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e load-carrying light-weight structures consisting of bars connected at joints ubiquitously applied in a variety of enginee
Designing optimal trusses that satisfy functional specifications with a minimal amount of material has interested b

ns and practitioners for more than a century. In this paper, we introduce two main ideas to improve upon the stat
rst, we formulate an alternating linear programming problem for geometry optimization. Second, we introduce two
mentary topological operations, including a novel subdivision scheme for global topology refinement inspired by Mich
retical study. Based on these two ideas, we build an efficient computational framework for the design of lightweight trus

hat our method achieves trusses with smaller volumes and is faster compared with recent state-of-the-art approaches.

truss, topology optimization, geometry.

uction

are crucial and fundamental structures in multiple
gineering domains. They consist of bar elements that
cted by pin joints. Because of their efficiency and
t nature, trusses see considerable amount of usage in
design and architectural construction, e.g., for sup-
ures of buildings, bridges, transmission towers, or even
laygrounds.

ng a lightweight truss typically starts with a functional
on, e.g., in the form of external forces that the structure
stand. The design problem can then be formulated as
ation problem to determine the geometry, topology,

oss-sections of the truss. In other words, we have to
rs to the following questions: Where to put the inter-
ints? How to connect the joints with bars? What are
ection areas of the bars? These tasks are notoriously
g because the optimization of geometry, topology, and
ons is interrelated, and there exists an infinite number
topologies which are difficult to classify and quantify.
simple case, the optimal topology is not intuitive. As
igure 2, to support two pairs of opposing forces lying
ight lines, the simplest truss on the left with two bars,

sion (blue) and another in compression (red), may be
considered as the lightest truss. However, a lighter de-
ore intermediate joints and connections can be found

n the Figure 2 right. Another simple functional spec-
roblem is called the three forces problem (3FP) [1, 2].

ulated as follows: find the lightest fully stressed truss
g three self-equilibrated co-planar forces. Although
nly three forces, the problem is still unsolved analyti-
eneral cases.
aper, we mainly follow previous work and take func-
ifications in the form of supporting points and applied

nding author
dress: renjiec@ustc.edu.cn (Renjie Chen)

forces as input. Our goal is then to construct a lightweight t
with optimal joint positions, topology, and cross-sections. A
example shown in Figure 3 left, two supporting points and
external force are given as inputs. Our computational met
generates the topology automatically and optimizes the nodal
sitions and cross-section areas as shown in Figure 3 right.

(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)

(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)

(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c) (d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)

Figure 1: A bridge design problem from [3]. The input is an initial structu
258-bars with supporting points (red) and two sets of forces: (a) downward
of magnitude 1 and (b) horizontal loads of magnitude 0.2 perpendicular t
bridge’s main direction. The result in [3] has a total volume of 408.8 and
over 1000s to compute. (c) Our optimal geometry and topology viewed
different angles. The total volume is 333.4 and the running time is less than
(d) Further structure refinement based on (c) to achieve a total volume of 33

(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a) (b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)

Figure 2: Two truss designs for the same functional specification. Le
straightforward design with two bars. Right: a more complex and less intu
design with less material usage.

There are two major strategies to tackle this problem in pr
ous work. The first strategy is to start with a densely-conne

itted to Elsevier July 2,
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): a functional specification including two supporting points and one
e. (b): an optimal truss.

nd to subsequently identify which bars to remove (e.g.,
structure method [4] and its variations [5, 6]). The

tation of this strategy is its sub-optimality due to its
endence on the initialization as it is extremely unlikely
timal structure is a sub-structure of the initial one. The
egy is to start with a sparse structure and to iteratively
ints and bars. One of the most famous methods in [7]
oint at a time and can only deal with one single load
m.
ough topology optimization is such a longstanding and
tal problem in structural engineering, one can identify
ible improvements to the current state of the art. First,
space for truss topology is not properly explored by
lgorithms. We could observe that it is very difficult
e the topology in a single stage. Much better results
ieved by proceeding in two stages of topology opti-
computing a coarse truss and truss subdivision. Our
ivision approach is inspired by Michell’s pioneering
treatment of optimal truss design in [8]. Second, the

optimization used in previous work is not efficient. To
problem we decompose geometry optimization into
linear programming formulations to reduce the run-

in contributions are as described in the following

ropose two categories of complementary topology op-
ns, local and global. While local operations have been
in previous work, our global operations based on sub-
on are our original contribution.

troduce a novel algorithm for geometry optimization
on alternating linear programming (ALP) that jointly
izes joint positions and bar cross sections.

on these two technical contributions, we build a
work for lightweight truss design, a longstanding and

rtant problem in structural engineering, architecture,
ics, and design. Compared with recent state-of-the-
proaches, our method creates trusses with smaller vol-
, can handle more complex functional specifications,
over two orders of magnitude faster.

