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Abstract 
Transfinite barycentric kernels are the continuous version of traditional barycentric coordinates and are used to define inter-
polants of values given on a smooth planar contour. When the data is two-dimensional, i.e. the boundary of a planar map, these 
kernels may be conveniently expressed using complex number algebra, simplifying much of the notation and results. In this 
paper we develop some of the basic complex-valued algebra needed to describe these planar maps, and use it to define similarity 
kernels, a natural alternative to the usual barycentric kernels.  
 
We develop the theory behind similarity kernels, explore their properties, and show that the transfinite versions of the popular 
three-point barycentric coordinates (Laplace, mean value and Wachspress) have surprisingly simple similarity kernels. 
 
We furthermore show how similarity kernels may be used to invert injective transfinite barycentric mappings using an iterative 
algorithm which converges quite rapidly. This is useful for rendering images deformed by planar barycentric mappings. 
 
Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computer Gemetry and Object Model-
ing—Boundary representations; G.1.1 [Numerical Analysis]: Interpolation—Interpolation formulas 

 
 
1. Introduction 

 
1.1 Polygon barycentric coordinates 

 
Barycentric coordinates are typically used to interpolate a real 
function given on the boundary of a two-dimensional polygon, 
where the values of the function are specified on the polygon ver-
tices and assumed to vary linearly along the edges. The objective 
is to generate for any interior point in the polygon a real value 
which is some natural combination of the values at the vertices. 
 
 More concretely, let 𝑃𝑃 be a planar polygon with vertices 𝑝𝑝𝑗𝑗 =
�𝑥𝑥𝑗𝑗 , 𝑦𝑦𝑗𝑗�, 𝑗𝑗 = 1, . . , 𝑛𝑛. Given real values 𝑓𝑓𝑗𝑗 at 𝑝𝑝𝑗𝑗, what should the 
value 𝑓𝑓(𝑝𝑝) at a point 𝑝𝑝 = (𝑥𝑥, 𝑦𝑦) interior to 𝑃𝑃 be ? One way to 
achieve this is to associate with the 𝑗𝑗’th vertex a barycentric co-
ordinate function 𝐵𝐵𝑗𝑗(𝑝𝑝) which satisfies a number of natural con-
ditions, and then define  

𝑓𝑓(𝑝𝑝) = � 𝐵𝐵𝑗𝑗(𝑝𝑝)𝑓𝑓𝑗𝑗  
𝑛𝑛

𝑗𝑗=1

                                     (1) 

 
In the field of computer graphics and image deformation, this in-
terpolation method has been used to generate mappings between 
two 2D polygonal regions by associating a 2D vector 𝑓𝑓𝑗𝑗 =
�𝑢𝑢𝑗𝑗 , 𝑣𝑣𝑗𝑗� with each vertex 𝑝𝑝𝑖𝑖 of 𝑃𝑃 instead of the usual scalar value. 
This implies that the edges of the source polygon 𝑃𝑃 =
(𝑝𝑝1, . . , 𝑝𝑝𝑛𝑛) are linearly mapped to the edges of the target polygon 
𝐹𝐹 = (𝑓𝑓1, . . , 𝑓𝑓𝑛𝑛) and, through (1), the barycentric coordinate func-
tions 𝐵𝐵𝑗𝑗(𝑝𝑝) define the 2D image 𝑓𝑓(𝑝𝑝) of an interior point 𝑝𝑝 ∈ 𝑃𝑃. 
 

In recent years, many formulae for 𝐵𝐵𝑗𝑗  have been proposed, the 
most prominent being the Laplace (also called discrete harmonic 
or cotangent) [PP93], mean value [Flo03; HF06], Wachspress 
[Wac75] and harmonic [JMD*07]. The first three are given in 
closed form for any interior point, while the harmonic coordi-
nates must be computed numerically, typically using a Finite-El-
ement Method (FEM) resulting in a discrete Laplace equation 
with appropriate Dirichlet boundary conditions on 𝑃𝑃. The reader 
may consult the recent survey by Floater [Flo15] for a compre-
hensive overview of many barycentric recipes. 
 
1.2 Transfinite barycentric kernels 

 
The concept of barycentric coordinates of a polygon 𝑃𝑃 may be 
generalized to the case of a closed simple planar contour 𝐶𝐶, which 
may be treated as the limit of a polygon with an increasing num-
ber of vertices. Thus the discrete index 𝑗𝑗 becomes a continuum 
(represented by the parameter 𝑐𝑐), the value of 𝑓𝑓 is given at all 
points of 𝐶𝐶 (the so-called boundary values), the discrete sum is 
replaced by a boundary integral, the finite set of barycentric co-
ordinate functions 𝐵𝐵𝑗𝑗(𝑝𝑝) is replaced by a kernel function 𝐾𝐾(𝑐𝑐, 𝑝𝑝), 
and (1) becomes: 

𝑓𝑓(𝑝𝑝) = �𝐾𝐾(𝑐𝑐, 𝑝𝑝)𝑓𝑓(𝑐𝑐)𝑑𝑑𝑑𝑑                             (2) 
𝐶𝐶

 

               
namely, the value of 𝑓𝑓 at an interior point 𝑝𝑝 is defined as some 
weighted average of the continuum of values of 𝑓𝑓 on the bound-
ary 𝐶𝐶.  The quantity 𝑑𝑑𝑑𝑑 is the usual arc-length differential of 𝐶𝐶.  
 
In general, it seems to be difficult to obtain closed formulae for 
the continuous kernels of most discrete barycentric recipes, even 
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those for which closed forms are available in the discrete case. 
Belyaev [Bel06] and others (e.g. [SJW07, DF09]) were able to 
express the kernels in some limited cases, showing that one of the 
most basic kernels is the mean value kernel, and other members 
of the so-called three-point family are generalizations of this 
basic kernel. However, their formulation is complicated some-
what by the fact that the integral (2) is computed using the density 
implied by a unit circle centered at 𝑝𝑝: 

𝑓𝑓(𝑝𝑝) = �𝐾𝐾(𝑐𝑐, 𝑝𝑝)𝑓𝑓(𝑐𝑐)𝑑𝑑𝑑𝑑                            (3)
𝐶𝐶

 

where the differential 𝑑𝑑𝑑𝑑 is the projection of 𝑑𝑑𝑑𝑑 onto this unit cir-
cle and quite difficult to work with. 
 
1.3 Contribution 

 
Our contribution in this paper is mostly theoretical. Representing 
2D vectors using complex numbers, we develop in Theorem 1 the 
complex algebra needed to conveniently and compactly describe 
planar transfinite barycentric kernels. This is achieved by intro-
ducing the key quantity ℎ(𝑤𝑤, 𝑧𝑧) related to the geometry of the 
source contour. We then introduce in Section 4 the concept of 
similarity kernel, which allows an alternative description of tran-
finite barycentric mappings using the complex 𝑑𝑑𝑤𝑤 and 𝑑𝑑𝑓𝑓 differ-
entials (on the source and target contours, repectively). After ex-
ploring the properties of similarity kernels, we use the quantities 
of Theorem 1 to compactly express the similarity kernels of the 
popular three-point barycentric coordinates in Theorem 10. De-
spite the theoretical focus of this paper, we make a practical con-
tribution in Section 7 by showing how to use the developed the-
ory to efficiently invert 2D mappings based on transfinite bary-
centric coordinates, in particular the mean value mapping. This 
inversion is important in texture mapping and image deformation 
applications. Proofs of all Theorems and Corollaries are provided 
in the Appendix. 

 
2. Complex Barycentric Coordinates 
 
In the planar scenario, it is convenient to represent 2D vectors 
(𝑥𝑥, 𝑦𝑦) ∈ ℝ2 as complex numbers 𝑧𝑧 ∈ ℂ. Thus, analogously to (1), 
the mapping of the interior of a source polygon 𝑊𝑊 whose vertices 
are (𝑤𝑤1, . . , 𝑤𝑤𝑛𝑛) to the interior of a target polygon whose vertices 
are (𝑓𝑓1, . . , 𝑓𝑓𝑛𝑛) is:  

𝑓𝑓(𝑧𝑧) = � 𝐵𝐵𝑗𝑗(𝑧𝑧)𝑓𝑓𝑗𝑗                                       (4)
𝑛𝑛

𝑗𝑗=1

 

where 𝑧𝑧 is a point in the interior of 𝑊𝑊, and the 𝐵𝐵𝑗𝑗  should satisfy: 
C1.   Constant precision: 

 � 𝐵𝐵𝑗𝑗(𝑧𝑧)
𝑛𝑛

𝑗𝑗=1

= 1,   ∀𝑧𝑧 ∈ 𝑖𝑖𝑛𝑛𝑖𝑖(𝑊𝑊) 

C2.   Linear precision:  

� 𝑧𝑧𝑗𝑗𝐵𝐵𝑗𝑗(𝑧𝑧)
𝑛𝑛

𝑗𝑗=1

= 𝑧𝑧,   ∀𝑧𝑧 ∈ 𝑖𝑖𝑛𝑛𝑖𝑖(𝑊𝑊) 

        C3.   Lagrange property:  
𝐵𝐵𝑗𝑗(𝑧𝑧𝑘𝑘) = 𝛿𝛿𝑗𝑗𝑘𝑘,      𝑗𝑗, 𝑘𝑘 = 1, . . , 𝑛𝑛 

Weber et al. [WBG09] showed that it is possible to express any 
barycentric coordinate function using a set of complex-valued 
functions 𝛾𝛾𝑗𝑗 associated with the 𝑗𝑗’th edge (𝑗𝑗 = 1, . . , 𝑛𝑛): 

       𝐵𝐵�𝑗𝑗(𝑧𝑧) = 𝛾𝛾𝑗𝑗(𝑧𝑧)
𝑟𝑟𝑗𝑗+1(𝑧𝑧)

𝑒𝑒𝑗𝑗
 − 𝛾𝛾𝑗𝑗−1(𝑧𝑧)

𝑟𝑟𝑗𝑗−1(𝑧𝑧)
𝑒𝑒𝑗𝑗−1

,  

   𝐵𝐵𝑗𝑗(𝑧𝑧) =
𝐵𝐵�𝑗𝑗(𝑧𝑧)

∑ 𝐵𝐵�𝑗𝑗(𝑧𝑧)𝑛𝑛
𝑗𝑗=1

                                    (5) 

                       

𝑟𝑟𝑗𝑗(𝑧𝑧) is the difference 𝑤𝑤𝑗𝑗 − 𝑧𝑧 and 𝑒𝑒𝑗𝑗 is the edge vector 𝑤𝑤𝑗𝑗+1 − 𝑤𝑤𝑗𝑗. 
See Fig. 1. Weber et al. [WBGH11] show that the so-called 
“three-point coordinates” - Wachspress, mean value and Laplace 
- may be obtained for  

𝛾𝛾𝑗𝑗(𝑧𝑧) =
𝑒𝑒𝑗𝑗

Im(�̅�𝑟𝑗𝑗(𝑧𝑧)𝑟𝑟𝑗𝑗+1(𝑧𝑧)) �
�𝑟𝑟𝑗𝑗+1(𝑧𝑧)�𝑝𝑝

𝑟𝑟𝑗𝑗+1(𝑧𝑧) −
�𝑟𝑟𝑗𝑗(𝑧𝑧)�𝑝𝑝

𝑟𝑟𝑗𝑗(𝑧𝑧) �            (6) 

                                            
with 𝑝𝑝 = 0, 1, 2, respectively. 
 
The advantage of using the complex formulation is that many of 
the formulae become very simple. For example, Weber et al. 
[WBG09] showed that the so-called Green coordinates intro-
duced by Lipman et al. [LLC08] to generate conformal mappings 
may be expressed very simply in the complex formulation, essen-
tially by integrating the very simple kernel 𝐾𝐾(𝑤𝑤, 𝑧𝑧) = 1

𝑤𝑤−𝑧𝑧
  fea-

turing in Cauchy’s integral formula [Ahl79] over each polygon 
edge (with the complex differential 𝑑𝑑𝑤𝑤). 

 
Figure 1: The terminology of discrete complex barycentric co-
ordinates. 

 
Interpreting (4) and (5) in a different way, Weber et al. 
[WBGH11] observed that there is a more natural way of express-
ing the planar barycentric mapping. Consider a source edge vec-
tor 𝑒𝑒𝑗𝑗 = 𝑤𝑤𝑗𝑗+1 − 𝑤𝑤𝑗𝑗 and its corresponding target edge vector 𝑒𝑒𝚥𝚥� =
𝑓𝑓𝑗𝑗+1 − 𝑓𝑓𝑗𝑗. This pair of edges defines a unique similarity mapping 
(translation, rotation and scale) of the plane 

𝑆𝑆𝑗𝑗(𝑧𝑧) =
𝑟𝑟𝑗𝑗+1(𝑧𝑧)𝑓𝑓𝑗𝑗 − 𝑟𝑟𝑗𝑗(𝑧𝑧)𝑓𝑓𝑗𝑗+1

𝑒𝑒𝑗𝑗
= 𝑓𝑓𝑗𝑗 +

𝑒𝑒𝚥𝚥�
𝑒𝑒𝑗𝑗

(𝑧𝑧 − 𝑤𝑤𝑗𝑗) 

and the barycentric mapping can be defined as a weighted aver-
age of these edge-to-edge similarities. It turns out that the equiv-
alent to (4) with the 𝐵𝐵𝑗𝑗(𝑧𝑧) as defined in (5) is: 
 

𝑓𝑓(𝑧𝑧) =
∑ 𝛾𝛾𝑗𝑗(𝑧𝑧)𝑆𝑆𝑗𝑗(𝑧𝑧)𝑛𝑛

𝑗𝑗=1

∑ 𝛾𝛾𝑗𝑗(𝑧𝑧)𝑛𝑛
𝑗𝑗=1

                                   (7) 

                                                              
so (after normalization), the 𝛾𝛾𝑗𝑗(𝑧𝑧) are the correct way to weight 
the edge-to-edge similarities. Note that, as opposed to the bary-
centric coordinate functions 𝐵𝐵𝑗𝑗(𝑧𝑧), which are real-valued func-
tions, the 𝛾𝛾𝑗𝑗(𝑧𝑧) functions will typically be complex-valued. We 
will return to this interpretation in Section 4, when we generalize 
it to the transfinite case using similarity kernels. 
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3. Complex Transfinite Barycentric Coordinates 
 
When the discrete polygon 𝑊𝑊 of Section 2 is replaced with a con-
tinuous contour 𝐶𝐶, the finite set of barycentric coordinate func-
tions 𝐵𝐵𝑗𝑗(𝑧𝑧) is replaced by a bivariate transfinite barycentric ker-
nel 𝐾𝐾(𝑤𝑤, 𝑧𝑧). The kernel should satisfy conditions analogous to 
conditions C1-C2 above: 

C1.  Constant precision: 

 �𝐾𝐾(𝑤𝑤, 𝑧𝑧)𝑑𝑑𝑤𝑤 
𝐶𝐶

= 1, ∀𝑧𝑧 ∈ 𝑖𝑖𝑛𝑛𝑖𝑖(𝑊𝑊) 

C2.   Linear precision: 

 �𝑧𝑧𝐾𝐾(𝑤𝑤, 𝑧𝑧)𝑑𝑑𝑤𝑤 = 𝑧𝑧
𝐶𝐶

, ∀𝑧𝑧 ∈ 𝑖𝑖𝑛𝑛𝑖𝑖(𝑊𝑊) 

In an attempt to express the transfinite version of a number of 
popular barycentric coordinate schemes, Belyaev [Bel06] 
showed that the easiest way to do this was to introduce a new 
differential 𝑑𝑑𝑑𝑑, the projection of the 𝑑𝑑𝑑𝑑 differential on the unit 
circle centered at 𝑧𝑧 (see Fig. 2). Defining 𝑟𝑟 = 𝑤𝑤 − 𝑧𝑧, Belyaev 
showed that, for a convex curve 𝐶𝐶, the (un-normalized) kernel of 
the mean value coordinates is: 

𝐾𝐾𝑀𝑀𝑀𝑀(𝑤𝑤, 𝑧𝑧)𝑑𝑑𝑑𝑑 =
1

|𝑟𝑟| 𝑑𝑑𝑑𝑑                             (8)  

so the mean value interpolant is 

𝑓𝑓(𝑧𝑧) =
∫ 1

|𝑟𝑟| 𝑓𝑓(𝑤𝑤)𝑑𝑑𝑑𝑑2𝜋𝜋
0

∫ 1
|𝑟𝑟| 𝑑𝑑𝑑𝑑2𝜋𝜋

0

                            (9) 

as the interval [0,2𝜋𝜋]  represents the extent of the 𝑑𝑑 variable, 
which, in the convex case, is positive and monotone as the bound-
ary is traversed. While this is elegant, it does not generalize well 
to the non-convex case. Belyaev overcomes this in the same way 
that Hormann and Floater [HF06] overcome it in the discrete 
mean value case (and this is also applicable to the non-convex 
case for the Gordon-Wixom coordinates [GW74]), by consider-
ing all intersections of a ray originating at 𝑧𝑧 with the contour. 
Dyken and Floater [DF09] express the transfinite mean value ker-
nel using vector algebra, but have the same problem as Belyaev 
for non-convex contours. It turns out that it is much more natural, 
and simple, to address the non-convex case using true boundary 
integrals, in particular contour integrals of complex analysis. This 
was done, albeit for the discrete case, by Weber et al. [WBGH11], 
who showed that using complex-valued expressions, it was pos-
sible to simply capture also the non-convex case. In the sequel, 
we extend Weber et al’s approach to the transfinite case, using 
complex contour integrals with the complex differential 𝑑𝑑𝑤𝑤.  
 
