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High-resolution observations of flare precursors 
in the low solar atmosphere
Haimin Wang1, 2, 3*, Chang Liu1, 2, 3, Kwangsu ahn2, Yan Xu1, 2, 3, Ju Jing1, 2, 3, na Deng1, 2, 3, nengyi Huang1, 2, 3,  
rui Liu4, 5, Kanya Kusano6, Gregory D. Fleishman3, Dale e. Gary3 and Wenda Cao2, 3*

Solar flares are generally believed to be powered by free mag-
netic energy stored in the corona1, but the build up of coronal 
energy alone may be insufficient to trigger the flare to occur2. 
The flare onset mechanism is a critical but poorly understood 
problem, insights into which could be gained from small-
scale energy releases known as precursors. These precur-
sors are observed as small pre-flare brightenings in various 
wavelengths3–13 and also from certain small-scale magnetic 
configurations such as opposite-polarity fluxes14–16, where the 
magnetic orientation of small bipoles is opposite to that of the 
ambient main polarities. However, high-resolution observa-
tions of flare precursors together with the associated photo-
spheric magnetic field dynamics are lacking. Here we study 
precursors of a flare using the unprecedented spatiotemporal 
resolution of the 1.6-m New Solar Telescope, complemented 
by new microwave data. Two episodes of precursor bright-
enings are initiated at a small-scale magnetic channel17–20  
(a form of opposite-polarity flux) with multiple polarity inver-
sions and enhanced magnetic fluxes and currents, lying near 
the footpoints of sheared magnetic loops. Microwave spectra 
corroborate that these precursor emissions originate in the 
atmosphere. These results provide evidence of low-atmo-
spheric small-scale energy release, possibly linked to the 
onset of the main flare.

We study the 22 June 2015 M6.5 flare (SOL2015-06-22T18:23) 
using Hα (line-centre and red-wing) images and photospheric vec-
tor magnetograms obtained by the recently commissioned 1.6-m 
New Solar Telescope (NST)21,22 at Big Bear Solar Observatory 
(BBSO), which is stabilized by a high-order adaptive optics system 
(see Methods). In particular, the vector field data are taken by the 
Near InfraRed Imaging Spectropolarimeter (NIRIS)23 at the 1.56-μ m  
Fe i line. These observations have the highest spatial resolution 
yet achieved for solar observations (~70 km for Hα and ~170 km  
for vector field) and rapid cadence (28 s for Hα and 87 s for vec-
tor field). Also used are flare microwave spectra and time profiles 
from the new Expanded Owens Valley Solar Array (EOVSA; see 
Methods), and time profiles of hard X-ray and soft X-ray fluxes 
from the Reuven Ramaty High Energy Solar Spectroscopic Imager24 
and the Geostationary Operational Environmental Satellite-15, 
respectively. Ancillary data of full-disk corona images and mag-
netograms from the Solar Dynamics Observatory (SDO)25 are  
additionally used.

The long-duration 22 June 2015 M6.5 flare occurred near the 
disk centre (8° W, 12° N) at NOAA active region 12371. Time profiles  
of flare emissions in different wavelengths (including hard X-ray, 
soft X-ray and microwave) clearly show that shortly before the flare 
impulsive phase starting from ~17:51 ut, there are two short episodes 
of smaller-magnitude emissions at ~17:24 ut and ~17:42 ut, which 
we denote as P1 and P2, respectively (see Supplementary Fig. 1).  
We find that these emissions can only stem from the active region 
of the imminent M6.5 flare, and that simultaneous Hα brightenings 
are observed with NST in the flaring core region (see Supplementary 
Video 1). Thus they can be regarded as precursors of the M6.5 flare. 
Fine-structural evolution of the associated precursor brighten-
ings in NST Hα and the surface magnetic structure are presented  
in Fig.  1. Specifically, the brightening associated with the precur-
sor episode P1 first appears as a kernel, P1a, in NST at 17:23:21 ut  
(also discernible in ultraviolet and extreme ultraviolet; see 
Supplementary Fig. 2a,d), then quickly turns into an elongated struc-
ture with another kernel, P1b (Fig. 1a and Supplementary Fig. 2b).  
Later, from ~17:38 ut, fine-scale brightening starts to be seen in the 
south and travels northeastward, apparently along the previously 
brightened regions in P1. The precursor episode P2 starts around 
17:42 ut as kernel P2a (Fig. 1b), and then another, P2b, is formed 
in the south (Fig. 1c). All the above brightenings exhibit little propa-
gation towards the east. From ~17:46 ut, one of the main flare rib-
bons, Fa, seems to develop from the P2a region (see Fig.  1d and 
Supplementary Video 1).