s Work

t years, combining geometric modeling together with
gineering considerations, especially static equilibrium

facturability, have attracted the interests of many re-
n the graphics community. Beyond applications in the
rld [9], those previous works enable novel and func-
gns manufacturable with 3D printing [10, 11], laser
2], masonry structure [13, 14, 15, 16, 17, 18], for toys
urniture [21, 22], and architecture [23, 24]. The most
orks to ours are [25] and [26]. Jiang et al. propose a
to design and optimize space structures where only a

al. [25] compute a specialized form of truss, but we focus on
classical problem of truss design without discrete restriction
the cross sections. The main practical difference is that our
posed method can generate a truss from scratch, whereas J
et al. relies on a reasonable truss being given as input. In
results we also demonstrate that our proposed optimization t
nique ALP produces better results on our problem formula
than the geometric optimization technique used in [25]. Kilia
al. [26] provide an interesting geometric understanding of ”
timality” of surface-like lightweight structures. Compared w
their work, we tackle a problem for common and general tru
in both 2D and 3D, instead of focusing on load-carrying surfa

The problem of designing a truss with a minimal volum
material that supports imposed external forces was first studie
[8]. In the milestone paper, Michell proved that an optimal t
must follow orthogonal networks of lines of maximal and m
mal strains in a constant-magnitude strain field. An optimal t
is usually called a Michell truss. Following his work, rese
on the topic of optimal truss can be divided into two catego
exact-analytical formulations and approximate-discretized
mulations.

An exact-analytical formulation assumes that the truss
continuum structure connected by an infinite number of bars w
infinitesimally small cross-sections. In analytical formulati
the theoretical optimal design is determined exactly through
simultaneous solution of a system of equations expressing
conditions for optimality. The basic principles were estab
in [27] and [8] and a more general treatment was outlined in
and [29]. Recent works on deriving exact solutions were
sented in [30], [31], [32], and [33] for a series of benchm
problems. Basically, the analytical solutions are very har
obtain and only available for some special boundary conditi
While they are less practical in most of the generic scenar
these solutions could be used as references to verify the per
mance of numerical methods.

Discretized numerical formulations are more practical and
ficient approaches for structural design tasks presented in
real world. The most influential method is the ground struc
method (GSM) which was first proposed in [4]. This met
consists of generating a fixed grid of joints and adding
in some or all of the possible connections between the jo
as potential structural or vanishing bars. The optimized st
ture for the imposed functional specification is found using
cross-section areas as design variables, and the whole prob
is formulated as a linear programming problem. Its opti
topology is achieved by eliminating the zero-area cross secti
The ground structure method has been recently improved in
and [6].

Besides GSM, some other numerical methods are proposed
cently, such as the method in [7], carries out geometry optim
tion in conjunction with a heuristic ‘joint adding’ algorithm, g
erating an increasingly complex truss structure from a relati
simple initial layout. However, this algorithm can only add
joint per time and only works for single load cases. An effic
algorithm proposed by He and Gibbert [34] combines lay
optimization with geometry optimization. Similar to GSM
layout optimization starts from a densely connected truss an
formulated by a linear programming problem, and its geom
optimization is formulated by a non-linear optimization as a p
processing step.
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ework has the following major components:

tional specification (C1). The input to our framework
functional specifications including the external forces

upporting points together with a set of structural con-
ts, e.g., design regions, geometric obstacles, and ma-
properties. (See Section 4.1)

lization (C2). To obtain an initial truss, we create a
f intermediate joints and densely connect them. This

s located inside the design region and its size is propor-
l to the bounding box of the points in the input specifi-
. (See Section 4.2)

l topology operations (C3). We locally manipulate the
ogy through some geometry operations such as remov-
ars with vanishing cross-section areas and joints with-
ny connection, merging close joints, etc. (See Section

al topology refinement using subdivision (C4). Use
timized coarse truss as input, we further refine the truss
gh subdivision. (See Section 4.4 )

etric optimization using ALP (C5). Given a fixed
ogy, we propose an alternating linear programming al-
m (ALP) to reduce the total volume of the truss by

ting the joint positions and cross-section areas of bars.
algorithm is an essential component and its details are
uced in Section 5.

Framework

vide a framework for the computational design of
t trusses. In this section, we describe the input speci-
e initialization, local topology operations, and global
efinement.

tional Specification
ut to our framework is the functional specification in-
e external forces and supporting points together with a
ctural constraints, e.g., design regions, geometric ob-
d material properties. Throughout the paper, we vi-
porting joints as red dots, joints with active forces as
and intermediate joints as yellow dots. We also visu-
in tension in blue and bars in compression in red. In
he thickness of the bars is visualized in proportional
puted cross-section areas. Note that when the external
in self-equilibrium, the input specification may have no
points, for example, the three forces problem (3FP) in

Initialization
d on previous work to compute an initial truss. There
proaches to tackle this problem. One simply adds con-
etween provided joints in the functional specification
g joints and joints with active forces). For example, as
igure 5 left, two bars connecting the joints with active
e) and the supporting joints (red) are set as an initial
me cases, this initialization is too simple to construct

rium force system. Another method adds a grid of in-
points over the design region and densely connects

the work in [7] used the first initialization. The GSM usu
uses the latter one with a large number of intermediate joints

(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a) (b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)

Figure 5: Two kinds of initializations. (a): connect force application point
supporting points. (b): a densely connected initial structure for GSM.