3.1 The basic quantities 
 
To facilitate the complex approach, we introduce the height func-
tion, ℎ(𝑤𝑤, 𝑧𝑧): 𝐶𝐶 × 𝑖𝑖𝑛𝑛𝑖𝑖(𝐶𝐶) →  𝐂𝐂, the difference between 𝑧𝑧 and its 
projection onto the tangent line to 𝐶𝐶 at 𝑤𝑤, which will play a cen-
tral role in everything we will do from now on. See Fig. 2 for an 
illustration. 
 
The following key Theorem summarizes the properties of ℎ and 
relates it to the other known quantities and differentials expressed 
in the algebra of complex numbers. Many of the quantities are 
functions of variables, but from now on, and throughout the paper, 
for compactness sake we will drop some of the variables where 
they are obviously implied. For example 𝑟𝑟(𝑤𝑤, 𝑧𝑧) = 𝑤𝑤 − 𝑧𝑧  is a 
function of 𝑤𝑤 and 𝑧𝑧, but we will just write 𝑟𝑟. Similarly ℎ(𝑤𝑤, 𝑧𝑧) is 
also a function of 𝑤𝑤 and 𝑧𝑧, but we will mostly write just ℎ. Note 
that we also use the 𝑑𝑑𝑑𝑑 differential, which is always a real-valued 
quantity, but in the general non-convex case may be negative. 

 
Figure 2: The terminology of complex transfinite barycentric 
mappings. 

 
 

Theorem 1:  Let 𝐶𝐶 be a simple closed planar contour in counter-
clockwise orientation, and 𝑧𝑧 a point within 𝐶𝐶. For any point 𝑤𝑤 ∈
𝐶𝐶, denote 𝑟𝑟 = 𝑤𝑤 − 𝑧𝑧, 𝑑𝑑 = arg(𝑟𝑟), namely 𝑟𝑟 = |𝑟𝑟| exp(𝑖𝑖𝑑𝑑), 𝐴𝐴 = 
the (signed) area swept by 𝑟𝑟,  and ℎ = the difference between 𝑧𝑧 
and its projection onto the tangent line to 𝐶𝐶 at 𝑤𝑤.  Then 

(a)                         ℎ(𝑤𝑤, 𝑧𝑧) = 1
2

�𝑟𝑟 − 𝑑𝑑𝑤𝑤
𝑑𝑑𝑤𝑤�

�̅�𝑟�    
(b)                     ℎ𝑑𝑑𝑤𝑤� = −ℎ�𝑑𝑑𝑤𝑤 = 𝑖𝑖Im(𝑟𝑟𝑑𝑑𝑤𝑤�), 

(𝑟𝑟 − ℎ)𝑑𝑑𝑤𝑤� = Re(𝑟𝑟𝑑𝑑𝑤𝑤�) 
(c)         𝑑𝑑𝐴𝐴 = 1

2
|𝑟𝑟|2𝑑𝑑𝑑𝑑 = 1

2𝑖𝑖
ℎ�𝑑𝑑𝑤𝑤 = 1

2
Im(�̅�𝑟𝑑𝑑𝑤𝑤) 

(d)         𝑑𝑑𝑑𝑑 = −𝑖𝑖 ℎ�
|𝑟𝑟|2 𝑑𝑑𝑤𝑤 = Im �𝑑𝑑𝑟𝑟

𝑟𝑟
� = Im �𝑑𝑑𝑤𝑤

𝑟𝑟
�,  

𝑑𝑑log|𝑟𝑟| = Re �
𝑑𝑑𝑤𝑤
𝑟𝑟 � 

(e)            ∮ ℎ�∁ 𝑑𝑑𝑤𝑤 = 2𝑖𝑖Area(𝐶𝐶) = ∮ 𝑤𝑤�∁ 𝑑𝑑𝑤𝑤 

(f)                                  Re �𝑑𝑑𝑤𝑤
ℎ

� = 0 

(g)                                   Re �𝑟𝑟
ℎ

� = 1 

(h)             𝑑𝑑|𝑟𝑟| = |𝑟𝑟|Re �𝑑𝑑𝑤𝑤
𝑟𝑟

� ,   𝑑𝑑𝑑𝑑
|𝑟𝑟|

= − 𝑖𝑖
𝑟𝑟

𝑑𝑑 � 𝑟𝑟
|𝑟𝑟|� 

(i)                                𝜕𝜕ℎ
𝜕𝜕𝑧𝑧𝜕𝜕�̅�𝑧

= 𝜕𝜕ℎ�

𝜕𝜕𝑧𝑧𝜕𝜕�̅�𝑧
= 0 

 
 

3.2 The polar dual 
 
To illustrate some of the concepts introduced in the previous sec-
tion, we look at some special cases. First we observe that the po-
lar dual used by Schaefer et al. [SJW07] in their investigation of 
transfinite barycentric coordinates may be expressed very simply 
using ℎ. The polar dual 𝑝𝑝(𝑤𝑤, 𝑧𝑧) of a point 𝑤𝑤 on a given contour 
𝐶𝐶 relative to an interior point 𝑧𝑧 is defined as the vector orthogonal 
to 𝑑𝑑𝑤𝑤 having unit scalar product with 𝑤𝑤 − 𝑧𝑧. 

 
Corollary 1: The polar dual of a contour relative to a point 𝑧𝑧 is 
1/ℎ�.  

 
 
3.3  The unit circle 
 
We now examine the simplest possible contour – the (unit) circle. 
First we derive a simple expression for ℎ in this case: 

 
Corollary 2: If 𝐶𝐶 is the unit circle, then 

ℎ(𝑤𝑤, 𝑧𝑧) = 𝑤𝑤Re(�̅�𝑟𝑤𝑤) = 𝑤𝑤Re(𝑟𝑟𝑤𝑤�) = 𝑤𝑤Re �
𝑟𝑟
𝑤𝑤

�

= 𝑤𝑤�1 − Re(𝑤𝑤𝑧𝑧̅)� 

 
The interested reader is also referred to the end of Section 5.2 for 
an alternative expression for ℎ on the unit circle. 
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It is well known that the harmonic barycentric kernel on the unit 
circle is the so-called Poisson kernel [Bel06], given in complex 
form as: 

𝐾𝐾𝑃𝑃
𝑁𝑁(𝑤𝑤, 𝑧𝑧)𝑑𝑑𝑑𝑑 =

1
2𝜋𝜋 Re �

𝑤𝑤 + 𝑧𝑧
𝑤𝑤 − 𝑧𝑧� 𝑑𝑑𝑑𝑑 =

1
2𝜋𝜋

1 − |𝑧𝑧|2

|𝑟𝑟|2 𝑑𝑑𝑑𝑑        (10) 

 
The superscript 𝑁𝑁  means that this kernel is normalized: 
∮ 𝐾𝐾𝑃𝑃

𝑁𝑁(𝑤𝑤, 𝑧𝑧)𝐶𝐶 𝑑𝑑𝑑𝑑 = 1 for all 𝑧𝑧. It is possible to superficially sim-
plify this formula by noticing that some of it is a function of 𝑧𝑧 
only, thus may be omitted: 

𝐾𝐾𝑃𝑃(𝑤𝑤, 𝑧𝑧)𝑑𝑑𝑑𝑑 =
1

|𝑟𝑟|2 𝑑𝑑𝑑𝑑                                     (11) 

and recovered as part of a standard normalization procedure, i.e. 
given boundary values 𝑓𝑓(𝑤𝑤), the Dirichlet problem on the unit 
disk may be solved as 

𝐻𝐻(𝑧𝑧) =
∮ 𝐾𝐾𝑃𝑃(𝑤𝑤, 𝑧𝑧)𝑓𝑓(𝑤𝑤)𝐶𝐶 𝑑𝑑𝑑𝑑

∮ 𝐾𝐾𝑃𝑃(𝑤𝑤, 𝑧𝑧)𝐶𝐶 𝑑𝑑𝑑𝑑
   . 

If a given transfinite barycentric coordinate scheme reduces to 
the Poisson kernel for the special case that the contour is the unit 
circle, we say that the coordinates are pseudo-harmonic. Belyaev 
[Bel06] has shown that the three-point coordinates, in the contin-
uous limit, are not pseudo-harmonic, but a number of others, most 
notably those introduced by Gordon and Wixom [GW74], are. 
Recently, Chen and Gotsman [CG15] have shown that the Mov-
ing Least Squares (MLS) coordinates introduced by Manson and 
Schaefer [MS10] are also pseudo-harmonic. 
 
As an exercise, we may use Corollary 2 to prove Belyaev’s 
[Bel06] observation that the Poisson kernel 𝐾𝐾𝑃𝑃 may be expressed 
very simply using ℎ:  

 
Corollary 3: On the unit circle, the (un-normalized) Poisson ker-
nel is 

𝐾𝐾𝑃𝑃𝑑𝑑𝑑𝑑 =
1

|ℎ| 𝑑𝑑𝑑𝑑 

 
 
4. Similarity and Anti-Similarity Kernels 
 
4.1 Motivation 
 
When constructing barycentric coordinates, a relevant and natu-
ral transformation of the plane is the similarity transformation (i.e. 
scale, rotation and translation), which, in complex-valued algebra, 
is just a simple linear transformation. Similarities are also the fun-
damental building block of conformal maps, which locally are 
just similarities. The guiding principle will be then, given a 
boundary mapping 𝑓𝑓: 𝐶𝐶 → 𝐹𝐹 and 𝑧𝑧, to identify and blend all sim-
ilarities relevant to 𝑧𝑧 and the given mapping, resulting in 𝑓𝑓(𝑧𝑧). 
 
The main question is how to derive relevant similarities from the 
boundary mapping, i.e. the source contour and its target image. 
Recall that a planar similarity is defined by the images of two 
points, namely two corresponding line segments. Fig. 3 illustrates 
two possibilities, given a point 𝑧𝑧 ∈ int(𝐶𝐶), to glean similarities 
from the data related to an aribitrary point 𝑤𝑤  on 𝐶𝐶 : The first 
method is to consider the line segment through 𝑤𝑤 and some other 
point 𝑢𝑢 ∈ 𝐶𝐶. Both 𝑤𝑤 and 𝑢𝑢 have images on the target contour – 
𝑓𝑓(𝑤𝑤) and 𝑓𝑓(𝑢𝑢) respectively. Thus the line segment [𝑓𝑓(𝑤𝑤), 𝑓𝑓(𝑢𝑢)] 
relative to the line segment [𝑤𝑤, 𝑢𝑢]  defines a unique similarity 
transformation 𝑆𝑆𝑓𝑓

1(𝑧𝑧), called a boundary similarity, which may 
be applied to 𝑧𝑧. An interesting special case is when 𝑤𝑤 and 𝑢𝑢 are 
antipodes relative to 𝑧𝑧, namely 𝑧𝑧 ∈ [𝑤𝑤, 𝑢𝑢]. This will force 𝑓𝑓(𝑧𝑧) ∈

[𝑓𝑓(𝑤𝑤), 𝑓𝑓(𝑢𝑢)]. We call 𝑆𝑆𝑓𝑓
1 in this case an antipodal similarity. The 

second method is to consider a small portion of 𝐶𝐶 at 𝑤𝑤, and the 
corresponding image of this portion at 𝑓𝑓(𝑤𝑤). Essentially these 
are the differentials 𝑑𝑑𝑤𝑤  and 𝑑𝑑𝑓𝑓 , defining a unique similarity 
transformation 𝑆𝑆𝑓𝑓

2(𝑧𝑧), which may be applied to 𝑧𝑧. We call 𝑆𝑆𝑓𝑓
2 a 

differential similarity. The precise formulae for these two simi-
larities are: 

𝑆𝑆𝑓𝑓
1(𝑧𝑧) = 𝑓𝑓(𝑤𝑤) − (𝑤𝑤 − 𝑧𝑧)

𝑓𝑓(𝑤𝑤) − 𝑓𝑓(𝑢𝑢)
𝑤𝑤 − 𝑢𝑢

= 𝑓𝑓 − 𝑟𝑟
𝑓𝑓(𝑤𝑤) − 𝑓𝑓(𝑢𝑢)

𝑤𝑤 − 𝑢𝑢  

𝑆𝑆𝑓𝑓
2(𝑧𝑧) = 𝑓𝑓(𝑤𝑤) − (𝑤𝑤 − 𝑧𝑧)

𝑑𝑑𝑓𝑓
𝑑𝑑𝑤𝑤 = 𝑓𝑓 − 𝑟𝑟

𝑑𝑑𝑓𝑓
𝑑𝑑𝑤𝑤 

where 𝑑𝑑𝑓𝑓 is the differential of 𝑓𝑓 along the contour, which can be 
expressed mathematically as 𝑑𝑑𝑓𝑓 = 𝜕𝜕𝑓𝑓

𝜕𝜕𝑤𝑤
𝑑𝑑𝑤𝑤 + 𝜕𝜕𝑓𝑓

𝜕𝜕𝑤𝑤�
𝑑𝑑𝑤𝑤� . 

 
When constructing transfinite barycentric coordinates using sim-
ilarities, the key questions are, given 𝑧𝑧, which similarities to use, 
and how to blend them in order to satisfy properties C1-C2 of 
Section 1.2. Probably one of the earliest attempts to do this was 
by Gordon and Wixom [GW74], who considered all possible an-
tipodal similarities of 𝑧𝑧. These were blended (i.e. integrated) us-
ing the angular differential 𝑑𝑑𝑑𝑑 to generate 𝑓𝑓(𝑧𝑧). In the sequel we 
will work exclusively with differential similarities, showing that 
these are a quite natural way to describe transfinite barycentric 
mappings. 
 

