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Abstract

Trusses are load-carrying light-weight structures consisting of bars connected at joints ubiquitously applied in a variety of engineering
scenarios. Designing optimal trusses that satisfy functional specifications with a minimal amount of material has interested both
theoreticians and practitioners for more than a century. In this paper, we introduce two main ideas to improve upon the state of
the art. First, we formulate an alternating linear programming problem for geometry optimization. Second, we introduce two sets
of complementary topological operations, including a novel subdivision scheme for global topology refinement inspired by Michell’s
famed theoretical study. Based on these two ideas, we build an efficient computational framework for the design of lightweight trusses.
We show that our method achieves trusses with smaller volumes and is faster compared with recent state-of-the-art approaches.

Keywords: truss, topology optimization, geometry.

1. Introduction

Trusses are crucial and fundamental structures in multiple
modern engineering domains. They consist of bar elements that
are connected by pin joints. Because of their efficiency and
lightweight nature, trusses see considerable amount of usage in
industrial design and architectural construction, e.g., for sup-
port structures of buildings, bridges, transmission towers, or even
domes in playgrounds.

Designing a lightweight truss typically starts with a functional
specification, e.g., in the form of external forces that the structure
has to withstand. The design problem can then be formulated as
an optimization problem to determine the geometry, topology,
and the cross-sections of the truss. In other words, we have to
find answers to the following questions: Where to put the inter-
mediate joints? How to connect the joints with bars? What are
the cross-section areas of the bars? These tasks are notoriously
challenging because the optimization of geometry, topology, and
cross-sections is interrelated, and there exists an infinite number
of possible topologies which are difficult to classify and quantify.
Even for a simple case, the optimal topology is not intuitive. As
shown in Figure 2, to support two pairs of opposing forces lying
on two straight lines, the simplest truss on the left with two bars,
one in tension (blue) and another in compression (red), may be
intuitively considered as the lightest truss. However, a lighter de-
sign with more intermediate joints and connections can be found
as shown in the Figure 2 right. Another simple functional spec-
ification problem is called the three forces problem (3FP) [1, 2].
3FP is formulated as follows: find the lightest fully stressed truss
transmitting three self-equilibrated co-planar forces. Although
there are only three forces, the problem is still unsolved analyti-
cally for general cases.

In this paper, we mainly follow previous work and take func-
tional specifications in the form of supporting points and applied
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forces as input. Our goal is then to construct a lightweight truss
with optimal joint positions, topology, and cross-sections. As an
example shown in Figure 3 left, two supporting points and one
external force are given as inputs. Our computational method
generates the topology automatically and optimizes the nodal po-
sitions and cross-section areas as shown in Figure 3 right.

Figure 1: A bridge design problem from [3]. The input is an initial structure of
258-bars with supporting points (red) and two sets of forces: (a) downward loads
of magnitude 1 and (b) horizontal loads of magnitude 0.2 perpendicular to the
bridge’s main direction. The result in [3] has a total volume of 408.8 and took
over 1000s to compute. (c) Our optimal geometry and topology viewed from
different angles. The total volume is 333.4 and the running time is less than 10s.
(d) Further structure refinement based on (c) to achieve a total volume of 331.9.
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Figure 2:  Two truss designs for the same functional specification. Left: a
straightforward design with two bars. Right: a more complex and less intuitive
design with less material usage.

There are two major strategies to tackle this problem in previ-
ous work. The first strategy is to start with a densely-connected
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Figure 3: (a): a functional specification including two supporting points and one
external force. (b): an optimal truss.

structure and to subsequently identify which bars to remove (e.g.,
the ground structure method [4] and its variations [5, 6]). The
main limitation of this strategy is its sub-optimality due to its
heavy dependence on the initialization as it is extremely unlikely
that the optimal structure is a sub-structure of the initial one. The
other strategy is to start with a sparse structure and to iteratively
add new joints and bars. One of the most famous methods in [7]
adds one joint at a time and can only deal with one single load
2D problem.

Even though topology optimization is such a longstanding and
fundamental problem in structural engineering, one can identify
large possible improvements to the current state of the art. First,
the search space for truss topology is not properly explored by
previous algorithms. We could observe that it is very difficult
to optimize the topology in a single stage. Much better results
can be achieved by proceeding in two stages of topology opti-
mization: computing a coarse truss and truss subdivision. Our
novel subdivision approach is inspired by Michell’s pioneering
theoretical treatment of optimal truss design in [8]. Second, the
geometry optimization used in previous work is not efficient. To
tackle this problem we decompose geometry optimization into
alternating linear programming formulations to reduce the run-
ning time.