In our framework, we first add some intermediate joints
connections. For instance, a size of n×n 2D grid points or n×
3D grid points and their dense connections, where n is a
specified parameter. The default value of n is the number of jo
specified in the functional specification. This is quite simila
the GSM, the difference is that the number of new joints tha
add is usually much less.

4.3. Local Topology Operations
We use the following local topology operations:

• Removing the bars with cross-section areas less than a sm
threshold ε1.

• Removing joints without any attached bars.

• Merging joints that are closer to each other than a sm
threshold ε2.

• Removing intermediate joints with valence two, as sh
in Figure 6(a).

• Deleting the longest bar of a long narrow triangle as sh
in Figure 6(b).

• Adding a new joint for each pair of intersecting bars. S
this pair of bars into four new bars and connect them at
new joint as shown in Figure 6(c).

• Fixing non-boundary T-junctions by adding a bar and a
joint connecting the new bar and the original truss as sh
in Figure 6(d). The new joint is created at the point clo
to the extension of the existing bar creating the T-juncti

(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a) (b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b) (c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c) (d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)

Figure 6: Four types of local topology operations: (a) Delete a joint of va
two. (b) Remove an ill-shaped narrow triangle. (c) Add an additional joint
pair of intersecting bars.(d) Fix non-boundary T-junction.

These operations change the local topology and update j
positions.
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Local Topology
 Operations (C3)

Geometry 
Optimization (C5)Initialization

eci�cation

Optimization (C5)

Local Topology
 Operations (C3)

Geometry 
Optimization (C5)

Subdivision (C4)

Geometry 
Optimization (C5)

Ouput Truss

)))))))))))) (c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c) (d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b) (e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)

ramework overview: Based on an input functional specification (a), our system creates an initial truss (b). Then, we proceed in two phases, coarse
(c) and structure refinement through subdivision (d). In the first phase, we interleave geometric optimization using ALP with local topology operation
nterleave subdivision with geometry operation using ALP. The output truss is shown in (e).

al Topology Operation — Subdivision

in idea of global topology refinement is to add joints
the truss to be able to reduce its volume after geom-

ization. While previous work, e.g., [7], also proposes
ts and bars, they add only one joint at a time by test-
number of candidate locations. This results in a very

algorithm. By contrast, we propose to add new joints
ased in a systematic manner. Our algorithm is inspired
servations. First, Michell’s theory [8] concludes that
um-weight truss should follow two families of contin-

which are orthogonal to each other, one in tension
compression. Second, an interesting aspect of truss

that trusses with more bars can often be lighter than
h fewer bars, as more degrees of freedom are provided
mate an analytical limit. Our algorithm refines the dis-
alent of such families of curves by subdivision in an

nd coordinated manner. Most importantly, we insert
ars in one step.
calculate a pair of tension-compression directions at
As shown in Figure 7(a), for each joint, we separately

e bars connected with this joint according to their force
r compression (red) and - for tension (blue)) with their
nitudes as weights. Figure 7(b) shows the calculated
ogonal directions on a truss. Then we calculate the
for the bars which are estimated to be split. Take the

ure 7(c) for example, we know the coordinates of its
pi and p j, and the tension-compression directions at its
For a bar in tension, we calculate the two directions, vi
ich are orthogonal to the compression directions (red)
nds. Using (pi, p j, vi, v j), we calculate a Bézier curve
mid-point of the curve as the new joint. For a bar in

on, we follow a similar procedure.

(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b) (c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)pipipipipipipipipipipipipipipipipi

p jp jp jp jp jp jp jp jp jp jp jp jp jp jp jp jp jvivivivivivivivivivivivivivivivivi
v jv jv jv jv jv jv jv jv jv jv jv jv jv jv jv jv j

bdivision of a truss: (a) construction of compression-tension direc-
joint; (b) a compression-tension field for a truss; (c) the strategy to

edge mid-point.

pose of truss subdivision is to improve the orthogonal-

ity of the bars in tension and in compression. Given an in
coarse truss, we know its geometry, topology, and the axial f
of each bar. Consider the truss as a graph, we extract trian
and quadrilaterals. The triangles are usually formed by bars c
nected to joints specified in the functional specification. F
triangle as shown in Figure 8, lower row, we add a new j
for the bar whose force sign is different from the other two
connect the new joint with the opposite joint. A quadrilater
subdivided if it has two non-adjacent bars in compression
the other two non-adjacent bars in tension. As shown in
ure 8 upper row, we add four new joints for its four bars
one more joint at its face center initialized as the average of
previous four, and connect the face-center joint with each ed
middle joint. In the subdivided truss, we remove each bar w
a new joint is added, and connect its two ends with the new j
as shown in Figure 8. Figure 9 show the results of different le
of subdivisions using the functional specification in Figure 4

Figure 8: Truss subdivision strategies for quadrilaterals (top) and triangles
tom).