 
Figure 3: (left) Boundary similarity defined by [𝑢𝑢, 𝑤𝑤]  and 
[𝑓𝑓(𝑢𝑢), 𝑓𝑓(𝑤𝑤)], (right) differential similarity defined by 𝑑𝑑𝑤𝑤 and 
𝑑𝑑𝑓𝑓. 

 
4.2 Similarity kernels 
 
We now show how to use differential similarities to construct 
transfinite barycentric coordinates, analogously to what Weber et 
al. [WBGH11] did with edge-to-edge similarities in the discrete 
case (as described in Section 2). Assume that, given 𝑧𝑧, we want 
to blend all possible differential similarities using a complex 
𝑑𝑑𝑤𝑤 integral with weighting function 𝜎𝜎(𝑤𝑤, 𝑧𝑧), which we call a 
similarity kernel relating a boundary point 𝑤𝑤  with an interior 
point 𝑧𝑧. Dropping the superscript of 𝑆𝑆𝑓𝑓

2, 𝑓𝑓(𝑧𝑧) is defined as a nor-
malized complex contour integral of the form: 

𝑓𝑓(𝑧𝑧) =
∮ 𝜎𝜎(𝑤𝑤, 𝑧𝑧)𝑆𝑆𝑓𝑓(𝑤𝑤, 𝑧𝑧)𝑑𝑑𝑤𝑤∁  

∮ 𝜎𝜎(𝑤𝑤, 𝑧𝑧)𝑑𝑑𝑤𝑤∁
                   (12) 

Note that, since 𝑧𝑧  can be considered a constant, 𝑑𝑑𝑤𝑤 = 𝑑𝑑(𝑤𝑤 −
𝑧𝑧) = 𝑑𝑑𝑟𝑟, 

𝑆𝑆𝑓𝑓𝑑𝑑𝑤𝑤 = 𝑓𝑓𝑑𝑑𝑟𝑟 − 𝑟𝑟𝑑𝑑𝑓𝑓 = −𝑟𝑟2𝑑𝑑 �
𝑓𝑓
𝑟𝑟�                 (13) 

Thus (12) becomes 

𝑓𝑓(𝑧𝑧) � 𝜎𝜎(𝑤𝑤, 𝑧𝑧)𝑑𝑑𝑤𝑤
∁

= � 𝜎𝜎(𝑤𝑤, 𝑧𝑧)(𝑓𝑓𝑑𝑑𝑤𝑤 − 𝑟𝑟𝑑𝑑𝑓𝑓)
∁
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implying, since 𝑓𝑓(𝑧𝑧) can be considered a constant: 

0 = �𝜎𝜎�𝑟𝑟𝑓𝑓𝑑𝑑𝑟𝑟 − 𝑟𝑟𝑑𝑑𝑟𝑟𝑓𝑓�
∁

= − � 𝜎𝜎𝑟𝑟2𝑑𝑑 �
𝑟𝑟𝑓𝑓

𝑟𝑟 �
∁

 

where 𝑟𝑟𝑓𝑓 = 𝑓𝑓(𝑤𝑤) − 𝑓𝑓(𝑧𝑧). By the derivative product rule 
(𝑑𝑑(𝑓𝑓𝑓𝑓) = 𝑓𝑓𝑑𝑑𝑓𝑓 + 𝑓𝑓𝑑𝑑𝑓𝑓), this is equivalent to: 

�
𝑟𝑟𝑓𝑓

𝑟𝑟 𝑑𝑑(𝜎𝜎𝑟𝑟2)
∁

= 0 

This means that blending differential similarities with density 
𝜎𝜎𝑑𝑑𝑤𝑤 to obtain 𝑓𝑓(𝑧𝑧) (as in (12)) is equivalent to defining 𝑓𝑓(𝑧𝑧) 
such that: 

𝑓𝑓(𝑧𝑧) =
∮ 𝑓𝑓

𝑟𝑟 𝑑𝑑(𝜎𝜎𝑟𝑟2)∁

∮ 1
𝑟𝑟 𝑑𝑑(𝜎𝜎𝑟𝑟2)∁

                                 (14) 

Example: As we shall see later, the transfinite mean value bary-
centric coordinates can be generated using differential similari-
ties with the similarity kernel 𝜎𝜎 = 1

|𝑟𝑟|𝑟𝑟
.  So (14) implies that the 

mean value coordinates satisfy: 

𝑓𝑓(𝑧𝑧) =
∮ 𝑓𝑓

𝑟𝑟 𝑑𝑑 � 𝑟𝑟
|𝑟𝑟|�∁

∮ 1
𝑟𝑟 𝑑𝑑 � 𝑟𝑟

|𝑟𝑟|�∁

=
∮ 𝑓𝑓

𝑟𝑟∁
𝑟𝑟

𝑖𝑖|𝑟𝑟| 𝑑𝑑𝑑𝑑

∮ 1
𝑟𝑟∁

𝑟𝑟
𝑖𝑖|𝑟𝑟| 𝑑𝑑𝑑𝑑

=
∮ 𝑓𝑓(𝑤𝑤)

|𝑟𝑟|∁ 𝑑𝑑𝑑𝑑

∮ 1
|𝑟𝑟|∁ 𝑑𝑑𝑑𝑑

 

where the second equality is due to Theorem 1(h). This is con-
sistent with Belyaev’s [Bel06] formula (9) for the transfinite 
mean-value coordinates. 
 
In general, (14) can be considered a formulation analogous to that 
of Schaefer et al. [SJW07]. Whereas they express general bary-
centric coordinates as a Shepard-type integral (using the 1/|𝑟𝑟| 
kernel and 𝑑𝑑𝑑𝑑 differential) over an auxiliary contour, we express 
the coordinates as a Cauchy-type integral (using the 1/𝑟𝑟 kernel 
and 𝑑𝑑𝑤𝑤 differential) over the auxiliary contour 𝜎𝜎𝑟𝑟2. 
 
4.3 Anti-similarity kernels 
 
Analogously to the use of differential similarities, we could use 
differential anti-similarities: 

𝑓𝑓(𝑧𝑧) =
∮ 𝛼𝛼(𝑤𝑤, 𝑧𝑧)𝐴𝐴𝑓𝑓(𝑧𝑧)𝑑𝑑𝑤𝑤�∁

∮ 𝛼𝛼(𝑤𝑤, 𝑧𝑧)𝑑𝑑𝑤𝑤�∁
                            (15) 

                                                                            
where 𝐴𝐴𝑓𝑓(𝑧𝑧) is the differential anti-similarity function   

𝐴𝐴𝑓𝑓(𝑤𝑤, 𝑧𝑧) = 𝑓𝑓(𝑤𝑤) − �̅�𝑟
𝑑𝑑𝑓𝑓
𝑑𝑑𝑤𝑤�  

and 𝛼𝛼(𝑤𝑤, 𝑧𝑧) is an anti-similarity kernel. Analogously to (13),  

𝐴𝐴𝑓𝑓𝑑𝑑𝑤𝑤� = 𝑓𝑓𝑑𝑑�̅�𝑟 − �̅�𝑟𝑑𝑑𝑓𝑓 = −�̅�𝑟2𝑑𝑑 �
𝑓𝑓
�̅�𝑟�            (16) 

We say that the similarity kernel 𝜎𝜎 and the anti-similarity kernel 
𝛼𝛼 correspond if they generate identical mappings, i.e. for all con-
tours 𝐶𝐶 and all boundary mappings 𝑓𝑓: 

∮ 𝜎𝜎(𝑤𝑤, 𝑧𝑧)𝑆𝑆𝑓𝑓(𝑤𝑤, 𝑧𝑧)𝑑𝑑𝑤𝑤∁

∮ 𝜎𝜎(𝑤𝑤, 𝑧𝑧)𝑑𝑑𝑤𝑤∁
=

∮ 𝛼𝛼(𝑤𝑤, 𝑧𝑧)𝐴𝐴𝑓𝑓(𝑧𝑧)𝑑𝑑𝑤𝑤�∁

∮ 𝛼𝛼(𝑤𝑤, 𝑧𝑧)𝑑𝑑𝑤𝑤�∁
 

 
4.4 Boundary interpolation 
 
In many applications, barycentric coordinates are used for inter-
polating a given boundary mapping. Thus it is essential that ap-
plying the similarity kernel in (12) or anti-similarity kernel in (15) 
reproduce the given boundary conditions, which is not at all ob-
vious. The following theorem characterizes when boundary map-
ping reproduction occurs. 

 
Theorem 2: A similarity kernel 𝜎𝜎 reproduces a given boundary 
mapping 𝑓𝑓(𝑤𝑤) of 𝜕𝜕𝐶𝐶 iff the following conditions are satisfied for 
every 𝑢𝑢 ∈ 𝜕𝜕𝐶𝐶: 

(a)                 lim
𝑧𝑧→𝑢𝑢

| ∮ 𝜎𝜎(𝑤𝑤, 𝑧𝑧)𝑑𝑑𝑤𝑤𝐶𝐶 | = ∞ 
(b)               lim

𝑧𝑧→𝑢𝑢
| ∮ 𝑟𝑟𝜎𝜎(𝑤𝑤, 𝑧𝑧)𝑑𝑑𝑤𝑤𝐶𝐶 | < ∞ 

(c)             ∀𝑥𝑥 ≠ 𝑢𝑢     lim
𝑧𝑧→𝑢𝑢

 |𝜎𝜎(𝑥𝑥, 𝑧𝑧)| < ∞ 

 
 
4.5 Affine Reproduction 
 
A fundamental requirement from the similarity and anti-similar-
ity kernels is that it they have the correct precision, namely re-
produce constant, similarity and affine functions. Constant preci-
sion is immediate if the kernel is normalized to unity. It is also 
easy to show (in analogy to the discrete case treated by Weber et 
al. [WBGH11]) that any similarity kernel automatically repro-
duces similarity functions 𝑓𝑓(𝑧𝑧) = 𝑎𝑎𝑧𝑧 + 𝑏𝑏 and any anti-similarity 
kernel automatically reproduces anti-similarity functions 𝑓𝑓(𝑧𝑧) =
𝑎𝑎𝑧𝑧̅ + 𝑏𝑏: 

 
Theorem 3:  
(1) Every similarity kernel 𝜎𝜎 reproduces similarity transfor-

mations. 
(2) Every anti-similarity kernel 𝛼𝛼 reproduces anti-similarity 

transformations. 
 

 
Reproduction of affine functions, namely reproduction of both 
𝑓𝑓(𝑧𝑧) = 𝑧𝑧  and 𝑓𝑓(𝑧𝑧) = 𝑧𝑧̅  is not guaranteed for all similarity or 
anti-similarity kernels. The following theorem characterizes 
when this happens. 

 
Theorem 4: A similarity kernel 𝜎𝜎  reproduces affine transfor-
mations iff (for every 𝑧𝑧 ∈ 𝐶𝐶) 

�𝜎𝜎(𝑤𝑤, 𝑧𝑧)ℎ(𝑤𝑤, 𝑧𝑧)𝑑𝑑𝑤𝑤� = 0
𝐶𝐶

 

 
The following theorem provides an alternative characterization 
of affine reproduction based on the relationship between the sim-
ilarity kernel 𝜎𝜎 and its conjugate 𝜎𝜎�. 

 
Theorem 5: 𝜎𝜎 is an affine reproducing similarity kernel iff 𝜎𝜎�  is 
an affine reproducing similarity kernel. 

 
 
The following theorem provides a family of similarity kernels 
which are affine-reproducing. 

 
Theorem 6: Any similarity kernel of the forms: 

𝜎𝜎1(𝑤𝑤, 𝑧𝑧) =
1

ℎ�̅�𝑟𝑘𝑘 ,   𝑖𝑖𝑛𝑛𝑖𝑖𝑒𝑒𝑓𝑓𝑒𝑒𝑟𝑟 𝑘𝑘 ≠ 1 

𝜎𝜎2(𝑤𝑤, 𝑧𝑧) =
1

ℎ�𝑟𝑟𝑘𝑘 ,    𝑖𝑖𝑛𝑛𝑖𝑖𝑒𝑒𝑓𝑓𝑒𝑒𝑟𝑟 𝑘𝑘 ≠ 1 

    𝜎𝜎3(𝑤𝑤, 𝑘𝑘) =
1

|𝑟𝑟|𝑟𝑟                                     

    𝜎𝜎4(𝑤𝑤, 𝑘𝑘) =
1

|𝑟𝑟|�̅�𝑟
                                     

is affine-reproducing. 
 

 
4.6 Conjugate Reproduction 
 
Similarly to affine reproduction, it is natural to ask under which 
conditions is the conjugate function 𝑓𝑓 ̅reproduced by a similarity 
kernel 𝜎𝜎 if we know that 𝜎𝜎 reproduces 𝑓𝑓.  
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First we characterize the conjugation relationship between a sim-
ilarity kernel 𝜎𝜎 and its corresponding anti-similarity counterpart 
𝛼𝛼.  
 

 
Theorem 7: If a similarity kernel 𝜎𝜎 satisfies 

Re(𝜎𝜎𝑑𝑑𝑟𝑟) + 𝑑𝑑Re(𝜎𝜎𝑟𝑟) = 0 
then a corresponding anti-similarity kernel is 𝛼𝛼 = 𝜎𝜎�. 

 
 
Now we can see when a similarity kernel reproduces conjugates: 

 
Theorem 8: Under the conditions of Theorem 7, if 𝜎𝜎 reproduces 
𝑓𝑓, then 𝜎𝜎 also reproduces 𝑓𝑓.̅ 

 
 
4.7 Uniqueness 
 
The following Theorem shows that a similarity kernel of a bary-
centric mapping is not unique: 

 
Theorem 9: If 𝜎𝜎 is a similarity kernel of a barycentric mapping, 
then so is 𝜎𝜎′ = 𝑎𝑎𝜎𝜎 + 𝑏𝑏

𝑟𝑟2 , for any complex functions 𝑎𝑎(𝑧𝑧)  and 
𝑏𝑏(𝑧𝑧) that depend only on 𝑧𝑧. 

 
 
5. Transfinite three-point coordinates 
 
We now ready to state a central theoretical result of this paper, 
namely that using similarity kernels allows us to express the 
transfinite versions of the popular “three-point” barycentric coor-
dinate schemes in a surprisingly simple form. Some of them in-
volve the ℎ(𝑤𝑤, 𝑧𝑧) function introduced in Section 3.1. 
 
5.1 Discrete three-point coordinates 
 
Given a simple planar polygon 𝑊𝑊 having vertices (in complex 
form) 𝑤𝑤𝑗𝑗 , 𝑗𝑗 = 1, . . , 𝑛𝑛, the discrete three-point schemes mentioned 
in Section 2 express 𝐵𝐵𝑗𝑗(𝑧𝑧) − the un-normalized barycentric co-
ordinate function associated with 𝑤𝑤𝑗𝑗  as a function of just 
𝑤𝑤𝑗𝑗−1, 𝑤𝑤𝑗𝑗 , 𝑤𝑤𝑗𝑗+1 (and of course 𝑧𝑧). This is reflected also in (6). For 
example, the Laplace coordinate function is just the sum of the 
cotangents of the two angles formed by (𝑤𝑤𝑗𝑗 , 𝑤𝑤𝑗𝑗−1, 𝑧𝑧)  and 
�𝑤𝑤𝑗𝑗 , 𝑤𝑤𝑗𝑗+1, 𝑧𝑧�:  𝛼𝛼𝑗𝑗−1 and 𝛽𝛽𝑗𝑗  in Fig. 1. Similarly, the mean-value 
and Wachspress coordinates involve only angles and edge 
lengths in these two triangles. 
 