Our main contributions are as described in the following

e We propose two categories of complementary topology op-
erations, local and global. While local operations have been
used in previous work, our global operations based on sub-
division are our original contribution.

e We introduce a novel algorithm for geometry optimization
based on alternating linear programming (ALP) that jointly
optimizes joint positions and bar cross sections.

e Based on these two technical contributions, we build a
framework for lightweight truss design, a longstanding and
important problem in structural engineering, architecture,
graphics, and design. Compared with recent state-of-the-
art approaches, our method creates trusses with smaller vol-
umes, can handle more complex functional specifications,
and is over two orders of magnitude faster.

2. Previous Work

In recent years, combining geometric modeling together with
realistic engineering considerations, especially static equilibrium
and manufacturability, have attracted the interests of many re-
searchers in the graphics community. Beyond applications in the
virtual world [9], those previous works enable novel and func-
tional designs manufacturable with 3D printing [10, 11], laser
cutting [12], masonry structure [13, 14, 15, 16, 17, 18], for toys
[19, 201, furniture [21, 22], and architecture [23, 24]. The most
relevant works to ours are [25] and [26]. Jiang et al. propose a
framework to design and optimize space structures where only a

small set of cross-section areas are allowed. Therefore, Jiang et
al. [25] compute a specialized form of truss, but we focus on the
classical problem of truss design without discrete restrictions on
the cross sections. The main practical difference is that our pro-
posed method can generate a truss from scratch, whereas Jiang
et al. relies on a reasonable truss being given as input. In our
results we also demonstrate that our proposed optimization tech-
nique ALP produces better results on our problem formulation
than the geometric optimization technique used in [25]. Kilian et
al. [26] provide an interesting geometric understanding of “op-
timality” of surface-like lightweight structures. Compared with
their work, we tackle a problem for common and general trusses
in both 2D and 3D, instead of focusing on load-carrying surfaces.

The problem of designing a truss with a minimal volume of
material that supports imposed external forces was first studied in
[8]. In the milestone paper, Michell proved that an optimal truss
must follow orthogonal networks of lines of maximal and mini-
mal strains in a constant-magnitude strain field. An optimal truss
is usually called a Michell truss. Following his work, research
on the topic of optimal truss can be divided into two categories:
exact-analytical formulations and approximate-discretized for-
mulations.

An exact-analytical formulation assumes that the truss is a
continuum structure connected by an infinite number of bars with
infinitesimally small cross-sections. In analytical formulations,
the theoretical optimal design is determined exactly through the
simultaneous solution of a system of equations expressing the
conditions for optimality. The basic principles were establish
in [27] and [8] and a more general treatment was outlined in [28]
and [29]. Recent works on deriving exact solutions were pre-
sented in [30], [31], [32], and [33] for a series of benchmark
problems. Basically, the analytical solutions are very hard to
obtain and only available for some special boundary conditions.
While they are less practical in most of the generic scenarios,
these solutions could be used as references to verify the perfor-
mance of numerical methods.

Discretized numerical formulations are more practical and ef-
ficient approaches for structural design tasks presented in the
real world. The most influential method is the ground structure
method (GSM) which was first proposed in [4]. This method
consists of generating a fixed grid of joints and adding bars
in some or all of the possible connections between the joints
as potential structural or vanishing bars. The optimized struc-
ture for the imposed functional specification is found using the
cross-section areas as design variables, and the whole problem
is formulated as a linear programming problem. Its optimal
topology is achieved by eliminating the zero-area cross sections.
The ground structure method has been recently improved in [5]
and [6].

Besides GSM, some other numerical methods are proposed re-
cently, such as the method in [7], carries out geometry optimiza-
tion in conjunction with a heuristic ‘joint adding’ algorithm, gen-
erating an increasingly complex truss structure from a relatively
simple initial layout. However, this algorithm can only add one
joint per time and only works for single load cases. An efficient
algorithm proposed by He and Gibbert [34] combines layout
optimization with geometry optimization. Similar to GSM, its
layout optimization starts from a densely connected truss and is
formulated by a linear programming problem, and its geometry
optimization is formulated by a non-linear optimization as a post-
processing step.