Although the above illustrations are for 2D cases, we can
the same subdivision strategies for 3D trusses. We extrac
triangles and quads and test if they should be subdivided. In
we use the same conditions as in 2D (see Fig. 8).

(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a) (b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b) (c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)

Figure 9: Optimal truss designs in different subdivision levels. The input
tional specification is given in Figure 4.
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section, we introduce the alternating linear program-
P) step which optimizes joint positions and cross-
as of bars for a given topology. ALP serves as the

of the proposed approach. Both the local and global
perations in the previous section are based on opti-
f joint positions and cross-section areas. Directly opti-
nt positions and axial forces is a highly nonlinear prob-
efore, we split the problem into two linear problems.
m a, we solve force densities alone without changing

ositions by the ground structure method. In Algorithm
te joint positions and force densities jointly based on

m Algorithm a.

ithm a: The Ground Structure Method

rst recall the basic plastic formulation of the ground
ethod [35], which solves a continuous linear pro-

problem to minimize the total volume of material un-
mise of force balance with feasible axial forces:

imize
i,si

|E|∑

i=1

liai, (1)

ject to BT s = −f, (1a)

ai + si ≥ 0, i = 1, . . . , |E| (1b)

ai − si ≥ 0, i = 1, . . . , |E| (1c)

h scalar ai is the cross-section area of the i-th bar. BT

l equilibrium matrix, built from the directional cosines
. More details about this matrix are given in the addi-
erials. s is a vector with the internal (axial) force for
d |E| is the number of bars. f is a vector of the exter-

or all joints. The internal force si should be within the
missible axial forces [−σT ai, σCai]. Here, we assume
aximal compressive and tensile strains are the same,
, which is a constant value. We set σ = 1 in the for-
The inequality constraints, 1b and 1c are equivalent to
As the length of each bar, li, is positive, li > 0, the
unction requires the cross-section area of each bar, ai,
mallest permissible value, just enough to support the
l force of that bar. Then, we have ai = |si| and the

formulation.

minimize
si

|E|∑

i=1

li|si|, (2)

subject to BT s = −f. (2a)

formulation is equivalent when we use force densi-
si/li as variables instead of axis forces si. The new
n is transformed to:

minimize
wi

|E|∑

i=1

l2i |wi|, (3)

subject to CT w = −f. (3a)

quation 3a, the matrix C is a simpler expression than
its elements are linear combinations of joint positions.
ils about the matrix C are given in the additional mate-

In Algorithm a, the joint positions are assumed to be fixed
the axial forces are the only variables. To further reduce the
tal volume of material, we complement it with Algorithm b
calculate the displacements of joints to leverage more degree
freedom. We assume the initial values of force densities, w,
known by solving an LP problem in Equation 1 and set the
ference of joint positions, u, and the difference of force dens
of bars, ∆w, as variables. By directly rewriting Equation 3
have

minimize
ui,∆wi

|E|∑

i=1

sgn(wi + ∆wi)(li + ∆li)2(wi + ∆wi),

subject to (C + ∆C)T (w + ∆w) = −f.

Here, we assume that the change of force densities, ∆w, is sm
and that the signs of force densities remain the same, sgn(w
∆wi) = sgn(wi). As Algorithm b is applied after Algorithm a
values, li, wi, sgn(wi), and C, are all known.

To simplify the problem which has a cubic objective func
and quadratic constraints, our goal is to approximate the ab
formulation with a linear programming problem and solve
a sequential manner in conjunction with Algorithm a. By
panding the objective function, we have (li + ∆li)2(wi + ∆w
(l2i wi + 2li∆liwi + ∆l2i wi + l2i ∆wi + 2li∆li∆wi + ∆l2i ∆wi) ≈ (l2i w
2li∆liwi + l2i ∆wi). Here, we remove the higher order terms,
use the fact that l2i wi is constant. The objective function is
proximated by

∑|E|
i=1 sgn(wi)(2li∆liwi + l2i ∆wi). As shown in

ure 10, ∆li ≈ di · (ui2 − ui1), where di is the unit direction ve
of the i-th bar connecting the joints i1 and i2. The objective fu
tion is linear with u j and ∆wi as variables, where j = 1, . . .
and i = 1, . . . , |E|.