The mean value coordinates are particularly interesting as they 
are derived by trying to mimic the mean value property of har-
monic functions [Flo03]. Yet, as Belyaev [Bel06] notes, they are 
not pseudo-harmonic, and neither are the Wachspress or Laplace 
coordinates. In contrast, when the polygon is a square, both the 
Wachspress and Laplace coordinates are exactly the harmonic bi-
linear coordinates. For the square whose vertices are 
(1, 𝑖𝑖, −1, −𝑖𝑖), these are: 

𝐵𝐵𝑘𝑘(𝑧𝑧) =
1
4

((1 + 𝑧𝑧𝑖𝑖1−𝑘𝑘)2),    𝑘𝑘 = 1, . . ,4 
This was noted by Floater et al. [FHK06], who also noted that 
these two coordinates coincide for any circular polygon, i.e. a 
polygon whose vertices all lie on a circle, including the regular 
polygons (those having equal edge lengths).  
 
 

5.2 Similarity kernels of three-point coordinates 
 
We now show that the transfinite versions of the three-point co-
ordinates may be expressed very simply using similarity kernels. 

 
Theorem 10: The similarity kernels of the three-point barycen-
tric coordinates are: 

• Laplace: 𝜎𝜎𝐿𝐿 = 1
ℎ
   

• Wachspress: 𝜎𝜎𝑊𝑊 = 1
ℎ�𝑟𝑟2   

• Mean value: 𝜎𝜎𝑀𝑀𝑀𝑀 = 1
|𝑟𝑟|𝑟𝑟

   

 
 
Note that these kernels are affine-reproducing by Theorem 6, Fur-
thermore, the conditions of Theorems 7 and 8 also hold: 
 
Laplace: Re(𝜎𝜎𝐿𝐿𝑑𝑑𝑟𝑟) + 𝑑𝑑Re(𝜎𝜎𝐿𝐿𝑟𝑟) = Re �𝑑𝑑𝑤𝑤

ℎ
� + 𝑑𝑑Re �𝑟𝑟

ℎ
� = 0 +

𝑑𝑑1 = 0  by Theorem 1(f) and Theorem 1(g). 
 
Mean-Value: Re(𝜎𝜎𝑀𝑀𝑀𝑀𝑑𝑑𝑟𝑟) + 𝑑𝑑Re(𝜎𝜎𝑀𝑀𝑀𝑀𝑟𝑟) = Re � 𝑑𝑑𝑟𝑟

𝑟𝑟|𝑟𝑟|
� +

𝑑𝑑Re � 𝑟𝑟
𝑟𝑟|𝑟𝑟|

� = 1
|𝑟𝑟| Re �𝑑𝑑𝑟𝑟

𝑟𝑟
� + 𝑑𝑑 1

|𝑟𝑟| = 1
|𝑟𝑟|2 𝑑𝑑|𝑟𝑟| − 1

|𝑟𝑟|2 𝑑𝑑|𝑟𝑟| = 0  by 
Theorem 1(h). 
Wachspress:  Re(𝜎𝜎𝑊𝑊𝑑𝑑𝑟𝑟) + 𝑑𝑑Re(𝜎𝜎𝑊𝑊𝑟𝑟) = Re � 𝑑𝑑𝑟𝑟

ℎ�𝑟𝑟2� +

𝑑𝑑Re � 1
ℎ�𝑟𝑟

� = Re � 𝑑𝑑𝑟𝑟
ℎ�𝑟𝑟2 + 1

𝑟𝑟
𝑑𝑑 �1

ℎ�
� + 1

ℎ�
𝑑𝑑 �1

𝑟𝑟
�� = Re �− 1

ℎ�
𝑑𝑑 �1

𝑟𝑟
� +

1
𝑟𝑟

𝑑𝑑 �1
ℎ�

� + 1
ℎ�

𝑑𝑑 �1
𝑟𝑟
�� = Re �1

𝑟𝑟
𝑑𝑑 �1

ℎ�
�� = 1

|𝑟𝑟|2 Re ��̅�𝑟𝑑𝑑 �1
ℎ�

�� =
1

|𝑟𝑟|2 Re �𝑑𝑑 ��̅�𝑟
ℎ�

� − 𝑑𝑑�̅�𝑟
ℎ�

� = 1
|𝑟𝑟|2 �𝑑𝑑Re ��̅�𝑟

ℎ�
� − Re �𝑑𝑑�̅�𝑟

ℎ�
�� = 1

|𝑟𝑟|2 (𝑑𝑑1 −
0) = 0  by Theorem 1(f) and Theorem 1(g). 
 
To show one simple consequence of Theorem 10, we now prove 
the continuous equivalent of the result of Floater et al [FHK06] 
that the Wachspress and Laplace mappings are equivalent on a 
circular polygon. 

 
Theorem 11: The similarity kernels of the Wachspress mapping 
and the Laplace mapping (as expressed in Theorem 10) are equiv-
alent on the unit circle. 

 
 
It is worth mentioning that the normalization integrals for the La-
place and Wachspress similarity kernels on the unit circle may be 
computed using Cauchy’s Residue Theorem [Ahl79] based on 
the observation: 

ℎ = −
𝑧𝑧̅
2

(𝑤𝑤 − 𝑎𝑎)(𝑤𝑤 − 𝑏𝑏)   𝑤𝑤ℎ𝑒𝑒𝑟𝑟𝑒𝑒  𝑎𝑎, 𝑏𝑏 =
1 ± �1 − |𝑧𝑧|2 

𝑧𝑧̅
, 𝑎𝑎𝑏𝑏�

= 1, |𝑎𝑎| > 1, |𝑏𝑏| < 1  
which leads to: 

𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝐋:                 �
𝑑𝑑𝑤𝑤
ℎ =

𝐶𝐶

2𝜋𝜋𝑖𝑖

(1 − |𝑧𝑧|2)
1
2
 

𝐖𝐖𝐋𝐋𝐋𝐋𝐖𝐖𝐖𝐖𝐋𝐋𝐖𝐖𝐋𝐋𝐖𝐖𝐖𝐖:        �
𝑑𝑑𝑤𝑤
ℎ�𝑟𝑟2 =

𝐶𝐶

2𝜋𝜋𝑖𝑖

(1 − |𝑧𝑧|2)
3
2
 

 
5.3  The Cauchy kernel 
 
It is worth comparing the situation for the three-point barycentric 
coordinates to that of the “Cauchy coordinates” of Weber et al. 
[WBG09], inspired by the celebrated Cauchy integral theorem of 
complex analysis, which makes use of the so-called “Cauchy ker-
nel” 𝐾𝐾𝐶𝐶𝑑𝑑𝑤𝑤 = 1

2𝜋𝜋𝑖𝑖
𝑑𝑑𝑤𝑤

𝑟𝑟
. Defining 
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𝑓𝑓(𝑧𝑧) =
1

2𝜋𝜋𝑖𝑖 �
𝑓𝑓(𝑤𝑤)

𝑟𝑟∁
𝑑𝑑𝑤𝑤 

yields a 𝑓𝑓  which is always holomorphic. If 𝑓𝑓 is the boundary 
mapping of a holomorphic function, then 𝑓𝑓 = 𝑓𝑓, otherwise 𝑓𝑓 is 
the projection of 𝑓𝑓 onto the linear space of holomorphic func-
tions.  
 
When used in the discrete barycentric setting, Cauchy coordi-
nates always generate a conformal map which does not always 
interpolate the given target boundary. Nonetheless, it is interest-
ing to observe that for these special coordinates, the similarity 
kernel is identical to the Cauchy kernel: 

1
2𝜋𝜋𝑖𝑖

�
(𝑓𝑓𝑑𝑑𝑟𝑟 − 𝑟𝑟𝑑𝑑𝑓𝑓)

𝑟𝑟∁
=

1
2𝜋𝜋𝑖𝑖 �

𝑓𝑓
𝑟𝑟∁

𝑑𝑑𝑤𝑤 −
1

2𝜋𝜋𝑖𝑖 �𝑑𝑑𝑓𝑓
∁

= 𝑓𝑓(𝑧𝑧) − 0

= 𝑓𝑓(𝑧𝑧) 
 
6. Relating the barycentric kernel and the similarity ker-

nel 
 
In the previous two sections we introduced the concept of a sim-
ilarity kernel as a simpler alternative to the conventional barycen-
tric kernel. In this section we relate between the two. 
 
6.1 The differential equation 

 
Theorem 12: If 𝐵𝐵 is a barycentric kernel (generating 𝑓𝑓 using the 
complex 𝑑𝑑𝑤𝑤 contour integral), and 𝜎𝜎 satisfies  

𝐵𝐵𝑑𝑑𝑤𝑤 = 2𝜎𝜎𝑑𝑑𝑤𝑤 + 𝑟𝑟𝑑𝑑𝜎𝜎 
then 𝜎𝜎 is a similarity kernel corresponding to 𝐵𝐵. 

 
 
To illustrate, it is easy to use Theorem 12 to verify that for the 
Cauchy kernel 𝐵𝐵𝐶𝐶 = 1

2𝜋𝜋𝑖𝑖𝑟𝑟 
, we have 𝐵𝐵𝐶𝐶 = 𝜎𝜎𝐶𝐶 . It is also easy to 

verify Theorem 9, namely that both 𝜎𝜎 and 𝑎𝑎(𝑧𝑧)𝜎𝜎 + 𝑏𝑏(𝑧𝑧)
𝑟𝑟2  corre-

spond to the same 𝐵𝐵. 
 
Now let us examine a little more closely the mean value similarity 
kernel: 𝜎𝜎𝑀𝑀𝑀𝑀 = 1

𝑟𝑟|𝑟𝑟|
= 𝑟𝑟−3

2�̅�𝑟−1
2. Observing that  

𝑑𝑑𝜎𝜎𝑀𝑀𝑀𝑀 = − 3
2

𝑟𝑟−5
2�̅�𝑟−1

2𝑑𝑑𝑤𝑤 − 1
2

𝑟𝑟−3
2�̅�𝑟−3

2𝑑𝑑𝑤𝑤� = − 1
2

�3𝑑𝑑𝑤𝑤
𝑟𝑟2|𝑟𝑟| + 𝑑𝑑𝑤𝑤�

|𝑟𝑟|3�, The-
orem 12 implies 

𝐵𝐵𝑀𝑀𝑀𝑀𝑑𝑑𝑤𝑤 = 2𝜎𝜎𝑀𝑀𝑀𝑀𝑑𝑑𝑤𝑤 + 𝑟𝑟𝑑𝑑𝜎𝜎𝑀𝑀𝑀𝑀 =
1
2 �

𝑑𝑑𝑤𝑤
𝑟𝑟|𝑟𝑟| −

𝑑𝑑𝑤𝑤�
�̅�𝑟|𝑟𝑟|�

=
𝑖𝑖

|𝑟𝑟|
Im �

𝑑𝑑𝑤𝑤
𝑟𝑟

 � 

So that, by Theorem 1(d), 

�𝑓𝑓𝐵𝐵𝑀𝑀𝑀𝑀𝑑𝑑𝑤𝑤 =
𝑪𝑪

𝑖𝑖 � 𝑓𝑓
1

|𝑟𝑟| Im �
𝑑𝑑𝑤𝑤
𝑟𝑟 �

𝑪𝑪
= 𝑖𝑖 � 𝑓𝑓

1
|𝑟𝑟| 𝑑𝑑𝑑𝑑

𝑪𝑪
 

which is equivalent (up to normalization) to Belyaev’s [Bel06] 
mean-value integral (9). 
 
7. Inverting Barycentric Maps 
 
We now present an application of similarity kernels, which arises 
when using barycentric mappings in a real-world application. 
Suppose we wish to render a deformation of a digital image given 
within a source contour, where the deformation is described using 
a barycentric mapping of the interior of the source contour to the 
interior of a target contour. This rendering is typically done using 
texture mapping, which involves generating the resulting image 
one pixel at a time. For each such pixel in the resulting image, the 
so-called pre-image of the pixel in the source image is found and 

this area is filtered. In order to determine the pre-image, it is nec-
essary to invert the mapping.  
 
Inverting a barycentric mapping is not straightforward. The sim-
plest version of the problem – inverting the bilinear map of a unit 
square – has been treated since these mappings are frequently 
used in computer graphics. The exact solution reduces to a quad-
ratic equation, which involves computing a square root [Qui16]. 
While this in principle should not be difficult, it is known to suf-
fer from numerical imprecision in single-precision shaders. Thus, 
in practice, the bilinear map is inverted using an iterative algo-
rithm. The interested reader is referred to details in [S14]. 
 
We are not aware of any existing algorithm to invert a general 
barycentric mapping. We now describe an iterative Newton algo-
rithm which achieves this, taking advantage of the similarity ker-
nel concept. Given 𝑢𝑢 = 𝑓𝑓(𝑧𝑧), and assuming 𝑓𝑓  is injective, we 
would like to compute 𝑧𝑧,  namely solve the equation 𝑢𝑢 − 𝑓𝑓(𝑧𝑧) =
0 for 𝑧𝑧. The Newton method over the field of complex numbers 
implies the following iteration scheme, given an initial guess 𝑧𝑧0:  

𝑧𝑧𝑛𝑛+1 = 𝑧𝑧𝑛𝑛 +
�𝑢𝑢 − 𝑓𝑓(𝑧𝑧𝑛𝑛)�𝑎𝑎� − �𝑢𝑢 − 𝑓𝑓(𝑧𝑧𝑛𝑛)��������������𝑏𝑏

|𝑎𝑎|2 − |𝑏𝑏|2           (17) 

where the key quantities are the gradients of 𝑓𝑓: 

𝑎𝑎 =
𝜕𝜕𝑓𝑓
𝜕𝜕𝑧𝑧

(𝑧𝑧𝑛𝑛),      𝑏𝑏 =
𝜕𝜕𝑓𝑓
𝜕𝜕𝑧𝑧̅ (𝑧𝑧𝑛𝑛) 

The observant reader will note that the expression |𝑎𝑎|2 − |𝑏𝑏|2 in 
(17) is the Jacobian of 𝑓𝑓 at 𝑧𝑧𝑛𝑛. Computing the gradients of 𝑓𝑓 as a 
linear combination of gradients of the traditional barycentric co-
ordinates is not that easy, and the formulae for the mean value 
case, when using the usual barycentric formulae, as derived by 
Thiery et al. [TTB14] for the discrete case and by Dyken and 
Floater [DF09] for the transfinite case, are quite complicated. 
While numerical computation of the gradients is a possibility, it 
is always better to use analytic formulae, especially if they are 
simple. Indeed, the main advantage of using our similarity and 
anti-similarity kernels is that the resulting formulae are quite sim-
ple. This is thanks to the fact that the mappings involve integrals 
using only the 𝑑𝑑𝑤𝑤  and 𝑑𝑑𝑓𝑓 differentials, which are independent 
of 𝑧𝑧, thus permit differentiation under the integral sign. Contrast 
this to Belyaev’s formula (9) for the mean value mapping, which 
although simple, involves the 𝑑𝑑𝑑𝑑 differential, which depends on 
both 𝑤𝑤 and 𝑧𝑧, thus cannot be differentiated under the integral sign.  
 