Regarding the precursor brightenings, we notice that P1a/P1b 
and P2a/P2b all lie along a narrow lane of largely positive mag-
netic polarity, a few arcseconds to the east of the magnetic polarity 
inversion line (PIL) (see Fig.  1e). The region of P1a is co-spatial 
with small-scale mixed polarities (discussed below) located near 
the footpoints of large-scale sheared arcades, which are approxi-
mately illustrated as L1 and L2 in Hα and 193 Å (see Fig.  1f and 
Supplementary Fig. 2d,e). Some other brightenings are seen near 
the southern footpoint of L2 in the negative field region (see, for 
example, Supplementary Fig. 2a–d). Furthermore, precursor bright-
enings predominantly move along (parallel to) the PIL, in contrast 
to the separation motion of the main flare ribbons Fa and Fb (see 
Fig. 1d, Supplementary Fig. 2c, and Supplementary Video 1) away 
from the PIL that complies with the standard flare model26.

In Fig. 2, we present the NIRIS vector magnetic field measure-
ment of the flare core region. The magnetic field is highly sheared 
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with respect to the PIL, especially in the precursor brightening 
region (Fig. 2a,b). This signifies a high degree of non-potentiality, 
as reflected by the concentration of magnetic shear along the PIL 
(Fig. 2c; see equation (1) in Methods). In the region around the initial  
precursor brightening P1a (enclosed by the box in Fig.  2b), we 
observe elongated, alternating positive and negative polarities on a 
fine scale of ~3,000 km, constituting a miniature version of the mag-
netic channel structure17 also recognized as the opposite-polarity 
type field14 (see also Supplementary Video 2). Importantly, both the 
negative and positive fluxes within the channel exhibit an increase 
(by about –6.6 ×  1018 and 9.3 ×  1018 maxwell (Mx), respectively, in 
about half an hour) temporally associated with the occurrence of the 
precursor episodes P1 and P2, and a decrease after the peak of the 
flare non-thermal emission (Fig. 2d). These imply that the dynamic  
evolution of the magnetic channel region is closely related to the 
triggering and subsequent evolution of the flare. It is possible to 
find the spatial and temporal correlation between the appearance of 
the precursor brightenings and the properties of the magnetic field 
structure and evolution because of the high spatial and temporal 
resolution of the NIRIS data.

We further characterize the fine-scale properties of the magnetic 
channel region in Fig. 3. A comparison reveals that the precursor 
brightenings P1a/P1b (Fig.  3a) appear in the vicinity of regions  
of strong vertical current density (curl of the horizontal field;  
calculated from equation  (2) in Methods and shown in Fig.  3c), 
similar to what has been found previously for main flare ribbons 

(for example ref. 27). We also place a slit right across the magnetic 
channel and plot the profiles of the vertical magnetic field and cur-
rent density along it (black dashed and red solid lines, respectively, 
in Fig.  3d). The results show 5 (11) time reversals of magnetic 
polarity (electric current) within ~3,000 (6,000) km, demonstrat-
ing the complexity of this channel region at small scales. The pro-
file of Hα +  1.0 Å along the same slit (blue dotted line in Fig. 3d) 
shows that the brightening has a fine structure on a scale of 500 km 
or less. Similar to the magnetic flux, the unsigned vertical electric 
current integrated over the channel region shows a clear increase  
(by ~5 ×  1011 A in about half an hour) closely related to the timing of 
precursors P1/P2, and also a decrease after the main energy release 
(Fig. 2d). Such a flare-related evolutionary pattern is not found in 
other areas within the observed field of view. These results are sug-
gestive that the enhancing magnetic channel structure corresponds 
to an emerging small current-carrying flux tube20, which might be 
dissipated by reconnection with ambient fields after the flare.