The force equilibrium constraint, (C + ∆C)T (w + ∆w) = −
equivalent to CT ∆w + ∆CT w + ∆CT ∆w = 0 because CT w =
is ensured by Algorithm a. Here we remove the small highe
der term ∆CT ∆w. Then the force balance constraint is linear
as CT ∆w + ∆CT w = 0. The matrix C and the vector w
known from Algorithm a and the elements in matrix ∆C are
ear combinations of nodal variations u j = (u jx, u jy, u jz). Then
constraint is also linear with respect to u j and ∆wi.

i1i1i1i1i1i1i1i1i1i1i1i1i1i1i1i1i1 iiiiiiiiiiiiiiiii

i2i2i2i2i2i2i2i2i2i2i2i2i2i2i2i2i2

ui1ui1ui1ui1ui1ui1ui1ui1ui1ui1ui1ui1ui1ui1ui1ui1ui1

ui2ui2ui2ui2ui2ui2ui2ui2ui2ui2ui2ui2ui2ui2ui2ui2ui2

∆li = di · (ui2 − u∆li = di · (ui2 − u∆li = di · (ui2 − u∆li = di · (ui2 − u∆li = di · (ui2 − u∆li = di · (ui2 − u∆li = di · (ui2 − u∆li = di · (ui2 − u∆li = di · (ui2 − u∆li = di · (ui2 − u∆li = di · (ui2 − u∆li = di · (ui2 − u∆li = di · (ui2 − u∆li = di · (ui2 − u∆li = di · (ui2 − u∆li = di · (ui2 − u∆li = di · (ui2 − u

(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a) (b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)

ui1ui1ui1ui1ui1ui1ui1ui1ui1ui1ui1ui1ui1ui1ui1ui1ui1

ui2ui2ui2ui2ui2ui2ui2ui2ui2ui2ui2ui2ui2ui2ui2ui2ui2

Figure 10: (a) The i-th bar connects the joints i1 and i2; ui1 and ui2 are
displacements. (b) The length change along the bar direction, ∆li ≈ di ·(ui2−

Finally, the formulation for Algorithm b is written as
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ze
|E|∑

i=1

sgn(wi)(2liwidi · (ui2 − ui1) + l2i ∆wi), (5)

to CT ∆w + ∆CT w = 0, (5a)

− δi ≤ ∆wi ≤ δi; i = 1, . . . , |E|, (5b)

− λ j ≤ u jx, u jy, u jz ≤ λ j; j = 1, . . . , |V |. (5c)

j and δi are the bounds of the variables ui and ∆wi. In
ion, we set small values for these bounds, e.g., δi =
λi = 0.1l̄, where l̄ is the average length of all bars.

nating Scheme

ve two algorithms are formulated as two LP problems
n 1 and Equation 5. The inputs to Algorithm a are
ositions, p, and the functional specification such as

al forces, LOAD, and the supporting points, SUPP,
tputs are the force densities of bars, w. The algorithm
n as [w,V] = ALGa(p,LOAD,SUPP), where V is
olume of materials. The inputs of Algorithm b are
force densities, w, the initial joint positions, p, and
unctional specification. The outputs are the changing
oint positions and force densities. Then, Algorithm b is
[u,∆w] = ALGb(p,w,LOAD,SUPP). In the whole
we organize them in an alternating way as shown in
1. Nmax is the maximum iteration number and S max is
um line search step.

1 Alternating LP for truss geometry optimization
dure Alternating LP
itial joint positions p; LOAD and SUPP;
,V] = ALGa(p,LOAD,SUPP);
ag← True; N ← 0;
ile Flag do
[u,∆w] = ALGb(p,w,LOAD,SUPP);
procedure Line search

for j = 0 to S max do
s← 2− j; p̂← p + su;
[ŵ, V̂] = ALGa(p̂,LOAD,SUPP);
if V̂ < V then

V ← V̂; p← p̂; Break;
else

if j == S max then Flag = False;
endprocedure
N ← N + 1;
if N > Nmax then Flag = False;

dwhile

e 11, we show the effectiveness of ALP for truss opti-
ith three sets of load specifications involving torques.

ple Load Specifications

nput specification with multiple sets of external forces,
lgorithm is adjusted accordingly. Static equilibrium is
or each set of external loads with generally different
rces. Thus, assuming trusses are required to withstand
xternal forces f1, ... , fK , the formulation of Algorithm
en as:

minimize
ai,sk

i

|E|∑

i=1

liai,

subject to BT s1 = −f1,

ai + s1
i ≥ 0, i = 1, . . . , |E|

ai − s1
i ≥ 0, i = 1, . . . , |E|

...

BT sK = −fK ,

ai + sK
i ≥ 0, i = 1, . . . , |E|

ai − sK
i ≥ 0, i = 1, . . . , |E|

where k = 1, . . . ,K. Force equilibrium constraints simila
Equation 1 are required for each set of external forces. It is
worth noting that this set of equations is sufficient to guara
force equilibrium in response to linear interpolation of the
of specified external forces. As each bar needs to support
maximal axial forces from each set of the reaction forces,
cross-section of the i-th bar, ai = max{|si

1|, ..., |si
K |}. We de

mi ∈ {1, ..., k} as the set index for which the i-th bar attain
maximal axial force, |smi

i | = max{|si
1|, ..., |si

K |}. As those indi
mi, could be easily found from the result of Algorithm a,
responding cross sections follow directly, ai = |smi

i |. Simil
by defining wmi

i = smi
i /li, the formulation of Algorithm b for

multiple-load case can be written as:

minimize
ui,∆wi

k

|E|∑

i=1

sgn(wmi
i )(2liw

mi
i di · (ui2 − ui1) + l2i ∆wmi

i ),

subject to CT ∆w1 + ∆CT w1 = 0,
...