3. Overview
Our framework has the following major components:

o Functional specification (C1). The input to our framework
is the functional specifications including the external forces
and supporting points together with a set of structural con-
straints, e.g., design regions, geometric obstacles, and ma-
terial properties. (See Section 4.1)

e Initialization (C2). To obtain an initial truss, we create a
grid of intermediate joints and densely connect them. This
grid is located inside the design region and its size is propor-
tional to the bounding box of the points in the input specifi-
cation. (See Section 4.2)

o Local topology operations (C3). We locally manipulate the
topology through some geometry operations such as remov-
ing bars with vanishing cross-section areas and joints with-
out any connection, merging close joints, etc. (See Section
4.3)

o Global topology refinement using subdivision (C4). Use
an optimized coarse truss as input, we further refine the truss
through subdivision. (See Section 4.4 )

e Geometric optimization using ALP (C5). Given a fixed
topology, we propose an alternating linear programming al-
gorithm (ALP) to reduce the total volume of the truss by
adjusting the joint positions and cross-section areas of bars.
This algorithm is an essential component and its details are
introduced in Section 5.

4. Design Framework

We provide a framework for the computational design of
lightweight trusses. In this section, we describe the input speci-
fication, the initialization, local topology operations, and global
topology refinement.

4.1. Functional Specification

The input to our framework is the functional specification in-
cluding the external forces and supporting points together with a
set of structural constraints, e.g., design regions, geometric ob-
stacles, and material properties. Throughout the paper, we vi-
sualize supporting joints as red dots, joints with active forces as
blue dots, and intermediate joints as yellow dots. We also visu-
alize bars in tension in blue and bars in compression in red. In
addition, the thickness of the bars is visualized in proportional
to the computed cross-section areas. Note that when the external
forces are in self-equilibrium, the input specification may have no
supporting points, for example, the three forces problem (3FP) in
2D.

4.2. Truss Initialization

We build on previous work to compute an initial truss. There
are two approaches to tackle this problem. One simply adds con-
nections between provided joints in the functional specification
(supporting joints and joints with active forces). For example, as
shown in Figure 5 left, two bars connecting the joints with active
forces (blue) and the supporting joints (red) are set as an initial
truss. In some cases, this initialization is too simple to construct
an equilibrium force system. Another method adds a grid of in-
termediate points over the design region and densely connects

them as shown in Figure 5 right. The increasing method such as
the work in [7] used the first initialization. The GSM usually
uses the latter one with a large number of intermediate joints.

(@) (b)

Figure 5: Two kinds of initializations. (a): connect force application points and
supporting points. (b): a densely connected initial structure for GSM.

In our framework, we first add some intermediate joints and
connections. For instance, a size of nxn 2D grid points or nxXnXxn
3D grid points and their dense connections, where n is a user
specified parameter. The default value of 7 is the number of joints
specified in the functional specification. This is quite similar to
the GSM, the difference is that the number of new joints that we
add is usually much less.

4.3. Local Topology Operations
We use the following local topology operations:

e Removing the bars with cross-section areas less than a small
threshold €.

e Removing joints without any attached bars.

e Merging joints that are closer to each other than a small
threshold 6.

e Removing intermediate joints with valence two, as shown
in Figure 6(a).

e Deleting the longest bar of a long narrow triangle as shown
in Figure 6(b).

e Adding a new joint for each pair of intersecting bars. Split
this pair of bars into four new bars and connect them at the
new joint as shown in Figure 6(c).

o Fixing non-boundary T-junctions by adding a bar and a new
joint connecting the new bar and the original truss as shown
in Figure 6(d). The new joint is created at the point closest
to the extension of the existing bar creating the T-junction.

[~/ N
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Figure 6: Four types of local topology operations: (a) Delete a joint of valence
two. (b) Remove an ill-shaped narrow triangle. (c) Add an additional joint for a
pair of intersecting bars.(d) Fix non-boundary T-junction.

These operations change the local topology and update joint
positions.
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Figure 4: Framework overview: Based on an input functional specification (a), our system creates an initial truss (b). Then, we proceed in two phases, coarse truss
optimization (c) and structure refinement through subdivision (d). In the first phase, we interleave geometric optimization using ALP with local topology operations. In
phase 2, we interleave subdivision with geometry operation using ALP. The output truss is shown in (e).

4.4. Global Topology Operation — Subdivision

The main idea of global topology refinement is to add joints
and bars to the truss to be able to reduce its volume after geom-
etry optimization. While previous work, e.g., [7], also proposes
to add joints and bars, they add only one joint at a time by test-
ing a large number of candidate locations. This results in a very
expensive algorithm. By contrast, we propose to add new joints
and bars based in a systematic manner. Our algorithm is inspired
by two observations. First, Michell’s theory [8] concludes that
the minimum-weight truss should follow two families of contin-
ues curves which are orthogonal to each other, one in tension
and one in compression. Second, an interesting aspect of truss
design is that trusses with more bars can often be lighter than
trusses with fewer bars, as more degrees of freedom are provided
to approximate an analytical limit. Our algorithm refines the dis-
crete equivalent of such families of curves by subdivision in an
efficient and coordinated manner. Most importantly, we insert
multiple bars in one step.