We proceed by exploiting the similarity and anti-similarity kernel 
formulations (12) and (15), differentiating under the integral sign: 

𝑎𝑎 =
𝜕𝜕𝑓𝑓
𝜕𝜕𝑧𝑧

(𝑧𝑧) =
𝜕𝜕

𝜕𝜕𝑧𝑧 �
∮ 𝜎𝜎(𝑓𝑓𝑑𝑑𝑤𝑤 − 𝑟𝑟𝑑𝑑𝑓𝑓)𝐶𝐶

∮ 𝜎𝜎𝑑𝑑𝑤𝑤𝐶𝐶
�

=
∮ 𝜕𝜕𝜎𝜎

𝜕𝜕𝑧𝑧 (𝑓𝑓𝑑𝑑𝑤𝑤 − 𝑟𝑟𝑑𝑑𝑓𝑓)𝐶𝐶 + ∮ 𝜎𝜎𝑑𝑑𝑓𝑓𝐶𝐶

∮ 𝜎𝜎𝑑𝑑𝑤𝑤𝐶𝐶
−

∮ 𝜎𝜎(𝑓𝑓𝑑𝑑𝑤𝑤 − 𝑟𝑟𝑑𝑑𝑓𝑓)𝐶𝐶 ∮ 𝜕𝜕𝜎𝜎
𝜕𝜕𝑧𝑧 𝑑𝑑𝑤𝑤𝐶𝐶

�∮ 𝜎𝜎𝑑𝑑𝑤𝑤𝐶𝐶 �2

=
∮ 𝜕𝜕𝜎𝜎

𝜕𝜕𝑧𝑧 (𝑓𝑓𝑑𝑑𝑤𝑤 − 𝑟𝑟𝑑𝑑𝑓𝑓)𝐶𝐶 + ∮ 𝜎𝜎𝑑𝑑𝑓𝑓𝐶𝐶 − 𝑓𝑓(𝑧𝑧) ∮ 𝜕𝜕𝜎𝜎
𝜕𝜕𝑧𝑧 𝑑𝑑𝑤𝑤𝐶𝐶

∮ 𝜎𝜎𝑑𝑑𝑤𝑤𝐶𝐶

=
∮ �𝑓𝑓 − 𝑓𝑓(𝑧𝑧)� 𝜕𝜕𝜎𝜎

𝜕𝜕𝑧𝑧 𝑑𝑑𝑤𝑤𝐶𝐶 + ∮ �𝜎𝜎 − 𝜕𝜕𝜎𝜎
𝜕𝜕𝑧𝑧 𝑟𝑟� 𝑑𝑑𝑓𝑓𝐶𝐶

∮ 𝜎𝜎𝑑𝑑𝑤𝑤𝐶𝐶
                                    (18) 

𝑏𝑏 =
𝜕𝜕𝑓𝑓
𝜕𝜕𝑧𝑧̅

(𝑧𝑧) =
𝜕𝜕

𝜕𝜕𝑧𝑧̅ �
∮ 𝛼𝛼(𝑓𝑓𝑑𝑑𝑤𝑤� − �̅�𝑟𝑑𝑑𝑓𝑓)𝐶𝐶

∮ 𝛼𝛼𝑑𝑑𝑤𝑤�𝐶𝐶
�  

=
∮ �𝑓𝑓 − 𝑓𝑓(𝑧𝑧)� 𝜕𝜕𝛼𝛼

𝜕𝜕𝑧𝑧̅ 𝑑𝑑𝑤𝑤�𝐶𝐶 + ∮ �𝛼𝛼 − 𝜕𝜕𝛼𝛼
𝜕𝜕𝑧𝑧̅ �̅�𝑟� 𝑑𝑑𝑓𝑓𝐶𝐶

∮ 𝛼𝛼𝑑𝑑𝑤𝑤�𝐶𝐶
                                    (19) 

These expressions may be significantly simplified for the three-
point coordinates, as follows: 
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Laplace: Recall that 𝜎𝜎 = 1
ℎ
. Thus 

𝜕𝜕𝜎𝜎
𝜕𝜕𝑧𝑧 = −

1
ℎ2 �−

1
2� =

1
2ℎ2 =

𝜎𝜎2

2  
 
Mean value: Recall that 𝜎𝜎 = 1

𝑟𝑟|𝑟𝑟| = 𝑟𝑟−3
2�̅�𝑟−1

2. Thus 
𝜕𝜕𝜎𝜎
𝜕𝜕𝑧𝑧 =

3
2 𝑟𝑟−5

2�̅�𝑟−1
2 =

3
2 𝑟𝑟−2|𝑟𝑟|−1 =

3
2

𝜎𝜎
𝑟𝑟   

 
Wachspress: Recall that 𝜎𝜎 = 1

ℎ�𝑟𝑟2. From 

ℎ� = 1
2

��̅�𝑟 − 𝑑𝑑𝑤𝑤�
𝑑𝑑𝑤𝑤

𝑟𝑟�  we conclude that  𝑟𝑟2  𝑑𝑑𝑤𝑤�
𝑑𝑑𝑤𝑤

= |𝑟𝑟|2 − 2𝑟𝑟ℎ�, so 
𝜕𝜕𝜎𝜎
𝜕𝜕𝑧𝑧 = −𝜎𝜎2 �−2𝑟𝑟ℎ� + 𝑟𝑟2 1

2
𝑑𝑑𝑤𝑤�
𝑑𝑑𝑤𝑤

� = 𝜎𝜎2 �2𝑟𝑟ℎ� −
1
2

|𝑟𝑟|2 + 𝑟𝑟ℎ��

= 𝜎𝜎2 �3𝑟𝑟ℎ� −
1
2

|𝑟𝑟|2� = 𝜎𝜎2 �
3

𝜎𝜎𝑟𝑟 −
1
2

|𝑟𝑟|2�

=
3𝜎𝜎
𝑟𝑟 −

𝜎𝜎2|𝑟𝑟|2

2  
In all of the above, 𝛼𝛼 =  𝜎𝜎�, thus 

 
𝜕𝜕𝛼𝛼
𝜕𝜕𝑧𝑧̅

=   
𝜕𝜕𝜎𝜎�
𝜕𝜕𝑧𝑧̅ = �

𝜕𝜕𝜎𝜎
𝜕𝜕𝑧𝑧�

�������
 

 
The same method applies to the discrete (polygon) case using the 
𝛾𝛾𝑗𝑗 functions of (5): Denoting 

𝑟𝑟𝑗𝑗 = 𝑤𝑤𝑗𝑗 − 𝑧𝑧, 𝑒𝑒𝑗𝑗 = 𝑤𝑤𝑗𝑗+1 − 𝑤𝑤𝑗𝑗 , �̂�𝑒𝑗𝑗 = 𝑓𝑓𝑗𝑗+1 − 𝑓𝑓𝑗𝑗 

𝑎𝑎 =
𝜕𝜕𝑓𝑓(𝑧𝑧)

𝜕𝜕𝑧𝑧 =
𝜕𝜕

𝜕𝜕𝑧𝑧
∑ 𝑆𝑆𝑗𝑗𝛾𝛾𝑗𝑗𝑗𝑗

∑ 𝛾𝛾𝑗𝑗𝑗𝑗
=

∑
�̂�𝑒𝑗𝑗
𝑒𝑒𝑗𝑗

𝛾𝛾𝑗𝑗𝑗𝑗 + ∑ 𝑆𝑆𝑗𝑗
𝜕𝜕𝛾𝛾𝑗𝑗
𝜕𝜕𝑧𝑧𝑗𝑗 − 𝑓𝑓 ∑

𝜕𝜕𝛾𝛾𝑗𝑗
𝜕𝜕𝑧𝑧𝑗𝑗

∑ 𝛾𝛾𝑗𝑗𝑗𝑗

=
∑ �

�̂�𝑒𝑗𝑗
𝑒𝑒𝑗𝑗

𝛾𝛾𝑗𝑗 + �𝑆𝑆𝑗𝑗 − 𝑓𝑓�
𝜕𝜕𝛾𝛾𝑗𝑗
𝜕𝜕𝑧𝑧 �𝑗𝑗

∑ 𝛾𝛾𝑗𝑗𝑗𝑗
 

𝑏𝑏 =
𝜕𝜕𝑓𝑓(𝑧𝑧)

𝜕𝜕𝑧𝑧̅
=

𝜕𝜕
𝜕𝜕𝑧𝑧̅

∑ 𝐴𝐴𝑗𝑗�̅�𝛾𝑗𝑗𝑗𝑗

∑ �̅�𝛾𝑗𝑗𝑗𝑗
=

∑ �
�̂�𝑒𝑗𝑗
𝑒𝑒𝚥𝚥�

�̅�𝛾𝑗𝑗 + 𝐴𝐴𝑗𝑗
𝜕𝜕�̅�𝛾𝑗𝑗
𝜕𝜕𝑧𝑧̅ − 𝑓𝑓

𝜕𝜕�̅�𝛾𝑗𝑗
𝜕𝜕𝑧𝑧̅ �𝑗𝑗

∑ �̅�𝛾𝑗𝑗𝑗𝑗

=
∑ �

�̂�𝑒𝑗𝑗
𝑒𝑒𝚥𝚥�

�̅�𝛾𝑗𝑗 + �𝐴𝐴𝑗𝑗 − 𝑓𝑓� �
𝜕𝜕𝛾𝛾𝚥𝚥
𝜕𝜕𝑧𝑧 �

�������
�𝑗𝑗

∑ �̅�𝛾𝑗𝑗𝑗𝑗
 

For the three-point coordinates, (6) implies 

𝛾𝛾𝑗𝑗 =
𝑖𝑖

ℎ�𝑗𝑗
�

�𝑟𝑟𝑗𝑗+1�𝑝𝑝

𝑟𝑟𝑗𝑗+1
−

�𝑟𝑟𝑗𝑗�𝑝𝑝

𝑟𝑟𝑗𝑗
� 

resulting in 

𝜕𝜕𝛾𝛾𝑗𝑗

𝜕𝜕𝑧𝑧 = �1 −
𝑝𝑝
2�

𝑖𝑖
ℎ�𝑗𝑗

�
�𝑟𝑟𝑗𝑗+1�𝑝𝑝

𝑟𝑟𝑗𝑗+1
2 −

�𝑟𝑟𝑗𝑗�𝑝𝑝

𝑟𝑟𝑗𝑗
2 � +

𝑖𝑖
2ℎ�𝑗𝑗

2
�̅�𝑒𝑗𝑗

𝑒𝑒𝑗𝑗
 �

�𝑟𝑟𝑗𝑗+1�𝑝𝑝

𝑟𝑟𝑗𝑗+1
−

�𝑟𝑟𝑗𝑗�𝑝𝑝

𝑟𝑟𝑗𝑗
� 

In particular, for the Laplace coordinates (𝑝𝑝 = 2), this simplifies 
to 

𝛾𝛾𝑗𝑗 = 𝑖𝑖
𝑒𝑒𝑗𝑗

ℎ𝑗𝑗
,    

𝜕𝜕𝛾𝛾𝑗𝑗

𝜕𝜕𝑧𝑧 =
𝑒𝑒𝑗𝑗

2ℎ𝑗𝑗
2 

and for the Wachspress coordinates (𝑝𝑝 = 0): 

𝛾𝛾𝑗𝑗 =
𝑒𝑒𝑗𝑗

ℎ�𝑗𝑗𝑟𝑟𝑗𝑗𝑟𝑟𝑗𝑗+1
 

 

7.1 Experimental results 
 

We implemented the Newton-Raphson scheme described above 
for inverting injective transfinite mean value mappings. The iter-
ation was initialized using the reverse mean value mapping, i.e. 
the mapping obtained when the roles of the source and target con-
tours are reversed. Of course, this mapping can be arbitrary far 
from the desired inverse, and will typically not even be injective. 
Nonetheless, it serves as a good initialization. We did experience 
some numerical instability, especially in regions close to the 
boundary (where the kernels are singular), which may be some-
what mitigated by making smaller steps (e.g. by making just half 
the step size implied by (17)). Figs. 4 and 5 show the convergence 
of the iteration on two example inputs. In both cases, we show 
the source and the target contours with the mean value mapping 
between their interiors computed on a triangulation of the source 
domain (a constrained Delaunay triangulation generated by the 
Triangle library [She05] based on a polygonal sample of the 
source contour), meaning that the mapping was computed on the 
vertices of the triangulation and then linearly interpolated within 
each triangle. We then applied the inversion algorithm on the ver-
tices of target triangulation in an attempt to reproduce the vertices 
of the source triangulation. The contour integrals required for the 
computation of 𝑎𝑎 and 𝑏𝑏 in (18) and (19) were computed using a 
simple sum, sampling the contours at 10,000 points. The itera-
tions are numbered, with 0 meaning the initialization to the re-
verse mean value mapping. The source was texture-mapped using 
a color code reflecting distance from a central point to illustrate 
the mapping. We measured the approximation of the inverse by 
the average distance between the source vertex and the inverse 
computed on the target vertex. As is evident in the figures, the 
iteration converges in less than 6 iterations, with the approxima-
tion measure dropping more than 4 orders of magnitude. This is 
consistent with the theory that Newton-Raphson converges at a 
quadratic rate under very mild conditions on 𝑓𝑓 [SM03]. 
 
8. Conclusion 
 
We have showed how complex-valued algebra simplifies the ex-
pression of barycentric kernels in the plane, and even more so 
when we use similarity kernels instead of the traditional kernels. 
This allows us to express the transfinite versions of the popular 
three-point coordinates very simply and invert the resulting map-
pings efficiently. 
 
It would be interesting to determine which other transfinite bary-
centric coordinates can be expressed simply using similarity ker-
nels, and if this is related to them (not) being pseudo-harmonic. 

Although complex-valued algebra is not natural in 3D space, 
there are still analogous expressions using 3D vector calculus, 
and we wonder whether a similar formulation to that presented 
here could be extended also to higher dimensional spaces. 
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Figure 4: Inverting the transfinite mean value map. (top left and mid-
dle) Map between two corresponding planar contours (the numbers 
on the contours are a sample of the correspondence) computed at the 
vertices of a triangulation of 446 vertices including a boundary of 110 
vertices. (0-6) Iterations of the Newton-Raphson inversion algorithm 
applied to the target, initialized to the reverse mean value map. The 
numbers are the number of iterations and the average distance of the 
vertices from those of the source. The contours diameter is 1.15. 
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Figure 5: Inverting the transfinite mean value map. (top left and mid-
dle) Map between two corresponding planar contours (the numbers are 
a sample of the correspondence) computed on the vertices of a triangu-
lation of 386 vertices including a boundary of 125 vertices. (0-6) Itera-
tions of the Newton-Raphson inversion algorithm applied to the target, 
initialized to the reverse mean value map. The numbers are the number 
of iterations and the average distance of the vertices from those of the 
source. The diameter of the contours is 1.37. Note the inverted 
(“flipped”) triangles during the first few iterations. 

 

http://page.mi.fu-berlin.de/polthier/articles/diri/diri_jem.pdf
http://page.mi.fu-berlin.de/polthier/articles/diri/diri_jem.pdf
http://faculty.cs.tamu.edu/schaefer/research/bary_cagd.pdf
http://faculty.cs.tamu.edu/schaefer/research/bary_cagd.pdf
https://www.google.com/search?tbo=p&tbm=bks&q=inauthor:%22Endre+S%C3%BCli%22
https://www.google.com/search?tbo=p&tbm=bks&q=inauthor:%22David+F.+Mayers%22


 R. Chen & C. Gotsman / Complex Transfinite Barycentric Mappings with Similarity Kernels 

  © 2016 The Author(s) 
 Computer Graphics Forum © 2016 The Eurographics Association and John Wiley & Sons Ltd. 

