定积分的基本性质与微积分基本定理

单变量函数的积分

张瑞
中国科学技术大学数学科学学院

定积分的基本性质与微积分基本定理

定积分的基本性质

线性

我们定义

\[ \displaystyle\int_a^a f(x)dx=0 , \displaystyle\int_a^b f(x)dx=-\int_b^a f(x) dx \]
  1. $\displaystyle\int_a^b f(x)\pm g(x)dx=\int_a^b f(x)dx \pm \int_a^b g(x)dx$
  2. $\displaystyle\int_a^b\alpha f(x)dx=\alpha\int_a^b f(x)dx$
\[\int_a^b \sum_{i=1}^n\alpha_i f_i(x)dx=\sum_{i=1}^n\alpha_i\int_a^b f_i(x)dx \]

区间可加性

  1. $c$$(a,b)$内一点,$f(x)$$[a,b]$上可积,则$f(x)$$[a,c]$, $[c,b]$上也可积,且
\[\int_a^b f(x)dx=\int_a^c f(x)dx+\int_c^b f(x)dx \]
  1. $f(x)$$[a,b]$可积,则$f(x)$在任一子区间$[a_1,b_1]$上可积($a\leq a_1<b_1\leq b$

  2. $a<c<b$$f(x)$$[a,c]$$[c,b]$可积,则$f(x)$$[a,b]$上可积,且

    \[\int_a^b f(x)dx=\int_a^c f(x)dx+\int_c^b f(x)dx \]

1.$T_1$$[a,c]$的分割,$T_2$$[c,b]$的分割。则它们组成$[a,b]$的一个分割 $T=T_1+T_2$

\[\sum_{[a,b]}\omega_i\Delta x_i=\sum_{[a,c]}\omega_i\Delta x_i+\sum_{[c,b]}\omega_i\Delta x_i \]

$\lambda(T_1)\to0+$$\lambda(T_2)\to0+$,则有$\lambda(T)\to0+$

$f(x)$$[a,b]$上可积,则有

\[\sum_{[a,b]}\omega_i\Delta x_i\to 0, \lambda(T)\to0+ \]

所以有

\[\sum_{[a,c]}\omega_i\Delta x_i\to0, \sum_{[c,b]}\omega_i\Delta x_i\to0 \]

(因为两个式子均为正数)。

所以有$f(x)$$[a,c],[c,b]$上可积。又

\[\sum_{[a,b]}\omega_i\Delta x_i=\sum_{[a,c]}f(\xi_i)\Delta x_i+\sum_{[c,b]}f(\xi_i)\Delta x_i \]

$\lambda(T)\to0$,则右边2个式子$\lambda(T_1)\to0, \lambda(T_2)\to0$。且有极限(因为可积),所以

\[\int_a^b f(x)dx=\int_a^c f(x)dx+\int_c^b f(x)dx \]

3.$[a,b]$的任一分割$T$,若$c$是分点,即$c\in T$,则

\[\sum_{[a,b]}\omega_i\Delta x_i=\sum_{[a,c]}\omega_i\Delta x_i+\sum_{[c,b]}\omega_i\Delta x_i \]

$c$不是分点,则增加$c$为分点,上式仍然成立。所以$f(x)$$[a,b]$上可积。由$Riemann$和关系,知

\[\int_a^b f(x)dx=\int_a^c f(x)dx+\int_c^b f(x)dx \]
  1. $[a,b]$分割为有限个子区间,$f(x)$$[a,b]$上可积,当且仅当,$f(x)$在每个子区间上可积
  2. 改变函数在一点的值,不改变可积性与积分值
  3. 改变有限个点的值,不改变可积性与积分值
  4. $f(x)$$[\alpha,\beta]$上可积,$a,b,c\in[\alpha,\beta]$,则
    \[\int_a^b f(x)dx=\int_a^c f(x)dx+\int_c^b f(x)dx \]
  5. $f(x)$$[\alpha,\beta]$上可积,$c_0,c_1,\cdots,c_n\in[\alpha,\beta]$,则
    \[\begin{aligned} \int_{c_0}^{c_n}f(x)dx =&\int_{c_0}^{c_1}f(x)dx+\int_{c_1}^{c_2}f(x)dx \\ &+\cdots+\int_{c_{n-1}}^{c_n}f(x)dx \end{aligned} \]

