the underlying surface
orrectly. Besides, there is a range of σθ for our algorithm to
roduce visually good results, shown in Figs. 4c and 4d. Empiri-
ally, we set σθ = 0.1π in all the experiments of this paper for
enerating visually appealing results.

λ is used to constrain the sparsity of the Fiedler vector. Fig. 5
hows results of different λ with other parameters fixed. As we
an see, if λ is too small, our method cannot recover the flat
egions well; see Fig. 5b. The reason is that, most faces have the
ifferent values from the current face in the optimized Fiedler
ector. On the contrary, if λ is too large, the corner feature is
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Fig. 6. Denoising results of Chair (σ = 0.2l̄e). The zoomed views highlight that our method is more effective in keeping corners with low sampling rates and narrow
structure regions.
destroyed; see Fig. 5e. The reason is that the optimized patch is
actually the input candidate patch, since the Fiedler vector will be
optimized into a constant vector with strong sparsity constraints.
Similarly, there is also a range of λ for our algorithm to produce
visually good results, shown in Figs. 5c and 5d.

5.2. Qualitative comparisons

First of all, we compare our method with the mentioned state-
of-the-arts on CAD and nonCAD meshes as well as raw scanned
meshes. We carefully tune the parameters of each method for
producing visually appealing results.

Fig. 6 demonstrates results on Chair containing corners with
low sampling rates and narrow structure regions. As can be seen,
all the methods can remove noise effectively. However, LBF, RHM
and CNR blur the sharp features in vary degrees, due to that these
methods are designed based on the bilateral filter, which cannot
predict the desired features at corners and narrow structure re-
gions well as seen in Figs. 6b, 6d and 6f. Similarly, LRNF also fails
to keep sharp features at narrow structure regions, because it uses
a simple average conversion between vertex normals and face
normals; see Fig. 6e. GNF also blurs these sharp features as Fig. 6g
shows. The reason is that, GNF uses fixed-size patches, which
leads to failure in the estimation of the reliable guidance normals
at corners with low sampling rates and narrow structure regions.
Unlike the above methods, L0 and ours can keep all the sharp
features; see Figs. 6c and 6h. This is because that L0 benefits from
the edge-preserving property of sparsity norms, and our method
uses shape-aware guidance normals. However, from quantitative
comparison in the next subsection, we can see that the error of
our method is smaller than that of L0.

Fig. 7 demonstrates results on Table and Casting, both of which
contain narrow structure regions and smooth features. Obviously,
RHM, LBF, LRNF and CNR recover smooth features well. However,
they blur sharp features in various degrees; see Figs. 7b, 7d,
7e and 7f. The reasons are as follows. RHM, LBF, and CNR are
based on the bilateral filter, which cannot accurately predict the
geometric features of underlying surfaces. This situation is more
serious in the case of large noise. Though RHM adopts a robust
statistics framework for preserving sharp features, it is hard to re-
cover all the features with a hard threshold. Besides, from zoomed
view in Fig. 7g, GNF destroys some sharp features, because it
hardly estimates reliable guidance normals at narrow structure
regions. On the contrary, though L0 keeps sharp features well, it
generates obvious staircase effects on smooth features, because of
its highest sparsity requirements; see Fig. 7c. Different from the
above methods, our method can not only restore sharp features
at narrow structure regions, but also keep smooth features well
as seen in Fig. 7h.

Fig. 8 shows results on Fandisk containing corners with low
sampling rates and complicated narrow structure regions. As can
be seen that all methods can effectively remove noise. Similarly
7

to the previous examples, LBF, LRNF, and CNR blur features at
corners or narrow structure regions; see Figs. 8b, 8e, and 8f. On
the contrary, L0 and RHM can keep sharp features. Nevertheless,
L0 inevitably produces staircase effects in smooth features, and
RHM suffers from relatively large shape distortions; see Figs. 8c
and 8d. Besides, although GNF can keep sharp features at narrow
structure regions well, it blurs corners; see Fig. 8g. Compared to
these methods, our method produces the visually best result with
all the sharp features well preserved; see Fig. 8h.

Fig. 9 shows results on Gargoyle and Lion, both of which
contain multi-scale features. As can be seen, LBF over-smoothes
all the features; seen the zoomed view in Fig. 9b. In contrary,
L0 sharpens small-scale features, and generates staircase effects
in large-scale features; see Fig. 9c. Though RHM, LRNF, and CNR
recover large-scale features well, they over-smooth small-scale
features; see Figs. 9d, 9e, and 9f. Besides, GNF sharpens these
small-scale features; see Fig. 9g. Compared to the above methods,
our method keeps both large-scale and small-scale features well;
see Fig. 9h.