To extend the measurement of the magnetic field to the three-
dimensional (3D) domain, we turn to the analysis of microwave 
observations. For reasonably uniform emission sources (such as 
flare precursors), the magnetic field can be derived from the total 
power data28. In Fig. 4a, the EOVSA total-power dynamic spectrum 
(intensity recorded in a time-frequency diagram, averaged from the 
measurements of 20 dishes), with the preflare quiet Sun and active-
region contribution subtracted, shows microwave flaring emis-
sions of the two precursor episodes P1/P2 and the impulsive phase.  
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Figure 1 | Precursor brightenings. BBSO/NST chromospheric Hα +  0.6 Å (a–d) and Hα centre-line (f) images (in logarithmic greyscale) in comparison  
with NIRIS photospheric vertical magnetic field Bz (e; scaled between ± 1,500 G), showing the core region structure of the 22 June 2015 M6.5 flare.  
Brightenings labelled P1a/P1b, P2a/P2b and Fa/Fb appear during the precursor episodes P1, P2, and at the beginning of the flare impulsive phase, 
respectively, the timings of which are indicated in Supplementary Fig. 1. The dashed box in a, b, e and f denotes the field of view of Figs 2b and 3a–c.  
The yellow contour in e indicates the polarity inversion line. The dashed lines in f illustrate sheared arcade loops L1 and L2 (also see Supplementary  
Fig. 2e). All the images were registered with respect to 22 June 2015 17:24 ut.

http://dx.doi.org/10.1038/s41550-017-0085


nature aStrOnOMY 1, 0085 (2017) | DOI: 10.1038/s41550-017-0085 | www.nature.com/natureastronomy 3

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved. © 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

LettersNaTure aSTroNoMy

Our analyses show that the microwave spectra in the precursor peri-
ods can be modelled as quasi-thermal, gyrosynchrotron emission 
sources (for example Fig. 4b,c; see Methods). Their instantaneous  
spectral shape is determined by several physical parameters, including  
temperature, magnetic field and electron density29. For our pur-
poses, we consider the temporal evolution of only the magnetic 
field during the precursor periods, which is derived from the spec-
tral fittings and plotted in Fig. 4d,e. The magnetic field strengths 
of precursors P1 and P2 are strong (≳ 1,000 G) at the beginning,  
then gradually decrease to a lower level (500 and 300 G, respec-
tively). Based on the relationship between the average magnetic 
field strength and height above the surface as suggested by a non-
linear force-free field (NLFFF) extrapolation model of this flaring 
region (see Methods and Supplementary Fig. 3b), this result indi-
cates that both precursor emissions are initially located in the low 
atmosphere (at photospheric/chromospheric level), which corrobo-
rates the NST analysis.

Taken together, BBSO/NST Hα images complemented by EOVSA 
microwave observations identify the low-atmospheric precursor  

emissions in close relation to the onset of the main flare. We pro-
pose that the present event proceeds in a way consistent with the 
model of ref.14: an emerging small-scale flux tube, as signified by 
the strengthening magnetic channel20 of opposite-polarity type14, 
interacts with and aids the reconnection of the ambient legs of 
large-scale sheared loops rooted in major polarities (Supplementary  
Fig. 2d), producing precursor brightenings. These sheared loops are 
also demonstrated by the NLFFF model (Supplementary Fig. 3a), 
in which they lie close to the surface with an apex height of ~5 Mm. 
The reconnection site between the small-scale emerging flux and 
sheared arcades is located at the photospheric/chromospheric 
level; subsequently, the accelerated particles can quickly propa-
gate and cause brightenings in other remote footpoints (for exam-
ple P1c in Supplementary Fig. 2a,b,d). During the two precursor  
periods, the motion of Hα brightening kernels along the PIL may 
reflect the successive reconnection of different branches of the 
sheared arcade loops, which eventually leads to the imminent erup-
tion of the main flare (Supplementary Fig. 2f). We made no attempt 
to compare our observations with other flare triggering scenarios, as 
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Figure 2 | Magnetic field structure and evolution. a,b, BBSO/NST NIRIS photospheric vertical magnetic field (scaled between ± 1,500 G) at 17:35:30 ut 
superimposed with arrows (for clarity, those in positive/negative fields are coded in blue/red) representing horizontal magnetic field vectors. The box in a 
(same as those in Fig. 1a,b,e,f) denotes the field of view of b, in which the magnetic channel structure can be clearly observed. c, Distribution of magnetic 
shear (see Methods). The overplotted yellow contour in a–c is the PIL. d, Temporal evolution of total positive (blue dotted line) and negative (red solid 
line) magnetic fluxes and the unsigned electric current (black dashed line; see Methods), calculated over the magnetic channel region enclosed by the 
box in b. The plotted representative error bars correspond to 1 s.d. calculated over the post-flare period 18:50 to 19:40 ut, demonstrating the background 
variation. The first two vertical dashed lines indicate the times of precursor episodes P1 and P2 at 17:24 and 17:42 ut, respectively; the third vertical dashed 
line denotes the peak time of the flare non-thermal emission in microwave at 17:58 ut (see Supplementary Fig. 1).
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the model of ref. 14 is perhaps the only one that incorporates both the 
small- and large-scale magnetic structures (that is, small opposite-
polarity type field and overlying sheared arcades). As sheared arcade 
systems are often present in flaring active regions, more observa-
tions of the low solar atmosphere, especially high-resolution photo-
spheric magnetic field measurements with good temporal coverage, 
are desirable. This would allow the problem of the flare onset mech-
anism to be better understood, as is needed for improving forecasts 
of space weather.