与定积分相关的不等式

  1. $f(x)\geq0$$f(x)$$[a,b]$上可积,则$\displaystyle\int_a^b f(x)dx\geq 0$
  2. $f(x)\geq g(x)$$f(x), g(x)$$[a,b]$上可积,则$\displaystyle\int_a^b f(x)dx\geq \int_a^b g(x)dx$
  3. $f(x)$$[a,b]$上连续,$f(x)\geq 0$$f(x)\neq 0$,则$\displaystyle\int_a^b f(x)dx>0$
  4. $f(x)$, $g(x)$$[a,b]$上连续, $f(x)\geq g(x)$$f(x)\neq g(x)$,则$\displaystyle\int_a^b f(x)dx> \int_a^b g(x)dx$

1.

\[\sum_{i=1}^nf(\xi_i)\Delta x_i\geq 0 \]

则有

\[\lim_{\lambda(T)\to0}\sum_{i=1}^nf(\xi_i)\Delta x_i\geq 0 \]

\[\int_a^bf(x)dx\geq0 \]

3. $f(x)\neq0$,设$f(x)\neq0$,取$\lambda=\dfrac{f(c)}{2}$。由$f(x)$连续知,$\exists \delta>0$,有

\[f(x)>\lambda, \forall x\in[c-\delta,c+\delta] \]

所以

\[\begin{aligned} \int_a^bf(x)dx =&\int_a^{c-\delta}f(x)dx+\int_{c-\delta}^{c+\delta}f(x)dx+\int_{c+\delta}^bf(x)dx \\ \geq&\int_{c-\delta}^{c+\delta}f(x)dx\geq \lambda \cdot 2\delta>0 \end{aligned} \]
  1. (估值)$f(x)$$[a,b]$上可积,且$m\leq f(x)\leq M$,则$m(b-a)\leq\displaystyle\int_a^b f(x)dx\leq M(b-a)$
  2. (绝对可积性) $f(x)$$[a,b]$上可积,则$|f(x)|$$[a,b]$上可积,且
    \[\left|\int_a^b f(x)dx\right|\leq \int_a^b |f(x)|dx \]

5.(估值) 用前面的性质。取$g(x)=m$,则$g(x)\leq f(x)$

或用定义

\[m\sum\Delta x_i\leq\sum f(\xi_i)\Delta x_i\leq M\sum\Delta x_i \]

6. 证:

\[||f(x_1)|-|f(x_2)||<|f(x_1)-f(x_2)| , \forall x_1,x_2\in[a,b] \]

知,$|f(x)|$在区间上的振幅,不大于,$f(x)$在区间上的振幅。即有

\[\sum_{i=1}^n\omega^*_i\Delta x_i\leq\sum_{i=1}^n\omega_i\Delta x_i \]

其中,$\omega^*_i$$|f(x)|$$[x_{i-1},x_i]$上的振幅,$\omega_i$$f(x)$的振幅。

这样,有

\[0\leq\lim_{\lambda(T)\to0}\sum_{i=1}^n\omega^*_i\Delta x_i\leq\lim_{\lambda(T)\to0}\sum_{i=1}^n\omega_i\Delta x_i=0 \]

即,$|f(x)|$可积

另外,

\[-|f(x)|\leq f(x)\leq |f(x)| \]

则有

\[-\int_a^b|f(x)|dx\leq \int_a^b f(x)dx\leq\int_a^b|f(x)|dx \]

\[|\int_a^b f(x)dx|\leq\int_a^b|f(x)|dx \]

例 1. 比较大小 $\displaystyle\int_0^{\frac{\pi}{2}}\sin^{10}xdx$$\displaystyle\int_0^{\frac{\pi}{2}}\sin^{2}xdx$