We first calculate a pair of tension-compression directions at
each joint. As shown in Figure 7(a), for each joint, we separately
average the bars connected with this joint according to their force
signs (+ for compression (red) and - for tension (blue)) with their
force magnitudes as weights. Figure 7(b) shows the calculated
nearly-orthogonal directions on a truss. Then we calculate the
new joints for the bars which are estimated to be split. Take the
bar in Figure 7(c) for example, we know the coordinates of its
two ends, p; and p;, and the tension-compression directions at its
two ends. For a bar in tension, we calculate the two directions, v;
and v;, which are orthogonal to the compression directions (red)
at its two ends. Using (p;, pj, vi,v;), we calculate a Bézier curve
and set the mid-point of the curve as the new joint. For a bar in
compression, we follow a similar procedure.

(@) (b)
Figure 7: Subdivision of a truss: (a) construction of compression-tension direc-

tions at each joint; (b) a compression-tension field for a truss; (c) the strategy to
calculate an edge mid-point.

Di (c)

The purpose of truss subdivision is to improve the orthogonal-

ity of the bars in tension and in compression. Given an initial
coarse truss, we know its geometry, topology, and the axial force
of each bar. Consider the truss as a graph, we extract triangles
and quadrilaterals. The triangles are usually formed by bars con-
nected to joints specified in the functional specification. For a
triangle as shown in Figure 8, lower row, we add a new joint
for the bar whose force sign is different from the other two and
connect the new joint with the opposite joint. A quadrilateral is
subdivided if it has two non-adjacent bars in compression and
the other two non-adjacent bars in tension. As shown in Fig-
ure 8 upper row, we add four new joints for its four bars and
one more joint at its face center initialized as the average of the
previous four, and connect the face-center joint with each edge-
middle joint. In the subdivided truss, we remove each bar where
a new joint is added, and connect its two ends with the new joint
as shown in Figure 8. Figure 9 show the results of different levels
of subdivisions using the functional specification in Figure 4(a).

Figure 8: Truss subdivision strategies for quadrilaterals (top) and triangles (bot-
tom).

Although the above illustrations are for 2D cases, we can use
the same subdivision strategies for 3D trusses. We extract all
triangles and quads and test if they should be subdivided. In 3D,
we use the same conditions as in 2D (see Fig. 8).

ae

Figure 9: Optimal truss designs in different subdivision levels. The input func-
tional specification is given in Figure 4.




5. Alternating LP

In this section, we introduce the alternating linear program-
ming (ALP) step which optimizes joint positions and cross-
section areas of bars for a given topology. ALP serves as the
backbone of the proposed approach. Both the local and global
topology operations in the previous section are based on opti-
mization of joint positions and cross-section areas. Directly opti-
mizing joint positions and axial forces is a highly nonlinear prob-
lem. Therefore, we split the problem into two linear problems.
In Algorithm a, we solve force densities alone without changing
the joint positions by the ground structure method. In Algorithm
b, we update joint positions and force densities jointly based on
results from Algorithm a.

5.1. Algorithm a: The Ground Structure Method

Let us first recall the basic plastic formulation of the ground
structure method [35], which solves a continuous linear pro-
gramming problem to minimize the total volume of material un-
der the premise of force balance with feasible axial forces:

|E|
mirggllize ; lia;, (D
subject to BTs = —f, (1a)
ai+s; > 0, i=1,...,|E| (1b)
a; —s; >0, i=1,...,|E| (1¢)

where each scalar a; is the cross-section area of the i-th bar. BT
is the nodal equilibrium matrix, built from the directional cosines
of the bars. More details about this matrix are given in the addi-
tional materials. s is a vector with the internal (axial) force for
all bars, and |E| is the number of bars. f is a vector of the exter-
nal force for all joints. The internal force s; should be within the
range of admissible axial forces [-ora;, oca;]. Here, we assume
that the maximal compressive and tensile strains are the same,
oc=or=0, which is a constant value. We set o = 1 in the for-
mulation. The inequality constraints, 1b and 1c are equivalent to
a; > |si|. As the length of each bar, /;, is positive, /; > 0, the
objective function requires the cross-section area of each bar, a;,
to be its smallest permissible value, just enough to support the
actual axial force of that bar. Then, we have a; = |s;| and the
following formulation.

|E|
minisfnize Z; Lilsil. @)
subject to B's = —f. (2a)

The above formulation is equivalent when we use force densi-
ties w; = s;/l; as variables instead of axis forces s;. The new
formulation is transformed to:

|E|
minimize Z Blwi, 3)
Vi =1
subject to C'w=-f. (3a)

Here, in Equation 3a, the matrix C is a simpler expression than
B because its elements are linear combinations of joint positions.
More details about the matrix C are given in the additional mate-
rials.