Appendix:   Proofs of Theorems 

Theorem 1:  Let 𝐶𝐶 be a planar curve in counter-clockwise ori-
entation, and 𝑧𝑧 a point within 𝐶𝐶. For any point 𝑤𝑤 ∈ 𝐶𝐶, denote 
𝑟𝑟 = 𝑤𝑤 − 𝑧𝑧, 𝑑𝑑 = arg(𝑟𝑟), namely 𝑟𝑟 = |𝑟𝑟| exp(𝑖𝑖𝑑𝑑), 𝐴𝐴 = the 
(signed) area swept by 𝑟𝑟,  and ℎ = the difference between 𝑧𝑧 and 
the tangent to 𝐶𝐶 at 𝑤𝑤.  Then 

(a)                         ℎ(𝑤𝑤, 𝑧𝑧) = 1
2

�𝑟𝑟 − 𝑑𝑑𝑤𝑤
𝑑𝑑𝑤𝑤�

�̅�𝑟�    
(b)                     ℎ𝑑𝑑𝑤𝑤� = −ℎ�𝑑𝑑𝑤𝑤 = 𝑖𝑖Im(𝑟𝑟𝑑𝑑𝑤𝑤�), 

(𝑟𝑟 − ℎ)𝑑𝑑𝑤𝑤� = Re(𝑟𝑟𝑑𝑑𝑤𝑤�) 
(c)         𝑑𝑑𝐴𝐴 = 1

2
|𝑟𝑟|2𝑑𝑑𝑑𝑑 = 1

2𝑖𝑖
ℎ�𝑑𝑑𝑤𝑤 = 1

2
Im(�̅�𝑟𝑑𝑑𝑤𝑤) 

(d)         𝑑𝑑𝑑𝑑 = −𝑖𝑖 ℎ�
|𝑟𝑟|2 𝑑𝑑𝑤𝑤 = Im �𝑑𝑑𝑟𝑟

𝑟𝑟
� = Im �𝑑𝑑𝑤𝑤

𝑟𝑟
�, 

𝑑𝑑log|𝑟𝑟| = Re �
𝑑𝑑𝑤𝑤
𝑟𝑟 � 

(e)            ∮ ℎ�∁ 𝑑𝑑𝑤𝑤 = 2𝑖𝑖Area(𝐶𝐶) = ∮ 𝑤𝑤�∁ 𝑑𝑑𝑤𝑤 

(f)                                  Re �𝑑𝑑𝑤𝑤
ℎ

� = 0 

(g)                                   Re �𝑟𝑟
ℎ

� = 1 

(h)             𝑑𝑑|𝑟𝑟| = |𝑟𝑟|Re �𝑑𝑑𝑤𝑤
𝑟𝑟

� ,   𝑑𝑑𝑑𝑑
|𝑟𝑟|

= − 𝑖𝑖
𝑟𝑟

𝑑𝑑 � 𝑟𝑟
|𝑟𝑟|� 

(i)                                𝜕𝜕ℎ
𝜕𝜕𝑧𝑧𝜕𝜕�̅�𝑧

= 𝜕𝜕ℎ�

𝜕𝜕𝑧𝑧𝜕𝜕�̅�𝑧
= 0 

 
Proof:  
(a) The unit vector tangent to 𝐶𝐶 at 𝑤𝑤 is 𝑖𝑖 = 𝑑𝑑𝑤𝑤

|𝑑𝑑𝑤𝑤|
, thus 𝑖𝑖2 = 𝑑𝑑𝑤𝑤

𝑑𝑑𝑤𝑤�
 . 

Now since the point 𝑢𝑢 on the tangent closest to 𝑤𝑤  satisfies 
𝑤𝑤−𝑢𝑢

|𝑤𝑤−𝑢𝑢|
= 𝑖𝑖  and also 𝑧𝑧−𝑢𝑢

|𝑧𝑧−𝑢𝑢|
= 𝑖𝑖𝑖𝑖 , this implies 𝑤𝑤 − 𝑢𝑢 = 𝑖𝑖2(𝑤𝑤 − 𝑢𝑢��������) 

and ℎ = 𝑢𝑢 − 𝑧𝑧 = 𝑖𝑖2(𝑧𝑧 − 𝑢𝑢�������). Subtracting these two identities re-
sults in (a).  
 
(b) Since ℎ and 𝑑𝑑𝑤𝑤 are orthogonal: 

ℎ
|ℎ|

= 𝑖𝑖
𝑑𝑑𝑤𝑤

|𝑑𝑑𝑤𝑤| 

Thus, by squaring both sides of the equation: 
ℎ𝑑𝑑𝑤𝑤� = −ℎ�𝑑𝑑𝑤𝑤 

But also, using the expression (1) for ℎ 

ℎ𝑑𝑑𝑤𝑤� =
1
2

(𝑟𝑟𝑑𝑑𝑤𝑤� − 𝑑𝑑𝑤𝑤�̅�𝑟) = 𝑖𝑖Im(𝑟𝑟𝑑𝑑𝑤𝑤�) 
and then 

(𝑟𝑟 − ℎ)𝑑𝑑𝑤𝑤� = 𝑟𝑟𝑑𝑑𝑤𝑤� − 𝑖𝑖Im(𝑟𝑟𝑑𝑑𝑤𝑤�) = Re(𝑟𝑟𝑑𝑑𝑤𝑤�). 
 
(c) The connection to 𝑑𝑑𝐴𝐴 is by definition:  

𝑑𝑑𝐴𝐴 =
1
2

|𝑟𝑟|2𝑑𝑑𝑑𝑑 
or, since ℎ is the height of the base 𝑑𝑑𝑤𝑤: 

𝑑𝑑𝐴𝐴 =
1
2𝑖𝑖 ℎ�𝑑𝑑𝑤𝑤 

which, by (b), gives also: 

𝑑𝑑𝐴𝐴 =
1
2 Im(�̅�𝑟𝑑𝑑𝑤𝑤) 

 
(d) An expression for 𝑑𝑑𝑑𝑑 is obtained by comparing the first ex-
pression in (c) to the second: 

𝑑𝑑𝑑𝑑 = −𝑖𝑖
ℎ�

|𝑟𝑟|2 𝑑𝑑𝑤𝑤 

Moreover, observe that 𝑟𝑟 = |𝑟𝑟| exp(𝑖𝑖𝑑𝑑), thus  
log 𝑟𝑟 = log|𝑟𝑟| + 𝑖𝑖𝑑𝑑 

So 
𝑑𝑑𝑟𝑟
𝑟𝑟

= 𝑑𝑑 log 𝑟𝑟 = 𝑑𝑑 log|𝑟𝑟| + 𝑖𝑖𝑑𝑑𝑑𝑑 
Implying: 

𝑑𝑑 log |𝑟𝑟| = Re �
𝑑𝑑𝑟𝑟
𝑟𝑟 � ,   𝑑𝑑𝑑𝑑 = Im �

𝑑𝑑𝑟𝑟
𝑟𝑟 � 

 (e)  Applying (b) and (c):  

�ℎ�
∁

𝑑𝑑𝑤𝑤 = 𝑖𝑖 �Im(�̅�𝑟𝑑𝑑𝑤𝑤)
∁

= 2𝑖𝑖 �𝑑𝑑𝐴𝐴
∁

= 2𝑖𝑖𝐴𝐴𝑟𝑟𝑒𝑒𝑎𝑎(𝐶𝐶). 

The area enclosed by the contour 𝐶𝐶 is also well known to be ob-
tained as 1

2𝑖𝑖 ∮ 𝑤𝑤�∁ 𝑑𝑑𝑤𝑤. 
 
(f) Applying (b), namely, that ℎ and 𝑑𝑑𝑤𝑤 are orthogonal: 

Re �
𝑑𝑑𝑤𝑤
ℎ � =

Re�ℎ�𝑑𝑑𝑤𝑤�
|ℎ|2 = 0 

 
(g) Since, by (a): 

|ℎ|2 =
1
2 �|𝑟𝑟|2 − Re �𝑟𝑟2 𝑑𝑑𝑤𝑤�

𝑑𝑑𝑤𝑤
�� = Re(�̅�𝑟ℎ) = Re(𝑟𝑟ℎ�) 

we conclude that 

Re �
𝑟𝑟
ℎ� =

Re�𝑟𝑟ℎ��
|ℎ|2 =

|ℎ|2

|ℎ|2 = 1 

 
(h) An easy consequence of (d) is: 

 𝑑𝑑|𝑟𝑟| = |𝑟𝑟|𝑑𝑑log|𝑟𝑟| = |𝑟𝑟|Re �
𝑑𝑑𝑤𝑤
𝑟𝑟 �, 

thus 

 
𝑖𝑖
𝑟𝑟 𝑑𝑑 �

𝑟𝑟
|𝑟𝑟|� =

𝑖𝑖
𝑟𝑟

|𝑟𝑟|𝑑𝑑𝑟𝑟 − 𝑟𝑟𝑑𝑑|𝑟𝑟|
|𝑟𝑟|2 =

𝑖𝑖
|𝑟𝑟| �

𝑑𝑑𝑟𝑟
𝑟𝑟 −

𝑑𝑑|𝑟𝑟|
|𝑟𝑟|

�

=
𝑖𝑖

|𝑟𝑟| �
𝑑𝑑𝑤𝑤
𝑟𝑟 − Re �

𝑑𝑑𝑤𝑤
𝑟𝑟 �� = −

1
|𝑟𝑟| Im �

𝑑𝑑𝑤𝑤
𝑟𝑟 �

= −
𝑑𝑑𝑑𝑑
|𝑟𝑟| 

  
(i)  For any 𝑤𝑤, ℎ(𝑤𝑤, 𝑧𝑧) is an affine function of 𝑧𝑧, thus harmonic 
in 𝑧𝑧. ∎   
 
Corollary 1: The polar dual of a contour relative to a point 𝑧𝑧 is 
1
ℎ�
. 

 
Proof: The polar dual relative to 𝑧𝑧 at contour point 𝑤𝑤 is defined 
as the vector 𝑝𝑝 orthogonal to 𝑑𝑑𝑤𝑤 having unit scalar product with 
𝑟𝑟 = 𝑤𝑤 − 𝑧𝑧, namely Re(�̅�𝑝𝑑𝑑𝑤𝑤) = 0 and Re(�̅�𝑝𝑟𝑟) = 1. Comparing 
this to Theorem 1(f) and Theorem 1(g) implies 𝑝𝑝 = 1

ℎ�
. ∎ 

 
Corollary 2: If 𝐶𝐶 is the unit circle, then 

ℎ(𝑤𝑤, 𝑧𝑧) = 𝑤𝑤Re(�̅�𝑟𝑤𝑤) = 𝑤𝑤Re(𝑟𝑟𝑤𝑤�) = 𝑤𝑤Re �
𝑟𝑟
𝑤𝑤�

= 𝑤𝑤�1 − Re(𝑤𝑤𝑧𝑧̅)� 
 
Proof: 
On the unit circle 1

𝑤𝑤
= 𝑤𝑤� , hence 𝑑𝑑𝑤𝑤� = − 𝑑𝑑𝑤𝑤

𝑤𝑤2  and 𝑑𝑑𝑤𝑤
𝑑𝑑𝑤𝑤�

= −𝑤𝑤2, im-
plying: 

ℎ =
1
2 �𝑟𝑟 −

𝑑𝑑𝑤𝑤
𝑑𝑑𝑤𝑤� �̅�𝑟� =

1
2

(𝑟𝑟 + 𝑤𝑤2�̅�𝑟) = 𝑤𝑤
1
2

(𝑟𝑟𝑤𝑤� + 𝑤𝑤�̅�𝑟)

= 𝑤𝑤Re(�̅�𝑟𝑤𝑤) = 𝑤𝑤Re(𝑟𝑟𝑤𝑤�) = 𝑤𝑤Re �
𝑟𝑟
𝑤𝑤

�

= 𝑤𝑤Re�(𝑤𝑤 − 𝑧𝑧)𝑤𝑤�� = 𝑤𝑤�1 − Re(𝑤𝑤𝑧𝑧̅)� 
∎  
 
Corollary 3: On the unit circle, the (un-normalized) Poisson ker-
nel is 

𝐾𝐾𝑃𝑃𝑑𝑑𝑑𝑑 =
1

|ℎ| 𝑑𝑑𝑑𝑑 
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Proof: By Corollary 2, on the unit circle 
|ℎ| = |Re(�̅�𝑟𝑤𝑤)| = Re(�̅�𝑟𝑤𝑤). 

The last equality is because the angle between the vectors 𝑟𝑟 and 
𝑤𝑤  is always acute. Using Theorem 1(d), the fact that 𝑑𝑑𝑤𝑤 = 𝑖𝑖𝑤𝑤𝑑𝑑𝑑𝑑, 
and Corollary 2 again: 

𝑑𝑑𝑑𝑑 = −𝑖𝑖
ℎ�

|𝑟𝑟|2 𝑑𝑑𝑤𝑤 =
𝑤𝑤ℎ�
|𝑟𝑟|2 𝑑𝑑𝑑𝑑 =

Re(�̅�𝑟𝑤𝑤)
|𝑟𝑟|2 𝑑𝑑𝑑𝑑 

 So, combining the two: 
1

|ℎ| 𝑑𝑑𝑑𝑑 =
1

|𝑟𝑟|2 𝑑𝑑𝑑𝑑    

which is the (un-normalized) Poisson kernel (11).  ∎ 
 
Theorem 2: A similarity kernel 𝜎𝜎 reproduces a given boundary 
mapping 𝑓𝑓(𝑤𝑤) of 𝜕𝜕𝐶𝐶 iff the following conditions are satisfied for 
every 𝑢𝑢 ∈ 𝜕𝜕𝐶𝐶: 

(a)                 lim
𝑧𝑧→𝑢𝑢

| ∮ 𝜎𝜎(𝑤𝑤, 𝑧𝑧)𝑑𝑑𝑤𝑤𝐶𝐶 | = ∞ 
(b)               lim

𝑧𝑧→𝑢𝑢
| ∮ 𝑟𝑟𝜎𝜎(𝑤𝑤, 𝑧𝑧)𝑑𝑑𝑤𝑤𝐶𝐶 | < ∞ 

(c)             ∀𝑥𝑥 ≠ 𝑢𝑢     lim
𝑧𝑧→𝑢𝑢

 |𝜎𝜎(𝑥𝑥, 𝑧𝑧)| < ∞ 
 

Proof: Consider any 𝑢𝑢 ∈ 𝜕𝜕𝐶𝐶 

lim
𝑧𝑧→𝑢𝑢

�𝑆𝑆𝑓𝑓(𝑤𝑤, 𝑧𝑧)𝜎𝜎(𝑤𝑤, 𝑧𝑧)𝑑𝑑𝑤𝑤
𝐶𝐶

= lim
𝑧𝑧→𝑢𝑢

� �𝑓𝑓(𝑤𝑤) − 𝑟𝑟
𝑑𝑑𝑓𝑓
𝑑𝑑𝑤𝑤� 𝜎𝜎(𝑤𝑤, 𝑧𝑧)𝑑𝑑𝑤𝑤

𝐶𝐶

= lim
𝑧𝑧→𝑢𝑢

�𝑓𝑓(𝑤𝑤)𝜎𝜎(𝑤𝑤, 𝑧𝑧)
𝐶𝐶

𝑑𝑑𝑤𝑤

− lim
𝑧𝑧→𝑢𝑢

�𝑟𝑟𝜎𝜎(𝑤𝑤, 𝑧𝑧)
𝐶𝐶

𝑑𝑑𝑓𝑓 

We may neglect the second term relative to the first because of 
(a) and (b): 

lim
𝑧𝑧→𝑢𝑢

∮ 𝑆𝑆𝑓𝑓(𝑤𝑤, 𝑧𝑧)𝜎𝜎(𝑤𝑤, 𝑧𝑧)𝑑𝑑𝑤𝑤𝐶𝐶

∮ 𝜎𝜎(𝑤𝑤, 𝑧𝑧)𝑑𝑑𝑤𝑤𝐶𝐶
= lim

𝑧𝑧→𝑢𝑢

∮ 𝑓𝑓(𝑤𝑤)𝜎𝜎(𝑤𝑤, 𝑧𝑧)𝑑𝑑𝑤𝑤𝐶𝐶

∮ 𝜎𝜎(𝑤𝑤, 𝑧𝑧)𝑑𝑑𝑤𝑤𝐶𝐶
 

Define 𝛿𝛿(𝑥𝑥) on 𝜕𝜕𝐶𝐶 by: 