CT ∆wK + ∆CT wK = 0,

− δi ≤ ∆wk
i ≤ δi,

− λ j ≤ u jx, u jy, u jz ≤ λ j,

where i = 1, . . . , |E|, k = 1, . . . ,K, and j = 1, . . . , |V |. H
only the nodal variations, ui, and the change of force densi
∆wk

i , are variables, others are known from Algorithm a.
ing the same alternating scheme in Section 5.3 by adjusting
Algorithm a and b accordingly, our method can tackle case
multiple-load input specifications. See Figure 12 for an exam

6. Results

In this section, we illustrate truss designs using our framew
for different types of input specifications and compare the
sults with state-of-the-art methods on selected benchmark de
problems.

6.1. Example Designs
We show the results of our method for different types of fu

tional specifications. We present 2D truss designs with a pa
lel equilibrium force system in Figure 20, a concurrent equ
rium force system in Figure 21, and a non-concurrent equilibr
force system in Figure 22. We illustrate examples of designs
the same input external forces and supporting joints but diffe

6

Jo
ur

na
l P

re
-p

ro
of



Figure 11: T eft to
right, (a1), (b e the
optimal truss

Figure 12: A
red joints are
external load
all of them, a

design reg
results for
24, a conc
non-concu
tion, we s
such as a 2
27, and a 3

6.2. Quan
Our fram

station wit
Mosek [36
algorithm,
the maxim
points in t
ber of join
number of
of subdivi
number of
text. We se
ε2 = 0.01d̄
erage valu
specificati
rameters o
of materia
tion and d

6.3. Evalu
To test t

show optim
numbers o
erations ar
intermedia
these truss
discrete ap
sion.

ialize
1228

pre-
and
ods
17,
hod
e 15
ch-
iza-
l in

erve
we

tely,
ail-
r, it
can

to-
68.
are

ions
rob-
nted
130
the

, the
oint
vely

Journal Pre-proof
(a1)(a1)(a1)(a1)(a1)(a1)(a1)(a1)(a1)(a1)(a1)(a1)(a1)(a1)(a1)(a1)(a1) (a2)(a2)(a2)(a2)(a2)(a2)(a2)(a2)(a2)(a2)(a2)(a2)(a2)(a2)(a2)(a2)(a2) (b1)(b1)(b1)(b1)(b1)(b1)(b1)(b1)(b1)(b1)(b1)(b1)(b1)(b1)(b1)(b1)(b1) (b2)(b2)(b2)(b2)(b2)(b2)(b2)(b2)(b2)(b2)(b2)(b2)(b2)(b2)(b2)(b2)(b2) (c1)(c1)(c1)(c1)(c1)(c1)(c1)(c1)(c1)(c1)(c1)(c1)(c1)(c1)(c1)(c1)(c1) (c2)(c2)(c2)(c2)(c2)(c2)(c2)(c2)(c2)(c2)(c2)(c2)(c2)(c2)(c2)(c2)(c2)

hree trusses optimized through ALP for different input specifications, each with eight supporting joints and eight external loads along circles. From l
1), and (c1) are the initial trusses with a total volume of material consumption being 103.93, 105.34 and 109.58 respectively. (a2), (b2), and (c2) ar
es using ALP with a total volumes of 69.88, 68.53 and 69.21, respectively.

(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a) (b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b) (c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c) (d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)

truss designed to support three sets of different external loads. Here,
fixed and blue joints have external loads applied. With three sets of

s shown in (a)-(c), our method creates an optimal truss that supports
s shown in (d).

ions in Figure 19. For 3D trusses, we demonstrate the
input of a parallel equilibrium force system in Figure
urrent equilibrium force system in Figure 25, and a
rrent equilibrium force system in Figure 26. In addi-
how examples based on real functional requirements
D bike frame in Figure 23, a 3D cantilever in Figure
D bridge in Figure 1.

titative Evaluation
ework is implemented in Matlab R2016 on a work-

h an Intel Xeon X5550 2.67 GHz processor. We use
] as the solver for linear programming. For the ALP
we set the maximum iteration number Nmax=500 and
um line search step S max=10. For the number of grid
he initialization, n, we use the default value, the num-
ts specified in the functional specification. We set the
max iteration of Phase 1, Pmax1 = 5. The number

sions in Phase 2, Pmax2, controls the trade off between
bars and truss weight and is set depending on the con-
t the thresholds ε1 and ε2 in Section 4.3 as ε1 = 0.002ā,
, where ā is the average cross-section, and d̄ is the av-
e of distances between joints specified in the functional
on. In Table 1, for each optimized truss, we report pa-
f trusses such as the number of bars, the total volume
l, and the computation time of coarse truss optimiza-
ifferent levels of structure refinement.

ation of the Initialization
he sensitivity of our framework to the initialization, we

ized trusses starting from initializations with different
f intermediate joints and bars (before subdivision op-
e conducted). Figure 13 shows that adding different
te joints and bars results in different trusses. However,
es have similar structure and they all function as robust
proximations of the optimal truss for further subdivi-

(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a) (b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b) (c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c) (d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)

Figure 13: Comparing different initializations. From left to right we init
with 4×4, 6×6, 8×8, and 10×10 intermediate joints and 124, 364, 732, and
intermediate bars.