5.2. Algorithm b: Relocation of Joints

In Algorithm a, the joint positions are assumed to be fixed and
the axial forces are the only variables. To further reduce the to-
tal volume of material, we complement it with Algorithm b and
calculate the displacements of joints to leverage more degrees of
freedom. We assume the initial values of force densities, w, are
known by solving an LP problem in Equation 1 and set the dif-
ference of joint positions, u, and the difference of force densities
of bars, Aw, as variables. By directly rewriting Equation 3, we
have

|E]|
minimize Z sgn(w; + Aw;)(/; + Al,-)z(w,- + Awy), 4)
ui, Aw; =
subjectto  (C + AC)" (w + Aw) = —f. (4a)

Here, we assume that the change of force densities, Aw, is small
and that the signs of force densities remain the same, sgn(w; +
Aw;) = sgn(w;). As Algorithm b is applied after Algorithm a, the
values, I;, w;, sgn(w;), and C, are all known.

To simplify the problem which has a cubic objective function
and quadratic constraints, our goal is to approximate the above
formulation with a linear programming problem and solve it in
a sequential manner in conjunction with Algorithm a. By ex-
panding the objective function, we have (I; + AL)?(w; + Aw;) =
(lizW,' + 2L;ALw; + AlizW[ + ll.ZAW,' + 2L;ALAW; + AIIZAW,) X (lizW,' +
2LALw; + I?Awi). Here, we remove the higher order terms, and
use the fact that ll?w,- is constant. The objective function is ap-
proximated by Z'El sgn(w;)(2LAlw; + EAw;). As shown in Fig-
ure 10, Al; = d; - (u, — u;1), where d; is the unit direction vector
of the i-th bar connecting the joints i1 and i2. The objective func-
tion is linear with u; and Aw; as variables, where j = 1,...,|V|
andi=1,...,|E|

The force equilibrium constraint, (C + AC)T (w + Aw) = —f, is
equivalent to CTAw + ACTw + ACT Aw = 0 because CT'w = —f
is ensured by Algorithm a. Here we remove the small higher or-
der term ACT Aw. Then the force balance constraint is linearized
as CTAw + ACTw = 0. The matrix C and the vector w are
known from Algorithm a and the elements in matrix AC are lin-
ear combinations of nodal variations w; = (uy, uy, u;;). Then the
constraint is also linear with respect to u; and Aw;.

)

Figure 10: (a) The i-th bar connects the joints i1 and i2; w;; and u;, are joint
displacements. (b) The length change along the bar direction, Al; ~ d;-(u;2 —u;q).

Finally, the formulation for Algorithm b is written as



|E|
miniAmize Z sgn(w,-)(ZI,»widi . (lll'z - lll'l) + ll-zAW,'), (5)
Ui, Aw; =1
subjectto CTAw + ACTw =0, (5a)
-0, <Aw; <65 i=1,...,|E| (5b)
—Aj Sujujyup <Ay j=1,...,V]. (5¢)

where A; and ¢; are the bounds of the variables u; and Aw;. In
each iteration, we set small values for these bounds, e.g., 6; =
0.1jw;| and A; = 0.1/, where [ is the average length of all bars.

5.3. Alternating Scheme

The above two algorithms are formulated as two LP problems
in Equation 1 and Equation 5. The inputs to Algorithm a are
the joint positions, p, and the functional specification such as
the external forces, LOAD, and the supporting points, SUPP,
and the outputs are the force densities of bars, w. The algorithm
a is written as [w, V] = ALGa(p, LOAD, SUPP), where V is
the total volume of materials. The inputs of Algorithm b are
the initial force densities, w, the initial joint positions, p, and
the same functional specification. The outputs are the changing
values of joint positions and force densities. Then, Algorithm b is
written as [u, Aw] = ALGb(p, w, LOAD, SUPP). In the whole
algorithm, we organize them in an alternating way as shown in
Algorithm 1. Ny, is the maximum iteration number and S .y iS
the maximum line search step.

Algorithm 1 Alternating LP for truss geometry optimization
1: procedure ALTERNATING LP

2: Initial joint positions p; LOAD and SUPP;

3: [w, V] = ALGa(p, LOAD, SUPP);

4: Flag < True; N « 0;

5: while Flag do

6: [u, Aw] = ALGb(p, w, LOAD, SUPP);

7: procedure LINE SEARCH

8: for j = 0to S do

9: s<—2’-f;f)<—p+su;

10: [W, V] = ALGa(p, LOAD, SUPP);
11: if V < V then

12: V « V; p « p; Break;

13: else

14: if j == S .« then Flag = False;
15: endprocedure

16: NN+1,;

17: if N > N« then Flag = False;

18: endwhile

In Figure 11, we show the effectiveness of ALP for truss opti-
mization with three sets of load specifications involving torques.