例 2. 估值 $\displaystyle\int_0^1\dfrac{x^9}{\sqrt{1+x}}dx$

例 3. 证明: $\dfrac{2}{\sqrt[4]e}\leq \displaystyle\int_0^2 e^{x^2-x}dx\leq 2e^2$

例 4. 绝对值可积的函数,不一定可积。

如: $D(x)=\begin{cases}1, x=\dfrac{p}{q} \\-1, x\notin\mathbb{Q}\end{cases}$

1. $\displaystyle\int_0^{\frac{\pi}{2}}\sin^{10}xdx$$\displaystyle\int_0^{\frac{\pi}{2}}\sin^{2}xdx$

\[0<\sin^{10}(x)<\sin^2(x) , x\in(0,\dfrac{\pi}2) \]

3. $\displaystyle\int_0^1\dfrac{x^9}{\sqrt{1+x}}dx$

\[\dfrac{x^9}{\sqrt2}<\dfrac{x^9}{\sqrt{1+x}}<x^9, x\in(0,1) \]

所以

\[\dfrac{1}{10\sqrt2}<\int_0^1\dfrac{x^9}{\sqrt{1+x}}dx<\dfrac{1}{10} \]

4. $\dfrac{2}{\sqrt[4]e}\leq \displaystyle\int_0^2 e^{x^2-x}dx\leq 2e^2$

\[e^{-\dfrac14}\leq e^{x^2-x}\leq e^2 , x\in[0,2] \]

积分中值定理

定理 1. (积分中值定理)
$f(x)$$[a,b]$上连续,则存在$\xi\in(a,b)$,使得

\[\int_a^b f(x)dx=f(\xi)(b-a) \]

定理 2. (推广的积分中值定理)
$f(x)$$[a,b]$上连续,$g(x)$可积且不变号,则存在$\xi\in(a,b)$,使得

\[\int_a^b f(x)g(x)dx=f(\xi)\int_a^b g(x)dx \]

证: $f(x)$$[a,b]$上连续,则在$[a,b]$内取到最大值、最小值$M$$m$,则有

\[m(b-a)\leq\int_a^bf(x)dx\leq M(b-a) \]

所以有

\[m\leq\dfrac{\int_a^bf(x)dx}{b-a}\leq M \]

$\exists\xi\in(a,b)$,有

\[\dfrac{\int_a^bf(x)dx}{b-a}=f(\xi) \]

证: 不防设$g(x)\geq0$,有

\[m g(x)\leq f(x)g(x) \leq M g(x) \]

所以有

\[m\int_a^b g(x)dx\leq\int_a^bf(x)g(x)dx\leq M\int_a^b g(x)dx \]

\[m\leq\dfrac{\int_a^bf(x)g(x)dx}{\int_a^b g(x)dx}\leq M \]

$f(x)$的介值性即得

例 5. $\displaystyle\lim_{n\to+\infty}\int_n^{n+p}\dfrac{\sin x}{x}dx, p>0$

例 6. (例4.4.6) $\displaystyle\lim_{n\to+\infty}\int_0^{\frac{\pi}2}\sin^nxdx$

. 直接使用积分中值定理,

\[\int_0^{\frac{\pi}2} \sin^n xdx=\sin^n(\xi_n)\frac{\pi}2, \xi_n\in(0,\frac{\pi}2) \]

但没法认定$\lim \xi_n \neq \frac{\pi}2$,因此$\lim \sin^n\xi_n$是未知的。

6. $\displaystyle\lim_{n\to+\infty}\int_0^{2\pi}\sin^nxdx$

$\forall \epsilon>0$,取$\delta=\dfrac{\epsilon}2$

\[\begin{aligned} 0<\int_0^{\frac{\pi}2}\sin^nxdx=\int_0^{\frac{\pi}2-\delta}\sin^nxdx+\int_{\frac{\pi}2-\delta}^{\frac{\pi}2}\sin^nxdx \\ \leq\dfrac{\pi}2\sin^n(\dfrac{\pi}2-\delta)+\delta\leq\dfrac{\pi}2\cos^n\delta+\dfrac{\epsilon}2 \end{aligned} \]

$\cos\delta<1$,则$\exists N$,当$n>N$时,有$\dfrac{\pi}2\cos^n\delta<\dfrac{\epsilon}2$

\[\int_0^{2\pi}\sin^nxdx\to 0, n\to+\infty \]