6.4. Comparisons

6.4.1. Comparisons with Previous Numerical Methods
We compare the performance of our method with several

vious methods using the functional specifications, solutions,
running times provided in their papers. We denote the meth
in [3], [5], [34], and [6] as D2013, G2003, H2015 and S20
respectively. In Figure 1 and Figure 14, we compare our met
with [3] for a 2D and a 3D bridge design problem. In Figur
and 16, we compare our method with [34] and [5] on a ben
mark problem—Hemp cantilever design. For 3D truss optim
tion, we compare our method with [6] on a simple 3D mode
Figure 17. The comparison is shown in Table 2. We can obs
that our method is orders of magnitude faster, even though
can achieve a lower volume than previous work. Unfortuna
these methods do not have code or executables publicly av
able, so we cannot test them on the same machine. Howeve
seems unlikely that this significant difference in running time
be overcome by slightly faster hardware.

6.4.2. Comparisons with Analytical Solutions
For the cantilever design problems in Figure 15 and 16, the

tal volumes of analytical solutions are 4.498115 and 4.2321
The volumes of our discrete designs for these two cases
4.498635 and 4.3223, which are closer to the analytical solut
than the previous work, [5] and [34]. For the three force p
lem, we compare our result with the analytical solution prese
in [2]. In Figure 18, we show the computed discrete truss (
bars, volume: 6.838) on the right which is visually similar to
analytical solution on the left (volume: 6.831).

Discussion and Limitations.. Compared with previous work
geometry optimization in terms of both the axial forces and j
positions through two linear programming problems alternati
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Fig. Initial Truss Optimal Coarse Truss Truss Subdivision 1 Truss Subdivision 2 Truss Subdivision 3

Time(s)

20 2.97
21 15.16
22 17.28
19(a1) 29.56
19(b1) 17.84
23 35.63
24 5.56
25 57.41
26 2.11
27 64.01
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Bars
Volume
GSM Bars Volume Time(s) Bars Volume Time(s) Bars Volume Time(s) Bars Volume

800 6.516 14 5.830 3.76 26 5.732 0.31 50 5.709 1.41 98 5.703
404 3.125 22 2.967 5.86 46 2.913 5.85 118 2.909 8.86 358 2.907
124 3.872 16 3.365 0.64 36 3.248 0.88 100 3.203 5.46 324 3.188
835 3.375 19 3.210 5.02 45 3.183 1.43 133 3.170 8.79 453 3.163
835 3.335 25 3.114 5.42 67 3.041 1.81 211 3.021 7.77 739 3.016
466 4.340 25 4.294 4.92 67 4.289 3.22 211 4.288 9.68 739 4.287
2061 19.510 9 19.081 4.28 18 18.700 0.46 37 18.610 2.39 76 18.587
1118 13.891 24 11.742 5.87 60 11.724 7.73 180 11.718 19.09 612 11.713
3674 15.429 10 14.628 1.61 16 14.416 1.53 28 14.325 1.97 52 14.316
3674 30.850 24 29.049 8.70 58 28.507 1.96 174 28.285 14.75 598 28.217

tistics of results presented in this paper: For each truss design, we report the number of bars, the total volume of material consumption, as well a
al time for different stages. Please note that the results from optimal coarse trusses are already better than the results from the ground structure me
ducing additional joints and bars. Topological refinement through subdivision provides additional reduction in material consumption generally in less
n our current implementation which still has a significant room for further improvement.

ethod
Bars

(initial)
Bars

(final) Time Volume

D2013 258 96 1376s 408.807
Ours 258 201 7.7s 333.395

D2013 31 19 n/a 34.977
Ours 804 25 3.4s 34.593

G2003 >1 billion n/a >6h 4.4998
Ours 105 2178 30s 4.4986

H2015 12,456,601 4244 4875s 4.3228
Ours 105 2178 30s 4.3223

S2017 >7 billion 40 >1h n/a
Ours 1118 24 13.6s 11.742

parisons with previous work. Compared with previous approaches,
rk consistently creates truss designs with smaller volumes with sig-
rter computational times.

ALP provides more degrees of freedom compared with
l formulation of the ground structure method which
ngle linear programming problem. Splitting a highly
programming problem into two linear ones also attains
iency compared with the original nonlinear formula-
over, the two categories of topological operations, lo-
obal, complementarily allow both flexible yet stable
hanges and manipulation. Most importantly, the sub-
proach, which has been overlooked by previous work,
l choice for topology refinement from coarse to fine,
tes valid topologies at different levels both efficiently
ly. Despite the efficiency and efficacy, our optimiza-
work cannot guarantee a global optimum. However, in
cial cases where the analytical optimum is known, we
at the method almost reaches the known global opti-
our method is based on subdivision of edge-networks
s, the optimal trusses in 3D also need to constitute
urfaces. For general 3D specifications, the subdivision
equires an initial surface-like structure, or a structure
ts of multiple sheets, which is a challenging problem

work. The proposed ALP algorithm will work for gen-
uctures, however.