𝛿𝛿(𝑥𝑥) = lim
𝑧𝑧→𝑢𝑢

�
𝜎𝜎(𝑥𝑥, 𝑧𝑧)

∮ 𝜎𝜎(𝑤𝑤, 𝑧𝑧)𝑑𝑑𝑤𝑤𝐶𝐶
� =

lim
𝑧𝑧→𝑢𝑢

 𝜎𝜎(𝑥𝑥, 𝑧𝑧)

lim
𝑧𝑧→𝑢𝑢

 ∮ 𝜎𝜎(𝑤𝑤, 𝑧𝑧)𝑑𝑑𝑤𝑤𝐶𝐶
 

Now (a) and (c) and the fact that ∮ 𝛿𝛿(𝑥𝑥)𝑑𝑑𝑥𝑥𝐶𝐶 = 1imply that 𝛿𝛿 be-
haves like a delta function centered at 𝑢𝑢, thus 

lim
𝑧𝑧→𝑢𝑢

∮ 𝑆𝑆𝑤𝑤(𝑧𝑧)𝜎𝜎(𝑤𝑤, 𝑧𝑧)𝑑𝑑𝑤𝑤𝐶𝐶

∮ 𝜎𝜎(𝑤𝑤, 𝑧𝑧)𝑑𝑑𝑤𝑤𝐶𝐶
= �𝑓𝑓(𝑥𝑥)𝛿𝛿(𝑥𝑥)𝑑𝑑𝑥𝑥

𝐶𝐶
= 𝑓𝑓(𝑢𝑢) 

∎ 
 
Theorem 3:  
(3) Every similarity kernel 𝜎𝜎 reproduces similarity transfor-

mations. 
(4) Every anti-similarity kernel 𝛼𝛼 reproduces anti-similarity 

transformations. 
 
Proof:   
(1) It suffices to prove for 𝑓𝑓(𝑧𝑧) = 𝑧𝑧: 

�𝜎𝜎(𝑤𝑤, 𝑧𝑧)𝑆𝑆𝑓𝑓(𝑤𝑤, 𝑧𝑧)𝑑𝑑𝑤𝑤 =
𝐶𝐶

�𝜎𝜎
𝐶𝐶

(𝑓𝑓𝑑𝑑𝑟𝑟 − 𝑟𝑟𝑑𝑑𝑓𝑓) 

= �𝜎𝜎
𝐶𝐶

(𝑤𝑤𝑑𝑑𝑤𝑤 − 𝑟𝑟𝑑𝑑𝑤𝑤) = �𝜎𝜎
𝐶𝐶

𝑧𝑧𝑑𝑑𝑤𝑤 = 𝑧𝑧 �𝜎𝜎
𝐶𝐶

𝑑𝑑𝑤𝑤 

Hence  
∮ 𝜎𝜎𝑆𝑆𝑓𝑓𝑑𝑑𝑤𝑤𝐶𝐶

∮ 𝜎𝜎𝑑𝑑𝑤𝑤𝐶𝐶
= 𝑧𝑧 

(2) It suffices to prove for 𝑓𝑓(𝑧𝑧) = 𝑧𝑧̅: 

�𝛼𝛼(𝑤𝑤, 𝑧𝑧)𝐴𝐴𝑓𝑓(𝑤𝑤, 𝑧𝑧)𝑑𝑑𝑤𝑤� =
𝐶𝐶

�𝛼𝛼
𝐶𝐶

(𝑓𝑓𝑑𝑑�̅�𝑟 − �̅�𝑟𝑑𝑑𝑓𝑓) 

= �𝛼𝛼
𝐶𝐶

(𝑤𝑤�𝑑𝑑𝑤𝑤� − �̅�𝑟𝑑𝑑𝑤𝑤�) = �𝛼𝛼
𝐶𝐶

𝑧𝑧̅𝑑𝑑𝑤𝑤� = 𝑧𝑧̅ �𝛼𝛼
𝐶𝐶

𝑑𝑑𝑤𝑤�  

Hence  

∮ 𝛼𝛼𝐴𝐴𝑓𝑓𝑑𝑑𝑤𝑤�𝐶𝐶

∮ 𝛼𝛼𝑑𝑑𝑤𝑤�𝐶𝐶
= 𝑧𝑧̅ 

∎ 
 
Theorem 4: A similarity kernel 𝜎𝜎  reproduces affine transfor-
mations iff (for every 𝑧𝑧 ∈ 𝐶𝐶) 

�𝜎𝜎(𝑤𝑤, 𝑧𝑧)ℎ(𝑤𝑤, 𝑧𝑧)𝑑𝑑𝑤𝑤� = 0
𝐶𝐶

 

 
Proof: It suffices to prove reproduction for 𝑓𝑓(𝑧𝑧) = 𝑧𝑧̅.  Define 

𝑓𝑓(𝑧𝑧) = �𝜎𝜎𝑆𝑆𝑓𝑓𝑑𝑑𝑤𝑤 =
𝐶𝐶

�𝜎𝜎
𝐶𝐶

�𝑓𝑓 − 𝑟𝑟
𝑑𝑑𝑓𝑓
𝑑𝑑𝑤𝑤� 𝑑𝑑𝑤𝑤 = �𝜎𝜎

𝐶𝐶
(𝑤𝑤�𝑑𝑑𝑤𝑤 − 𝑟𝑟𝑑𝑑𝑤𝑤�)    

Now, from Theorem 1(a) we have: 
2ℎ𝑑𝑑𝑤𝑤� = 𝑟𝑟𝑑𝑑𝑤𝑤� − �̅�𝑟𝑑𝑑𝑤𝑤 

thus 

𝑓𝑓(𝑧𝑧) = 𝑧𝑧̅ �𝜎𝜎
𝐶𝐶

𝑑𝑑𝑤𝑤 − 2 �𝜎𝜎
𝐶𝐶

ℎ𝑑𝑑𝑤𝑤�  

So  

𝑓𝑓(𝑧𝑧) = 𝑧𝑧̅ �𝜎𝜎
𝐶𝐶

𝑑𝑑𝑤𝑤 

iff 

�𝜎𝜎
𝐶𝐶

ℎ𝑑𝑑𝑤𝑤� = 0 

implying the Theorem.  ∎ 

Theorem 5: 𝜎𝜎 is an affine reproducing similarity kernel iff 𝜎𝜎�  is 
an affine reproducing similarity kernel. 
 
Proof: We use the fact that 𝑐𝑐 = 0  iff 𝑐𝑐̅ = 0 and that ℎ𝑑𝑑𝑤𝑤� =
−ℎ�𝑑𝑑𝑤𝑤 (as shown in Theorem 1(b)): 

�𝜎𝜎ℎ𝑑𝑑𝑤𝑤� = 0
𝐶𝐶

  iff  �𝜎𝜎�ℎ�𝑑𝑑𝑤𝑤 = 0
𝐶𝐶

 iff − �𝜎𝜎�ℎ𝑑𝑑𝑤𝑤� = 0
𝐶𝐶

 

∎ 

Theorem 6: Any similarity kernel of the forms: 

𝜎𝜎1(𝑤𝑤, 𝑧𝑧) =
1

ℎ�̅�𝑟𝑘𝑘 ,   𝑖𝑖𝑛𝑛𝑖𝑖𝑒𝑒𝑓𝑓𝑒𝑒𝑟𝑟 𝑘𝑘 ≠ 1 

𝜎𝜎2(𝑤𝑤, 𝑧𝑧) =
1

ℎ�𝑟𝑟𝑘𝑘 ,    𝑖𝑖𝑛𝑛𝑖𝑖𝑒𝑒𝑓𝑓𝑒𝑒𝑟𝑟 𝑘𝑘 ≠ 1 

𝜎𝜎3(𝑤𝑤, 𝑘𝑘) =
1

|𝑟𝑟|𝑟𝑟                                     

𝜎𝜎4(𝑤𝑤, 𝑘𝑘) =
1

|𝑟𝑟|�̅�𝑟                                     

is affine-reproducing. 
 
Proof: Since 𝜎𝜎1 and 𝜎𝜎2 are conjugates, and 𝜎𝜎3 and 𝜎𝜎4 are conju-
gates, it suffices to prove the theorem for 𝜎𝜎1 and 𝜎𝜎3 and the theo-
rem for 𝜎𝜎2 and 𝜎𝜎4 will follow by Theorem 5. Let us check the 
condition of Theorem 4: 

�𝜎𝜎1ℎ𝑑𝑑𝑤𝑤� = 
𝐶𝐶

�
1

ℎ�̅�𝑟𝑘𝑘 ℎ𝑑𝑑𝑤𝑤�
𝐶𝐶

= �
1

𝑟𝑟𝑘𝑘 𝑑𝑑𝑤𝑤
𝐶𝐶

�����������
 

which, by Cauchy’s integral formula [Ahl79], vanishes iff 𝑘𝑘 ≠ 1. 
By Theorem 1(d) and Theorem 1(h): 

�𝜎𝜎3ℎ𝑑𝑑𝑤𝑤� = 
𝐶𝐶

�
1

|𝑟𝑟|𝑟𝑟 ℎ𝑑𝑑𝑤𝑤�
𝐶𝐶

= −𝑖𝑖 �
1

|𝑟𝑟|𝑟𝑟𝐶𝐶
|𝑟𝑟|2𝑑𝑑𝑑𝑑 = 𝑖𝑖 �

|𝑟𝑟|
𝑟𝑟𝐶𝐶

𝑑𝑑𝑑𝑑

= − �
|𝑟𝑟|2

𝑟𝑟2
𝐶𝐶

𝑑𝑑 �
𝑟𝑟

|𝑟𝑟|� = � 𝑑𝑑 �
|𝑟𝑟|
𝑟𝑟 � = 0

𝐶𝐶
 

∎ 
 
Theorem 7: If a similarity kernel 𝜎𝜎 satisfies 

Re(𝜎𝜎𝑑𝑑𝑟𝑟) + 𝑑𝑑Re(𝜎𝜎𝑟𝑟) = 0 
then a corresponding anti-similarity kernel is 𝛼𝛼 = 𝜎𝜎�. 
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Proof: Define  

𝑓𝑓(𝑧𝑧) =
∮ 𝜎𝜎𝑆𝑆𝑓𝑓𝑑𝑑𝑤𝑤∁

∮ 𝜎𝜎𝑑𝑑𝑤𝑤∁
 

𝑓𝑓(𝑧𝑧) =
∮ 𝜎𝜎�𝐴𝐴𝑓𝑓𝑑𝑑𝑤𝑤�∁

∮ 𝜎𝜎�𝑑𝑑𝑤𝑤�∁
 

We have to prove that 𝑓𝑓(𝑧𝑧) = 𝑓𝑓(𝑧𝑧). Indeed, denote 𝐷𝐷 = ∮ 𝜎𝜎𝑑𝑑𝑤𝑤∁ , 
then, by the premise on 𝜎𝜎: 

Re(𝐷𝐷) = Re ��𝜎𝜎𝑑𝑑𝑤𝑤
∁

� = −Re ��𝑑𝑑(𝜎𝜎𝑟𝑟)
∁

� = 0 

so 𝐷𝐷� = −𝐷𝐷. Then 

𝑓𝑓 =
∮ 𝜎𝜎(𝑓𝑓𝑑𝑑𝑟𝑟 − 𝑟𝑟𝑑𝑑𝑓𝑓)∁

𝐷𝐷 =
∮ 𝑓𝑓𝜎𝜎𝑑𝑑𝑟𝑟 − ∮ 𝜎𝜎𝑟𝑟𝑑𝑑𝑓𝑓𝐶𝐶𝐶𝐶

𝐷𝐷  
and 

𝑓𝑓 =
∮ 𝜎𝜎�(𝑓𝑓𝑑𝑑�̅�𝑟 − �̅�𝑟𝑑𝑑𝑓𝑓)∁

−𝐷𝐷 =
∮ 𝑓𝑓𝜎𝜎�𝑑𝑑�̅�𝑟 − ∮ 𝜎𝜎��̅�𝑟𝑑𝑑𝑓𝑓𝐶𝐶𝐶𝐶

−𝐷𝐷  
So 

𝐷𝐷
2

(𝑓𝑓 − 𝑓𝑓) = �𝑓𝑓Re(𝜎𝜎𝑑𝑑𝑟𝑟)
∁

− �𝑑𝑑𝑓𝑓
∁

Re(𝜎𝜎𝑟𝑟)

= − �𝑓𝑓𝑑𝑑Re(𝜎𝜎𝑟𝑟)
∁

− �𝑑𝑑𝑓𝑓
∁

Re(𝜎𝜎𝑟𝑟)

= − �𝑑𝑑
∁

�𝑓𝑓Re(𝜎𝜎𝑟𝑟)� = 0        ∎ 

Theorem 8: Under the conditions of Theorem 7, if 𝜎𝜎 reproduces 
𝑓𝑓, then 𝜎𝜎 reproduces 𝑓𝑓.̅ 
 
Proof:  Since Theorem 7 implies 

𝑓𝑓 = �𝜎𝜎�(𝑓𝑓𝑑𝑑�̅�𝑟 − �̅�𝑟𝑑𝑑𝑓𝑓)
𝐶𝐶

     

we have (by conjugation) 

𝑓𝑓̅ = �𝜎𝜎�𝑓𝑓�̅�𝑑𝑟𝑟 − 𝑟𝑟𝑑𝑑𝑓𝑓�̅
𝐶𝐶

 

namely, that 𝜎𝜎 reproduces 𝑓𝑓.̅ ∎ 
 
Theorem 9: If 𝜎𝜎 is a similarity kernel of a barycentric mapping, 
then so is 𝜎𝜎′ = 𝑎𝑎𝜎𝜎 + 𝑏𝑏

𝑟𝑟2 , for any complex functions 𝑎𝑎(𝑧𝑧)  and 
𝑏𝑏(𝑧𝑧) that depend only on 𝑧𝑧. 
 