Fig. 10 shows results on Max-planck with irregular sampling
rates. As we can see that, most methods can remove noise effec-
tively, except the CNR which remains some noise on its denoising
result. For other methods, LBF, RHM, LRNF, and GNF blur features
in vary degrees; see Figs. 10b, 10d, 10e, and 10f. Besides, L0 gener-
ates staircase effects on smooth features; see Fig. 10c. Compared
to these methods, our method produces the best results with
most features preserved; see Fig. 10h.

Moreover, in Fig. 11, we show results on Hand acquired by
Laser scanners. As can be seen that, all the methods can eliminate
noise effectively. Similarly, LBF, RHM, and CNR over-smooth fine
details in varying degrees; see Figs. 11b, 11d, and 11f. L0 sharpens
the geometric details; see Fig. 11c. Besides, LRNF and GNF as well
as our method can preserve fine details, especially our method
recovers the shadow edge better; see Figs. 11e, 11g, and 11h.
Thus, for laser-scanned meshes, our method also produces the
more appealing result compared to the other methods.

Recently, lots of meshes have been acquired using consumer-
grade scanner devices, e.g., Microsoft Kinect. So we also compare
our method with the state-of-the-arts on this type of data, and
show the results in Fig. 12. From these results, we can observe
that some bumps still exist on the results of LBF, RHM, LRNF,
and CNR; see Figs. 12b, 12d, 12e, and 12f. Compared to these
results, the results of L0, GNF and our method are more smooth;
see Figs. 12c, 12g, and 12h. However, L0 suffers the staircase
effects on smooth features. Besides, both GNF and our method can
generate visually satisfactory results with well-recovered smooth
features; see Figs. 12g and 12h. However, from the quantitative
comparison in the next subsection, we can find that the error of
our method is small than that of GNF. Thus, this example shows
the effectiveness of our method in dealing with Kinect-scanned
meshes.

In the next two paragraphs, we demonstrate the performances
of our method against different levels of noise and two kinds
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Fig. 7. Denoising results of Table (σ = 0.25l̄e) and Casting (σ = 0.2l̄e). The zoomed views highlight that our method better keeps sharp features at narrow structure
egions as well as smooth features.
Fig. 8. Denoising results of Fandisk (σ = 0.3l̄e). The zoomed views highlight that our method is faithfully able to preserve sharp features at corners and complicated
narrow structure regions.
Fig. 9. Denoising results of Gargoyle (σ = 0.35l̄e) and Chinese lion (σ = 0.3l̄e). The zoomed views highlight that our method better keeps multi-scale features.
Fig. 10. Denoising results of Max-planck (σ = 0.3l̄e). The zoomed views highlight that our method better handles the mesh with irregular sampling rates.
f noise including impulsive noise and mix Gaussian-impulsive
oise.
Figs. 13 and 14 show the robustness of our method and the

tate-of-the-arts against impulsive noise and mixed Gaussian-
mpulsive noise. Our method can effectively suppress impul-
ive noise and mixed Gaussian-impulsive noise, which demon-
trates the capacity of our method for dealing with different
inds of noise. Our method can simultaneously recover sharp and
mooth features while the other competing methods cannot; see
8

Fig. 13. Moreover, as shown in Fig. 14, our method can recover
the most geometric details of the underlying surface, while the
other competing methods blur these geometric details in varying
degrees.

Fig. 15 shows the performances of our method against differ-
ent levels of noise. As can be seen in Figs. 15a, 15b, and 15c,
our method effectively removes noise while preserving sharp
features. However, when the noise level is too high, our method
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Fig. 11. Denoising results of Hand acquired by Laser scanners.
Fig. 12. Denoising results of David and Cone, both of which are scanned by Kinect.
Fig. 13. Denoising results of Block corrupted by impulsive noise (20% impulsive noise with σ = 0.5l̄e).
Fig. 14. Denoising results of Child with mixed Gaussian-impulsive noise (20% of impulsive noise with σ = 0.5l̄e and Gaussian noise with σ = 0.2l̄e).
f
f
A
u

annot faithfully produce a satisfactory result; see Fig. 15d for
xample.
It is worthwhile to compare our method with GGNF pro-

osed by Zhao et al. [38]. Their method consists of two stages:
raph-based feature detection and feature-aware guided normal
 s

9

iltering. Specifically, their method first needs to iteratively per-
orm normalized cut algorithm on patches to detect features.
lthough their method can detect the geometric features of the
nderlying surface effectively, it is computational expensive. Be-
ides, in Fig. 16, we visually compare the denoising results of our
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Fig. 15. Denoising results of Joint corrupted by different levels of noise. The first
ow shows noisy meshes, and the second row shows the corresponding results
enerated by our method.