Methods
Optical wavelength observations and reduction. The NST is a 1.6-m off-axis  
telescope at BBSO operated by the New Jersey Institute of Technology. Currently, 
it produces the highest-spatial-resolution (for example, 70 km when observing 
around 6,000 Å), diffraction-limited observations of the Sun, aided by a 
308-element adaptive optics system and speckle-masking image reconstruction. 
During the period of ~16:50–23:00 ut on 22 June 2015, NST observed the M6.6 
flare at NOAA AR 12371. The data taken include spectroscopic observations  
in Hα line centre and ± 0.6 and ± 1.0 Å (with a bandpass of 0.07 Å), and also  
images in the TiO band (a proxy for the continuum photosphere around 7,057 Å). 
The images have a spatial resolution of ~70–80 km and a cadence ranging  
from 15 to 28 s.

Notably, this study makes the first scientific use of data from NIRIS,  
which measured the photospheric magnetic field during this observation run.  
This is also NIRIS’s first coverage of a flare observed with NST. NIRIS uses dual 
Fabry–Pérot etalons that provide a 60,000 km ×  60,000 km field of view and  
a great throughput of over 90%. NIRIS achieves a spatial resolution of ~170 km  
at the 1.56-μ m Fe i line (with a bandpass of 0.1 Å). The cadence of NIRIS data  
(full set of vector magnetograms) for this 22 June 2015 observation run is 87 s.  
The 1.56-μ m line offers a high Landé g-factor of 3, which can help to increase  
the signal strength of magnetograms. Although this line has a lower diffraction 
limit than some visible lines, it produces much more stable images under 
atmospheric turbulence.

For the NIRIS observations, first the dual-beam optical design images two 
simultaneous polarization states onto a 2,024 ×  2,048 HgCdTe closed-cycle 
infrared array that undergoes thermo-electric cooling. A combination of a linear 
polarizer and a quarter-wave plate is used in the telescope structure to create pure 
polarization states, after which the responses of the following optical elements 
through the detector are measured. This approach is able to eliminate the crosstalk 
among the Stokes Q, U and V parameters.

Second, the NIRIS data undergoes Stokes inversion using the Milne–Eddington 
technique, through which several key physical parameters (including total 
magnetic field, azimuth angle, inclination and Doppler shift) can be extracted.  
For successful fittings with Milne–Eddington-simulated profiles, initial parameters 
are pre-calculated to be close to the observed Stokes profiles30. The accuracy  
of the resulted vector field data is 10 G for the line-of-sight component  
and 100 G for the transverse component.

For this 22 June 2015 observation, we validate the NIRIS data by checking 
against those obtained from two spaceborne instruments, the spectropolarimeter 
(SP) of Hinode’s 0.5-m Solar Optical Telescope31 and SDO’s Helioseismic and 
Magnetic Imager (HMI)32. Hinode/SP and SDO/HMI have spatial resolutions 
of about 230 and 725 km, and temporal cadences of a few hours and 12 minutes, 
respectively. In Supplementary Fig. 4, we compare line-of-sight field, transverse 
field and azimuthal angle from the three instruments measured around 22 June 
2015 22:35 ut. It can be clearly seen that the magnetic structures observed by 
NIRIS, Hinode/SP and SDO/HMI are highly similar, but more details are present 
in NIRIS data, owing to its higher spatial resolution. A cross-correlation analysis 
reveals that data acquired by NIRIS match well with those taken by Hinode/
SP and SDO/HMI, with correlation coefficients of 0.97, 0.9 and 0.8 for the line-
of-sight field, transverse field and azimuthal angle measurements, respectively. 
This demonstrates the superiority of NIRIS observations in making high-
spatiotemporal-resolution studies of photospheric magnetic field evolution.