5.4. Multiple Load Specifications

For the input specification with multiple sets of external forces,
the ALP algorithm is adjusted accordingly. Static equilibrium is
required for each set of external loads with generally different
internal forces. Thus, assuming trusses are required to withstand
K sets of external forces f', ... , £X, the formulation of Algorithm
a is rewritten as:

|E|

minimize Z lLia;,
a;, st n
i i=1

subject to BTs! = —f!,
a;j+ s >0, i=1,...,|E|
a;—s} >0, i=1,...,|E|
B'sK = X,

K - _
ai+s; 20, i=1,...,|E|
al-—sfzo, i=1,...,|E|
where k = 1,...,K. Force equilibrium constraints similar to

Equation 1 are required for each set of external forces. It is also
worth noting that this set of equations is sufficient to guarantee
force equilibrium in response to linear interpolation of the sets
of specified external forces. As each bar needs to support the
maximal axial forces from each set of the reaction forces, the
cross-section of the i-th bar, a; = max{|s;'|, ..., |s;X|}. We denote
m; € {1,...,k} as the set index for which the i-th bar attains its
maximal axial force, [s]"| = max{|s;'|, ..., |s;*]}. As those indices,
m;, could be easily found from the result of Algorithm a, cor-
responding cross sections follow directly, a; = |s!"|. Similarly,
by defining w" = s7"/I;, the formulation of Algorithm b for the
multiple-load case can be written as:

E|

Il’l:[nlAT‘I‘l}ZS Z,: sgn(w!")2Lw"d; - (up —wyy) + lwa,'.""),
. P
subject to CTAw! + ACTw! =0,

CTAWK + ACTWK = 0,
-6; < AW? < d;,

—/lj < Ujx, Ujy, Ujz < /1}',

where i = 1,...,|El, k = 1,...,K, and j = 1,...,|V]. Here,
only the nodal variations, u;, and the change of force densities,
AwX, are variables, others are known from Algorithm a. Us-
ing the same alternating scheme in Section 5.3 by adjusting the
Algorithm a and b accordingly, our method can tackle cases of
multiple-load input specifications. See Figure 12 for an example.

6. Results

In this section, we illustrate truss designs using our framework
for different types of input specifications and compare the re-
sults with state-of-the-art methods on selected benchmark design
problems.

6.1. Example Designs

We show the results of our method for different types of func-
tional specifications. We present 2D truss designs with a paral-
lel equilibrium force system in Figure 20, a concurrent equilib-
rium force system in Figure 21, and a non-concurrent equilibrium
force system in Figure 22. We illustrate examples of designs for
the same input external forces and supporting joints but different
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Figure 11: Three trusses optimized through ALP for different input specifications, each with eight supporting joints and eight external loads along circles. From left to
right, (al), (b1), and (c1) are the initial trusses with a total volume of material consumption being 103.93, 105.34 and 109.58 respectively. (a2), (b2), and (c2) are the
optimal trusses using ALP with a total volumes of 69.88, 68.53 and 69.21, respectively.
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Figure 12: A truss designed to support three sets of different external loads. Here,
red joints are fixed and blue joints have external loads applied. With three sets of
external loads shown in (a)-(c), our method creates an optimal truss that supports
all of them, as shown in (d).

design regions in Figure 19. For 3D trusses, we demonstrate the
results for input of a parallel equilibrium force system in Figure
24, a concurrent equilibrium force system in Figure 25, and a
non-concurrent equilibrium force system in Figure 26. In addi-
tion, we show examples based on real functional requirements
such as a 2D bike frame in Figure 23, a 3D cantilever in Figure
27, and a 3D bridge in Figure 1.

6.2. Quantitative Evaluation

Our framework is implemented in Matlab R2016 on a work-
station with an Intel Xeon X5550 2.67 GHz processor. We use
Mosek [36] as the solver for linear programming. For the ALP
algorithm, we set the maximum iteration number Np,,x=500 and
the maximum line search step S ,x=10. For the number of grid
points in the initialization, n, we use the default value, the num-
ber of joints specified in the functional specification. We set the
number of max iteration of Phase 1, Py.x; = 5. The number
of subdivisions in Phase 2, Ppyax2, controls the trade off between
number of bars and truss weight and is set depending on the con-
text. We set the thresholds € and €, in Section 4.3 as €, = 0.002a,
& = 0.01d, where a is the average cross-section, and d is the av-
erage value of distances between joints specified in the functional
specification. In Table 1, for each optimized truss, we report pa-
rameters of trusses such as the number of bars, the total volume
of material, and the computation time of coarse truss optimiza-
tion and different levels of structure refinement.