Proof: If 𝜎𝜎 is a similarity kernel of 𝑓𝑓, then 

�𝜎𝜎(𝑓𝑓𝑑𝑑𝑟𝑟 − 𝑟𝑟𝑑𝑑𝑓𝑓)
∁

= 𝑓𝑓 �𝜎𝜎𝑑𝑑𝑤𝑤
∁

 

For 𝜎𝜎′: 

�𝜎𝜎′(𝑓𝑓𝑑𝑑𝑟𝑟 − 𝑟𝑟𝑑𝑑𝑓𝑓)
∁

= � �𝑎𝑎𝜎𝜎 +
𝑏𝑏
𝑟𝑟2� (𝑓𝑓𝑑𝑑𝑟𝑟 − 𝑟𝑟𝑑𝑑𝑓𝑓)

∁

= − � �𝑎𝑎𝜎𝜎 +
𝑏𝑏
𝑟𝑟2� 𝑟𝑟2𝑑𝑑 �

𝑓𝑓
𝑟𝑟�

∁

= −𝑎𝑎 � 𝜎𝜎𝑟𝑟2𝑑𝑑 �
𝑓𝑓
𝑟𝑟�

∁
− 𝑏𝑏 � 𝑑𝑑 �

𝑓𝑓
𝑟𝑟�

∁

= −𝑎𝑎 � 𝜎𝜎𝑟𝑟2𝑑𝑑 �
𝑓𝑓
𝑟𝑟�

∁
= 𝑎𝑎 �𝜎𝜎(𝑓𝑓𝑑𝑑𝑟𝑟 − 𝑟𝑟𝑑𝑑𝑓𝑓)

∁

= 𝑎𝑎𝑓𝑓 �𝜎𝜎𝑑𝑑𝑤𝑤
∁

 

But 

𝑓𝑓 � 𝜎𝜎′𝑑𝑑𝑤𝑤 = 𝑓𝑓 � �𝑎𝑎𝜎𝜎 +
𝑏𝑏
𝑟𝑟2�

∁∁
𝑑𝑑𝑤𝑤 = 𝑎𝑎𝑓𝑓 �𝜎𝜎𝑑𝑑𝑤𝑤

∁
+ 𝑏𝑏𝑓𝑓 �

𝑑𝑑𝑤𝑤
𝑟𝑟2

∁

= 𝑎𝑎𝑓𝑓 �𝜎𝜎𝑑𝑑𝑤𝑤
∁

 

The last equality is by the Cauchy Theorem [Ahl79]. ∎ 
 

Theorem 10: The similarity kernels of the three-point barycen-
tric coordinates are: 

• Laplace: 𝜎𝜎𝐿𝐿 = 1
ℎ
   

• Wachspress: 𝜎𝜎𝑊𝑊 = 1
ℎ�𝑟𝑟2   

• Mean value: 𝜎𝜎𝑀𝑀𝑀𝑀 = 1
|𝑟𝑟|𝑟𝑟

    
 
Proof:  The transfinite three-point similarity kernels are continu-
ous, and their analogous discrete 𝛾𝛾𝑗𝑗 functions, as specified in (5), 
are defined on the edges of a polygonal contour 𝐶𝐶 = [𝑤𝑤1, . . , 𝑤𝑤𝑛𝑛]. 
These 𝛾𝛾𝑗𝑗 functions are obtained by integration of 𝜎𝜎 over the 𝑗𝑗’th 
edge �𝑤𝑤𝑗𝑗 , 𝑤𝑤𝑗𝑗+1�. Note the key fact that, for a given 𝑧𝑧, the height 
function ℎ(𝑤𝑤, 𝑧𝑧) is a constant ℎ(𝑧𝑧) over the entire edge, and also 
perpendicular to that edge 𝑒𝑒𝑗𝑗 = 𝑤𝑤𝑗𝑗+1 − 𝑤𝑤𝑗𝑗. We also use the nota-
tion 𝑟𝑟𝑗𝑗 = 𝑤𝑤𝑗𝑗 − 𝑧𝑧. Note that 𝑒𝑒𝑗𝑗 = 𝑟𝑟𝑗𝑗+1 − 𝑟𝑟𝑗𝑗 . Thus the area of the 
triangle formed by 𝑧𝑧, 𝑤𝑤𝑗𝑗  and 𝑤𝑤𝑗𝑗+1 is 𝐴𝐴𝑗𝑗 = 1

2
|ℎ|�𝑒𝑒𝑗𝑗� = 𝑖𝑖

2
ℎ�̅�𝑒𝑗𝑗 =

− 𝑖𝑖
2

ℎ�𝑒𝑒𝑗𝑗 = Im�𝑟𝑟𝑗𝑗+1�̅�𝑟𝑗𝑗� = 1
2𝑖𝑖

��̅�𝑟𝑗𝑗+1𝑟𝑟𝑗𝑗 − 𝑟𝑟𝑗𝑗+1�̅�𝑟𝑗𝑗� = Im��̅�𝑟𝑗𝑗𝑒𝑒𝑗𝑗� =
1
2𝑖𝑖

��̅�𝑟𝑗𝑗𝑒𝑒𝑗𝑗 − 𝑟𝑟𝑗𝑗�̅�𝑒𝑗𝑗� = Im��̅�𝑟𝑗𝑗+1𝑒𝑒𝑗𝑗� = 1
2𝑖𝑖

��̅�𝑟𝑗𝑗+1𝑒𝑒𝑗𝑗 − 𝑟𝑟𝑗𝑗+1�̅�𝑒𝑗𝑗�.  
So, for the Laplace kernel: 

𝛾𝛾𝑗𝑗 = �
𝑑𝑑𝑤𝑤
ℎ

𝑤𝑤𝑗𝑗+1

𝑤𝑤𝑗𝑗

=
𝑤𝑤𝑗𝑗+1 − 𝑤𝑤𝑗𝑗

ℎ =
𝑒𝑒𝑗𝑗

ℎ =
𝑒𝑒𝑗𝑗�̅�𝑒𝑗𝑗

ℎ�̅�𝑒𝑗𝑗

= −𝑖𝑖
𝑒𝑒𝑗𝑗

2𝐴𝐴𝑗𝑗
�

�𝑟𝑟𝑗𝑗+1�2

𝑟𝑟𝑗𝑗+1
−

�𝑟𝑟𝑗𝑗�2

𝑟𝑟𝑗𝑗
� 

For the Wachspress kernel: 

𝛾𝛾𝑗𝑗 = �
𝑑𝑑𝑤𝑤
ℎ�𝑟𝑟2

𝑤𝑤𝑗𝑗+1

𝑤𝑤𝑗𝑗

=
1
ℎ�

�
𝑑𝑑𝑤𝑤
𝑟𝑟2

𝑤𝑤𝑗𝑗+1

𝑤𝑤𝑗𝑗

=
1
ℎ�

�
1

𝑟𝑟𝑗𝑗+1
−

1
𝑟𝑟𝑗𝑗

�

=
𝑒𝑒𝑗𝑗

ℎ�𝑒𝑒𝑗𝑗
�

1
𝑟𝑟𝑗𝑗+1

−
1
𝑟𝑟𝑗𝑗

� = 𝑖𝑖
𝑒𝑒𝑗𝑗

2𝐴𝐴𝑗𝑗
�

1
𝑟𝑟𝑗𝑗+1

−
1
𝑟𝑟𝑗𝑗

� 

For the mean value kernel: 

𝛾𝛾𝑗𝑗 = �
𝑑𝑑𝑤𝑤
|𝑟𝑟|𝑟𝑟

𝑤𝑤𝑗𝑗+1

𝑤𝑤𝑗𝑗

= �
𝑑𝑑𝑤𝑤

(𝑧𝑧 − 𝑤𝑤��������)
1
2(𝑧𝑧 − 𝑤𝑤)

3
2

𝑤𝑤𝑗𝑗+1

𝑤𝑤𝑗𝑗

 

We use the fact that 𝑤𝑤� = 𝑎𝑎𝑤𝑤 + 𝑏𝑏 on the line segment to solve the 
integral: 

= −
2(𝑧𝑧 − 𝑤𝑤��������)

1
2

(𝑧𝑧 − 𝑤𝑤)
1
2(𝑎𝑎𝑧𝑧 + 𝑏𝑏 − 𝑧𝑧̅)

�

𝑤𝑤𝑗𝑗

𝑤𝑤𝑗𝑗+1

= −
2

(𝑎𝑎𝑧𝑧 + 𝑏𝑏 − 𝑧𝑧̅)
|𝑧𝑧 − 𝑤𝑤|
(𝑧𝑧 − 𝑤𝑤)�

𝑤𝑤𝑗𝑗

𝑤𝑤𝑗𝑗+1

=
−2

(𝑎𝑎𝑧𝑧 + 𝑏𝑏 − 𝑧𝑧̅) �
�𝑟𝑟𝑗𝑗+1�
𝑟𝑟𝑗𝑗+1

−
�𝑟𝑟𝑗𝑗�
𝑟𝑟𝑗𝑗

� 

Since 𝑎𝑎 = �̅�𝑒𝑗𝑗

𝑒𝑒𝑗𝑗
 and 𝑏𝑏 = 𝑤𝑤�𝑗𝑗 − 𝑤𝑤𝑗𝑗�̅�𝑒𝑗𝑗

𝑒𝑒𝑗𝑗
, we have 

𝛾𝛾𝑗𝑗 =
−2𝑒𝑒𝑗𝑗

𝑖𝑖��̅�𝑒𝑗𝑗𝑧𝑧 + 𝑤𝑤�𝑗𝑗𝑒𝑒𝑗𝑗 − 𝑤𝑤𝑗𝑗�̅�𝑒𝑗𝑗 − 𝑒𝑒𝑗𝑗𝑧𝑧̅�
�

�𝑟𝑟𝑗𝑗+1�
𝑟𝑟𝑗𝑗+1

−
�𝑟𝑟𝑗𝑗�
𝑟𝑟𝑗𝑗

� 

=
−2𝑒𝑒𝑗𝑗

𝑖𝑖��̅�𝑟𝑗𝑗𝑒𝑒𝑗𝑗 − �̅�𝑒𝑗𝑗𝑟𝑟𝑗𝑗�
�

�𝑟𝑟𝑗𝑗+1�
𝑟𝑟𝑗𝑗+1

−
�𝑟𝑟𝑗𝑗�
𝑟𝑟𝑗𝑗

� = 2
𝑒𝑒𝑗𝑗

2𝐴𝐴𝑗𝑗
�

�𝑟𝑟𝑗𝑗+1�
𝑟𝑟𝑗𝑗+1

−
�𝑟𝑟𝑗𝑗�
𝑟𝑟𝑗𝑗

� 

This shows consistency with (5), up to normalization constants. 
∎ 

Theorem 11: The similarity kernels of the Wachspress mapping 
and the Laplace mapping are equivalent on the unit circle. 
 
Proof: For the unit circle we have 𝑤𝑤� = 1

𝑤𝑤
 and |𝑤𝑤| = 1. By Cor-

ollary 1: 
ℎ = 𝑤𝑤Re(�̅�𝑟𝑤𝑤) 

therefore 
ℎ� = 𝑤𝑤�Re(�̅�𝑟𝑤𝑤) 
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so ℎ
ℎ�

= 𝑤𝑤2. Also by Corollary 1, 

ℎ = 𝑤𝑤 �1 −
𝑤𝑤𝑧𝑧̅ + 𝑤𝑤�𝑧𝑧

2 � =
1
2

(2𝑤𝑤 − 𝑧𝑧̅𝑤𝑤2 − 𝑧𝑧|𝑤𝑤|2)

=
1
2

(2𝑤𝑤 − 𝑧𝑧̅𝑤𝑤2 − 𝑧𝑧). 
So: 

𝜎𝜎𝑊𝑊 =
1

ℎ�𝑟𝑟2 =
𝑤𝑤2

ℎ𝑟𝑟2 =
(𝑤𝑤 − 𝑧𝑧)2 + 𝑧𝑧(2𝑤𝑤 − 𝑧𝑧̅𝑤𝑤2 − 𝑧𝑧)

1 − |𝑧𝑧|2
1

ℎ𝑟𝑟2  

=
1

1 − |𝑧𝑧|2 �
𝑟𝑟2 + 2𝑧𝑧ℎ

ℎ𝑟𝑟2 �

=
1

1 − |𝑧𝑧|2 �
1
ℎ +

2𝑧𝑧
𝑟𝑟2� 

which, by Theorem 9, is equivalent to the Laplace similarity ker-
nel 𝜎𝜎𝐿𝐿 = 1

ℎ
. ∎ 

 
Theorem 12: If 𝐵𝐵 is a regular barycentric kernel (generating 
𝑓𝑓 using the complex 𝑑𝑑𝑤𝑤 contour integral), and 𝜎𝜎 satisfies  

𝐵𝐵𝑑𝑑𝑤𝑤 = 2𝜎𝜎𝑑𝑑𝑤𝑤 + 𝑟𝑟𝑑𝑑𝜎𝜎 
then 𝜎𝜎 is a similarity kernel corresponding to 𝐵𝐵. 
 
Proof: First we show that:  
  

�𝐵𝐵𝑑𝑑𝑤𝑤
C

= �𝜎𝜎𝑑𝑑𝑤𝑤
C

 

Indeed: 

�𝐵𝐵𝑑𝑑𝑤𝑤
𝑪𝑪

= �(2𝜎𝜎𝑑𝑑𝑤𝑤 + 𝑟𝑟𝑑𝑑𝜎𝜎)
𝑪𝑪

= � 2𝜎𝜎𝑑𝑑𝑤𝑤 + �𝑟𝑟𝑑𝑑𝜎𝜎
𝑪𝑪𝑪𝑪

= � 𝜎𝜎𝑑𝑑𝑟𝑟 + �𝑑𝑑(𝜎𝜎𝑟𝑟)
𝑪𝑪𝑪𝑪

= �𝜎𝜎𝑑𝑑𝑤𝑤
𝑪𝑪

 

Now, to prove the theorem: 

𝑓𝑓(𝑧𝑧) �𝜎𝜎𝑑𝑑𝑤𝑤
𝑪𝑪

= 𝑓𝑓(𝑧𝑧) �𝐵𝐵𝑑𝑑𝑤𝑤
C

= � 𝐵𝐵𝑓𝑓𝑑𝑑𝑤𝑤 = �𝑓𝑓(2𝜎𝜎𝑑𝑑𝑤𝑤 + 𝑟𝑟𝑑𝑑𝜎𝜎)
𝑪𝑪C

= �𝜎𝜎𝑓𝑓𝑑𝑑𝑟𝑟 +
𝑪𝑪

�(𝜎𝜎𝑓𝑓𝑑𝑑𝑟𝑟 + 𝑟𝑟𝑓𝑓𝑑𝑑𝜎𝜎)
𝑪𝑪

 

= �𝜎𝜎𝑓𝑓𝑑𝑑𝑟𝑟 +
𝑪𝑪

�𝑓𝑓𝑑𝑑(𝑟𝑟𝜎𝜎)
𝑪𝑪

= �𝜎𝜎𝑓𝑓𝑑𝑑𝑟𝑟 +
𝑪𝑪

�𝑑𝑑(𝑟𝑟𝜎𝜎𝑓𝑓)
𝑪𝑪

− �𝑟𝑟𝜎𝜎𝑑𝑑𝑓𝑓
𝑪𝑪

= �𝜎𝜎𝑓𝑓𝑑𝑑𝑟𝑟 +
𝑪𝑪

0 − �𝑟𝑟𝜎𝜎𝑑𝑑𝑓𝑓
𝑪𝑪

 

= �𝜎𝜎(𝑓𝑓𝑑𝑑𝑟𝑟 − 𝑟𝑟𝑑𝑑𝑓𝑓)
𝑪𝑪

= �𝜎𝜎𝑆𝑆𝑓𝑓
𝑪𝑪

 

∎
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