(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a) (b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)

(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c) (d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d) (e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)

Figure 14: A comparison with the method in [3] on a 2D bridge model. (a
input functional specification and initial truss for the method in [3]. (b) Op
truss in [3] (number of bars: 19, volume: 34.977). (c) Our optimal coarse
(number of bars: 25, volume: 34.593). Refined structures after 1 and 2 roun
subdivisions are shown in (d) and (e).

7. Conclusions and Future Work

We present a method for the design of optimal trusses sati
ing functional specifications with minimized material consu
tion. The core components of the proposed approach includ
alternating linear programming formulation for geometry o
mization and two sets of topological operations. The subd
sion scheme inspired by Michell’s theoretical studies utilize
the global topology refinement step plays a crucial role for
efficiency and efficacy of the proposed approach. The per
mance of our framework is validated by comparisons with m
tiple previous studies in different scenarios, which indicate
our method creates trusses with smaller volumes and is faste
terms of computational speed. For future work, it would be ex
ing to study dynamic structures created by trusses with mov
parts that have multiple configurations, e.g., robotic and me
tronic systems with trusses. Moreover, a better theoretical
derstanding of optimal trusses in 3D would be inspiring for
entire field.
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[23] C. Jiang, C. Tang, M. Tomičı́, J. Wallner, H. Pottmann, Interactive mod

9

Jo
ur

na
l P

re
-p

ro
of



Figure 19: T signs
for the same

Figure 20:

Figure 21:
Note that the

of arch
and sta
pp. 95–

[24] N. Piet
aware
Library

[25] C. Jian
of spac

[26] M. Ki
forms
proc. S
313082

[27] J. C. M
Earth a
inburgh

stem.
and

) 70–

nam-

prob-
iza-

pular
onal
007)

pular
ains,

iza-
Opti-

iza-
694.
opti-
ulti-

rsion

Journal Pre-proof
(a1)(a1)(a1)(a1)(a1)(a1)(a1)(a1)(a1)(a1)(a1)(a1)(a1)(a1)(a1)(a1)(a1)
(a2)(a2)(a2)(a2)(a2)(a2)(a2)(a2)(a2)(a2)(a2)(a2)(a2)(a2)(a2)(a2)(a2) (a3)(a3)(a3)(a3)(a3)(a3)(a3)(a3)(a3)(a3)(a3)(a3)(a3)(a3)(a3)(a3)(a3) (a4)(a4)(a4)(a4)(a4)(a4)(a4)(a4)(a4)(a4)(a4)(a4)(a4)(a4)(a4)(a4)(a4)

(b1)(b1)(b1)(b1)(b1)(b1)(b1)(b1)(b1)(b1)(b1)(b1)(b1)(b1)(b1)(b1)(b1)
(b2)(b2)(b2)(b2)(b2)(b2)(b2)(b2)(b2)(b2)(b2)(b2)(b2)(b2)(b2)(b2)(b2) (b3)(b3)(b3)(b3)(b3)(b3)(b3)(b3)(b3)(b3)(b3)(b3)(b3)(b3)(b3)(b3)(b3) (b4)(b4)(b4)(b4)(b4)(b4)(b4)(b4)(b4)(b4)(b4)(b4)(b4)(b4)(b4)(b4)(b4)
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A truss design with the input being a 2D parallel force system.
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A truss design with the input being a 2D concurrent force system.
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(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a) (b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b) (c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c) (d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d) (e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)

Figure 23: A bike frame design.

(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a) (b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b) (c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c) (d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d) (e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)

Figure 24: A truss design with the input being a 3D parallel force system.

(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a) (b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b) (c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c) (d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)

Figure 25: A truss design with the input being a 3D concurrent force system.

(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a) (b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b) (c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c) (d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)

Figure 26: A truss design with the input being a 3D non-concurrent force system.

(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a) (b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b) (c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c) (d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d) (e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)

Figure 27: A 3D cantilever design.
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Highlights of this manuscript: 
 

• We propose two categories of complementary topology operations, local and global. 
While local operations have been used in previous work, our global operations based on 
subdivision are our original contribution. 
 

• We introduce a novel algorithm for geometry optimization based on alternating linear 
programming (ALP) that jointly optimizes joint positions and bar cross sections. 
 
 

•  Based on these two technical contributions, we build a framework for lightweight truss 
design, a longstanding and important problem in structural engineering, architecture, 
graphics, and design. Compared with recent state-of-the art approaches, our method 
creates trusses with smaller volumes, can handle more complex functional specifications, 
and is over two orders of magnitude faster. 
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