6.3. Evaluation of the Initialization

To test the sensitivity of our framework to the initialization, we
show optimized trusses starting from initializations with different
numbers of intermediate joints and bars (before subdivision op-
erations are conducted). Figure 13 shows that adding different
intermediate joints and bars results in different trusses. However,
these trusses have similar structure and they all function as robust
discrete approximations of the optimal truss for further subdivi-
sion.

Figure 13: Comparing different initializations. From left to right we initialize
with 4x4, 6x6, 8x8, and 10x10 intermediate joints and 124, 364, 732, and 1228
intermediate bars.

6.4. Comparisons

6.4.1. Comparisons with Previous Numerical Methods

‘We compare the performance of our method with several pre-
vious methods using the functional specifications, solutions, and
running times provided in their papers. We denote the methods
in [3], [5], [34], and [6] as D2013, G2003, H2015 and S2017,
respectively. In Figure 1 and Figure 14, we compare our method
with [3] for a 2D and a 3D bridge design problem. In Figure 15
and 16, we compare our method with [34] and [5] on a bench-
mark problem—Hemp cantilever design. For 3D truss optimiza-
tion, we compare our method with [6] on a simple 3D model in
Figure 17. The comparison is shown in Table 2. We can observe
that our method is orders of magnitude faster, even though we
can achieve a lower volume than previous work. Unfortunately,
these methods do not have code or executables publicly avail-
able, so we cannot test them on the same machine. However, it
seems unlikely that this significant difference in running time can
be overcome by slightly faster hardware.

6.4.2. Comparisons with Analytical Solutions

For the cantilever design problems in Figure 15 and 16, the to-
tal volumes of analytical solutions are 4.498115 and 4.232168.
The volumes of our discrete designs for these two cases are
4.498635 and 4.3223, which are closer to the analytical solutions
than the previous work, [5] and [34]. For the three force prob-
lem, we compare our result with the analytical solution presented
in [2]. In Figure 18, we show the computed discrete truss (130
bars, volume: 6.838) on the right which is visually similar to the
analytical solution on the left (volume: 6.831).

Discussion and Limitations.. Compared with previous work, the
geometry optimization in terms of both the axial forces and joint
positions through two linear programming problems alternatively



Fig. Initial Truss Optimal Coarse Truss Truss Subdivision 1 Truss Subdivision 2 Truss Subdivision 3
Bars é(;lll\l/lme Bars | Volume | Time(s) | Bars | Volume | Time(s) | Bars | Volume | Time(s) | Bars | Volume | Time(s)

20 800 | 6.516 14 5.830 3.76 26 5.732 0.31 50 5.709 1.41 98 5.703 2.97
21 404 | 3.125 22 2.967 5.86 46 2913 5.85 118 | 2.909 8.86 358 | 2.907 15.16
22 124 | 3.872 16 3.365 0.64 36 3.248 0.88 100 | 3.203 5.46 324 | 3.188 17.28
19(al) | 835 | 3.375 19 3.210 5.02 45 3.183 1.43 133 | 3.170 8.79 453 | 3.163 29.56
19(bl) | 835 | 3.335 25 3.114 5.42 67 3.041 1.81 211 | 3.021 7.717 739 | 3.016 17.84
23 466 | 4.340 25 4.294 4.92 67 4.289 3.22 211 | 4.288 9.68 739 | 4.287 35.63
24 2061 | 19.510 | 9 19.081 | 4.28 18 18.700 | 0.46 37 18.610 | 2.39 76 18.587 | 5.56
25 1118 | 13.891 | 24 11.742 | 5.87 60 11.724 | 7.73 180 | 11.718 | 19.09 612 | 11.713 | 57.41
26 3674 | 15.429 | 10 14.628 | 1.61 16 14.416 | 1.53 28 14325 | 1.97 52 14.316 | 2.11
27 3674 | 30.850 | 24 29.049 | 8.70 58 28.507 | 1.96 174 | 28.285 | 14.75 598 | 28.217 | 64.01

Table 1: Statistics of results presented in this paper: For each truss design, we report the number of bars, the total volume of material consumption, as well as the
computational time for different stages. Please note that the results from optimal coarse trusses are already better than the results from the ground structure method
without introducing additional joints and bars. Topological refinement through subdivision provides additional reduction in material consumption generally in less than
one minute in our current implementation which still has a significant room for further improvement.