Third, to explore the magnetic field structure properly, we further process  
the NIRIS vector magnetograms resulting from inversion, to resolve the 180° 
azimuthal ambiguity using the ME0 code33, which is based on the ‘minimum 
energy’ ambiguity resolution method34,35, and to remove the projection  
effects by transforming the observed vector fields (line-of-sight and transverse)  
to those in heliographic coordinates (vertical Bz and horizontal Bx and By fields) 
using the equations of ref.36. To characterize the non-potentiality of the active 
region, we calculate magnetic shear S, defined as the product of field strength  
and shear angle37,38:

θ= | |S B (1)

where θ =  cos−1[(B ⋅  Bp)/(BBp)], and the subscript p represents the potential field 
(here computed using the Green’s function method39). We also derive the vertical 
current density Jz:









μ μ

= ∇ × =
∂
∂

− ∂
∂

J
B
x

B
y

B1 ( ) 1
(2)z z

y x

0 0

where μ0 is the permeability of the vacuum.

Full-disk observations for context. We complement high-resolution NST data 
with full-disk SDO observations for a better understanding of the overall picture 
of the flare. Images shown in Supplementary Fig. 2 include those from SDO’s 
Atmospheric Imaging Assembly40 1,700-Å (temperature minimum region and 
photosphere), 193-Å (corona and hot flare plasma) and 94-Å (hot flare plasma) 
passbands, and SDO’s HMI.

Microwave observation and analysis. This study also makes the first scientific 
use of the EOVSA data. EOVSA is a newly upgraded, solar-dedicated radio array 
consisting of 13 antennas of 2.1-m diameter, which are equipped with receivers 
designed to cover the frequency range 1–18 GHz. Two large (27-m diameter) 
dishes are being outfitted with He-cooled receivers for use in calibration of the 
small dishes41. EOVSA has just started scientific operation.
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Figure 3 | Properties of magnetic channel region. a, Hα +  1.0 Å image at the time of the precursor episode P1. b,c, NIRIS vertical magnetic field Bz and vertical 
current density Jz derived from horizontal field (see Methods) at a preflare time. The field of view of a–c is denoted by the box in Figs 1a,b,e,f and 2a and is 
the same as that of Fig. 2b. The yellow (black) contour in a and b (c) is the polarity inversion line. Colour scales: a, linear scale in arbitrary units; b, range 
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For the event under study, the EOVSA microwave observation covers  
both the precursors and the main flare. Although the microwave spectrum is 
broadband during the main flare (which is a result of source non-uniformity  
in space), the preflare phase demonstrates reasonably narrow spectra  
consistent with a quasi-uniform source. This kind of source can be conclusively 
forward-fitted using the gyrosynchrotron source function to recover the physical 
parameters responsible for the observed spectral shape28. Inspection of the  
detailed spectral shape at the preflare phase reveals that the spectra are almost 
thermal, which greatly simplifies the fitting and enhances the reliability of the  
fit results12. To define the gyrosynchrotron source function quantitatively,  
we use the fast gyrosynchrotron codes developed in ref.42 and apply the 
optimization scheme as described in ref.43. The fit returns evolution of the  
plasma density, temperature and magnetic field strength (as shown in Fig. 4d,e). 
In this analysis, we focus on the evolution of magnetic field at the instantaneous 

location of the radio burst, which recovers a significant elevation of the radio 
source with time and thus allows us to extend the analysis to the 3D domain.  
The use of a magnetic field extrapolation model (see below) maps the coronal 
magnetic field probed from the microwave data to the actual heights above  
the active region.

Coronal magnetic field extrapolation. To disclose the magnetic structure above 
the flaring active region, we use the NLFFF extrapolation technique to construct a 
3D magnetic field. As NIRIS data have a limited field of view, we base the magnetic 
field modelling on the lower-resolution SDO/HMI vector data. A preprocessing 
procedure44 is first performed to minimize the net force and torque in the observed 
photospheric field. A ‘weighted optimization’ method45,46 is then applied to derive 
the NLFFF, from which magnetic field lines are computed. Physical properties of 
field lines, such as the magnetic twist, can be further deduced47.
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