Fig. 16. Denoising results of BunnyIH. From left to right: noisy mesh, results
roduced by the method in [38] and ours, and the original mesh.

Fig. 17. Denoising results produced based on three types of patches. From left
to right: the noisy input (σ = 0.2l̄e), and results produced based on CAP, TVP,
and SAP patches.

method and GGNF. As we can see, our method recover small-scale
details better than GGNF.

5.3. Quantitative comparisons

The above visual comparisons demonstrate that our method
can produce better results than the compared state-of-the-arts.
Here, for an objective evaluation, we further quantitatively com-
pare our method to others on synthetic data. To achieve this, two
error metrics, including mean square angular error (MSAE) and
L2 vertex-based error (Ev,2), are utilized to measure the fidelity
of the denoising result compared to the ground truth. These two
measurements are designed with respect to face normals and
vertex positions. Specifically, MSAE is used to estimate the mean
square angular error between face normals of the denoising result
and the corresponding ground truth shape, while Ev,2 measures
the positional error between the clean mesh and the denoised
one. More details about these two metrics can be found in the
works [4,5]. We compare our method to the other methods using
these two metrics on the comparison examples shown in the
previous subsection, except for Hand which does not have corre-
sponding ground truth. The comparison results are demonstrated
in Table 1. As we can see, compared to the other methods, our
 v

10
method has the smallest MSAE values on the most examples
except for Fandisk, where the MSAE value of our method is
closest to the best one. Similarly, for most cases, the Ev,2 values
f our method are smaller than the compared state-of-the-arts.
hus, these quantitative comparisons show that, our method still
utperforms the compared state-of-the-art methods.
Additionally, we list the mesh sizes and runtime for all the

esting methods in Table 1. Moreover, note that the guidance
ormal construction processes of different faces are separable,
ence it can be parallel processed on multiple cores for fur-
her speed up, we also implement a fast version of our method
nd list its runtime in the last column. As can be seen, LBF is
lways faster than other methods, due to its simplicity. Since
ur method need to iteratively decompose Laplacian matrices
nd solve ℓ0 minimization problems, the cost of our method is
elatively higher than the other methods. Fortunately, the fast
ersion of our method is not only able to achieve 3–4 times speed
p than the original version, but also faster than most of the other
ethods. Nevertheless, the computational time of our method is
cceptable.

.4. Comparisons of several patch construction strategies

As we known that, the performance of joint bilateral filter
s limited by guidance signals, which should accurately indicate
he geometric features of the underlying surface of the noisy
esh. Many researchers have computed guidance signals using
atch-based strategies [6,17,40]. These strategies are designed by
ombining the patch-shift scheme and some novel patch con-
istency measurement. For example, Zhang et al. [6] propose
he well-known patch construction strategy which combines the
atch-shift algorithm with the modified relative total variation
mRTV). Different from the existing strategies, for each face, the
roposed patch construction strategy first computes a candidate
atch based on the patch-shift algorithm and a newly proposed
atch consistency measurement, then refines the candidate patch
y a shape-aware operation. Here, we discuss the effectiveness of
he proposed patch construction strategy.

Fig. 17 demonstrates a comparison of denoising results, which
re generated by applying the joint bilateral filter with multiple
uidance signals estimated using three types of patch, including
he candidate patch, the patch generated by algorithm in [6],
nd the proposed shape-aware patch. For brevity, we denote
hese types of patch as CAP, TVP, and SAP. Note that, for a fair
omparison, we also refine the TVP patches using the proposed
hape-aware operation. As can be seen that, the sharp features
f the result, obtained based on the CAP patches, are blurred
lot; see Fig. 17b. This means, due to the irregular sampling
f the input mesh, some CAP patches still contain one or more
eatures. As a result, the guidance signals estimated based on
AP patches cannot clearly indicate the geometric features on
he irregular sampled regions of the underlying surface. Fig. 17c
hows the denoising results generated based on the TVP patches.
bviously, the sharp features are blurred too. This is because
hat, after the shape-aware operation, some TVP patches cannot
rovides sufficient number of triangles for robust estimation of
he guidance signals. Compared to the above two results, the
esult computed using the proposed SAP patches preserves all the
harp features well as seen in Fig. 17d.