Fig. | Method (i]r?ietlir:l) (]f?r?arj) Time | Volume
1 D2013 258 96 1376s | 408.807
Ours 258 201 7.7s | 333.395
14 | D2013 31 19 n/a 34.977
Ours 804 25 3.4s 34.593
15 | G2003 | >1 billion n/a >6h 4.4998
Ours 105 2178 30s 4.4986
16 | H2015 | 12,456,601 | 4244 | 4875s | 4.3228
Ours 105 2178 30s 4.3223

17 S2017 >7 billion 40 >1h n/a
Ours 1118 24 13.6s | 11.742

Table 2: Comparisons with previous work. Compared with previous approaches,
our framework consistently creates truss designs with smaller volumes with sig-
nificantly shorter computational times.

applied in ALP provides more degrees of freedom compared with
the original formulation of the ground structure method which
solves a single linear programming problem. Splitting a highly
nonlinear programming problem into two linear ones also attains
better efficiency compared with the original nonlinear formula-
tion. Moreover, the two categories of topological operations, lo-
cal and global, complementarily allow both flexible yet stable
topology changes and manipulation. Most importantly, the sub-
division approach, which has been overlooked by previous work,
is a natural choice for topology refinement from coarse to fine,
which creates valid topologies at different levels both efficiently
and robustly. Despite the efficiency and efficacy, our optimiza-
tion framework cannot guarantee a global optimum. However, in
simple special cases where the analytical optimum is known, we
observe that the method almost reaches the known global opti-
mum. As our method is based on subdivision of edge-networks
on surfaces, the optimal trusses in 3D also need to constitute
sheets of surfaces. For general 3D specifications, the subdivision
approach requires an initial surface-like structure, or a structure
that consists of multiple sheets, which is a challenging problem
for future work. The proposed ALP algorithm will work for gen-
eral 3D structures, however.
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Figure 14: A comparison with the method in [3] on a 2D bridge model. (a) The
input functional specification and initial truss for the method in [3]. (b) Optimal
truss in [3] (number of bars: 19, volume: 34.977). (c) Our optimal coarse truss
(number of bars: 25, volume: 34.593). Refined structures after 1 and 2 rounds of
subdivisions are shown in (d) and (e).

7. Conclusions and Future Work

We present a method for the design of optimal trusses satisfy-
ing functional specifications with minimized material consump-
tion. The core components of the proposed approach include an
alternating linear programming formulation for geometry opti-
mization and two sets of topological operations. The subdivi-
sion scheme inspired by Michell’s theoretical studies utilized in
the global topology refinement step plays a crucial role for the
efficiency and eflicacy of the proposed approach. The perfor-
mance of our framework is validated by comparisons with mul-
tiple previous studies in different scenarios, which indicate that
our method creates trusses with smaller volumes and is faster in
terms of computational speed. For future work, it would be excit-
ing to study dynamic structures created by trusses with movable
parts that have multiple configurations, e.g., robotic and mecha-
tronic systems with trusses. Moreover, a better theoretical un-
derstanding of optimal trusses in 3D would be inspiring for the
entire field.
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Figure 15: A comparison with the method in [5] on a benchmark design problem
(Hemp cantilever). Compared with the best result presented in [5], obtained with
6h50m of computation, shown in (a), which used an initial truss of 116,288,875
bars and obtain a total volume of 4.499827, we obtain a result, shown in (b), with
2178 bars in 30s, which achieves a total volume of 4.498635. For this problem,
an analytical solution with an infinite amount of bars exists, which has a total
volume of 4.498115.

Figure 16: A comparison with the method in [34] on a benchmark design prob-
lem (Hemp cantilever). (a) The optimal truss of [34] (number of bars: 4244,
running time: 4875s, volume: 4.3228). (b) Our optimized truss (number of bars:
2178, running time: 30s, volume: 4.3223). The analytical solution of optimal
volume is 4.3217.
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Figure 25: A truss design with the input being a 3D concurrent force system.
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Figure 26: A truss design with the input being a 3D non-concurrent force system.

Figure 27: A 3D cantilever design.
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Highlights of this manuscript:

e We propose two categories of complementary topology operations, local and global.
While local operations have been used in previous work, our global operations based on
subdivision are our original contribution.

e We introduce a novel algorithm for geometry optimization based on alternating linear
programming (ALP) that jointly optimizes joint positions and bar cross sections.

e Based on these two technical contributions, we build a framework for lightweight truss
design, a longstanding and important problem in structural engineering, architecture,
graphics, and design. Compared with recent state-of-the art approaches, our method
creates trusses with smaller volumes, can handle more complex functional specifications,
and is over two orders of magnitude faster.
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