. Conclusion

In this paper, we present a shape-aware mesh denoising ap-
roach based on the joint bilateral filtering framework, which
pplies a bilateral filter to smooth face normals, followed by
ertex reconstruction to match the filtered face normals. Because
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Mesh Size(|V |; |F |) MSAE(×10−3), Ev,2(×10−3); Time (in Seconds)

LBF L0 RHM LRNF CNR GNF Ours

Chair (3.3k; 6.6k) 28.1, 5.10; 0.08 17.4, 4.34; 1.03 23.9, 3.43; 2.58 112, 10.6; 1.53 20.0, 4.81; 0.71 101.9, 11.5; 0.63 11.7, 3.34; 2.31 (0.63)
Table (4.6k; 9.1k) 38.1, 5.73; 0.09 13.4, 2.90; 1.37 8.50, 3.83; 3.91 35.8, 3.26; 2.26 22.6, 3.16; 0.80 33.2, 4.85; 0.87 6.80, 1.84; 3.43 (1.01)
Casting (19.3k; 38.7k) 8.07, 1.25; 0.35 6.67, 1.93; 12.4 5.23, 1.35; 15.2 46.4, 2.10; 8.65 4.64, 1.56; 1.86 8.83, 2.42; 3.29 4.09, 0.83; 10.4 (2.29)
Fandisk (6.4k; 12.9k) 47.1, 6.13; 0.06 21.3, 5.15; 4.21 13.5, 3.49; 4.94 46.8, 4.78; 2.35 11.2, 4.22; 0.88 16.1, 3.99; 1.05 12.8, 3.05; 3.81 (0.85)
Gargoyle (85.5k; 171.1k) 91.4, 4.88; 1.45 72.4, 3.11; 47.3 65.1, 1.83; 97.9 43.3, 3.11; 49.0 60.4, 1.77; 9.10 75.9, 1.74; 22.9 38.1, 1.16; 24.2 (6.15)
Lion (50.0k; 100.0k) 85.2, 3.60; 0.96 69.5, 2.19; 27.5 100.2, 2.35; 55.2 30.3, 1.30; 25.8 39.4, 1.46; 5.79 56.9, 1.51; 7.86 25.5, 1.17; 19.9 (6.35)
Max–Planck (50.0k; 100.0k) 41.9, 2.65; 0.91 41.5, 2.16; 32.3 32.9, 2.24; 49.8 31.4, 2.22; 24.5 32.5, 2.04; 4.38 40.9, 2.41; 13.4 27.5, 1.92; 27.7 (8.06)
David (51.8k; 102k) 108, 7.28; 1.28 94.6, 7.03; 22.6 87.2, 5.94; 37.7 96.0, 6.24; 22.2 99.3, 6.20; 4.69 91.9, 6.29; 14.1 81.3, 6.14; 30.2 (14.5)
Cone (31.1k; 61.3k) 70.7, 9.96; 0.50 58.7, 9.31; 23.0 63.0, 8.43; 21.6 65.3, 8.78; 10.4 67.7, 8.61; 2.61 64.8, 9.02; 19.5 55.9, 8.87; 43.4 (13.1)
Block (8.7k; 17.5k) 19.7, 5.83; 0.26 30.4, 6.04; 6.11 7.61, 4.37; 6.94 52.8, 5.05; 3.72 6.52, 4.35; 1.04 12.5, 2.40; 1.53 4.92, 2.18; 7.64 (2.31)
Child (50k; 100k) 60.1, 1.46; 0.94 99.1, 2.42; 32.6 57.1, 1.15; 56.9 33.0, 0.94; 25.6 47.8, 1.17; 5.51 67.6, 1.15; 12.4 27.7, 0.93; 19.6 (6.23)
the performance of joint bilateral filter highly depends on the
quality of the guidance signal, we propose a novel patch construc-
tion strategy for producing a shape-aware guidance normal field.
Our guidance normal field can robustly indicate the underlying
surface features in the presence of noise, even for the meshes
containing corners with low sampling rates, multi-scale features,
or narrow structure regions. As demonstrated in extensive exper-
imental results, our method outperforms the state-of-the-art ap-
proaches in preserving sharp and multi-scale features. For future
research, we plan to extend our work to handle more comprehen-
sive problems, such as bas-relief modeling, point cloud denoising,
and urban modeling.
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