7. $\displaystyle\lim_{n\to+\infty}\int_n^{n+p}\dfrac{\sin x}{x}dx, p>0$

\[\left|\int_n^{n+p}\dfrac{\sin x}{x}dx\right| \leq\int_n^{n+p}\left|\dfrac{\sin x}x\right|dx \leq\dfrac{p}n \]

或者

\[\begin{aligned} \int_n^{n+p}\dfrac{\sin x}xdx =&\sin(\xi)\int_n^{n+p}\dfrac{1}{x}dx \\ =&\sin(\xi_n)\ln\dfrac{n+p}n \leq\sin(\xi)\dfrac{p}n \end{aligned} \]

微积分基本定理

定义 1. (积分上限函数)
$f(x)$$[a,b]$上可积,则$\forall x\in[a,b]$,有一个积分值$\displaystyle\int_a^xf(t)dt$,则记

\[\Phi(x)=\int_a^x f(t)dt, a\leq x\leq b \]

称为积分上限函数,或变上限函数

定理 3.
$f(x)$$[a,b]$上可积,则$\Phi(x)$$[a,b]$上连续

定理 4. (微积分基本定理)
$f(x)$$[a,b]$上可积,在$x\in[a,b]$处连续,则$\Phi(x)$$x$处可导,且

\[\Psi'(x)=\dfrac{d}{dx}\int_a^x f(t)dt=f(x) \]

证:

\[\Phi(x+h)-\Phi(x)=\int_x^{x+h}f(t)dt=f(\xi)h ,\xi\in(x,x+h) \]

$f(\xi)$有界,则

\[\lim_{h\to0}(\Psi(x+h)-\Psi(x))=0 \]

$\Psi(x)$连续

证:

\[\dfrac{\Psi(x+h)-\Psi(x)}{h}=f(\xi) , \xi\in(x,x+h) \]

$f(x)$连续,显然有

\[\lim_{h\to0}\dfrac{\Psi(x+h)-\Psi(x)}{h}=\lim_{\xi\to x}f(\xi)=f(x) \]

定义 2. (原函数)
区间$I$上,$F'(x)=f(x), \forall x\in I$,或$dF(x)=f(x)dx$,则称$F(x)$$f(x)$在区间$I$上的一个原函数

  1. 区间$I$可以是开、或闭,有限、或无穷。端点处为单侧导数
  2. $F'(x)=f(x)$,则$(F(x)+c)'=f(x), \forall c\in \mathbb{R}$。所以原函数不唯一
  3. $F'(x)=G'(x)=f(x)$,则$(F(x)-G(x))'=0$,所以$G(x)=F(x)+c$

综上所述,$F(x)+c$$f(x)$的所有原函数

积分上限为函数的求导

定理 5.
$f(x)$$[a,b]$上连续,$u(x)$, $v(x)$$(\alpha,\beta)$上可导,且$u(x), v(x)\in[a,b], x\in[\alpha,\beta]$,则有

\[\Phi(x)=\displaystyle\int_{v(x)}^{u(x)}f(t)dt \]

$(\alpha,\beta)$内可导,且

\[\Phi'(x)=f(u(x))u'(x)-f(v(x))v'(x) \]

证: $\displaystyle\phi(x)=\int_0^{x}f(t)dt$,则

\[\int_0^{g(x)}f(t)dt=\phi(g(x)) \]

$u=g(x)$,则

\[\begin{aligned} \dfrac{d}{dx}\phi(g(x)) =&\phi'(g(x))\cdot g'(x) =f(g(x))g'(x) \end{aligned} \]

例 7. 求导数 $\Phi(x)=\displaystyle\int_0^x\dfrac{1-t+t^2}{1+t+t^2}dt$

例 8. 求导数 $g(x)=\displaystyle\int_{\sin x}^{\cos x}\cos(\pi t^2)dt$

例 9. 求导数 $\begin{cases}x=\displaystyle\int_1^t u\ln u dt \\ y=\displaystyle\int_t^1 u^2\ln udu \end{cases}, t>0$

9. $g(x)=\displaystyle\int_{\sin x}^{\cos x}\cos(\pi t^2)dt$

\[\begin{aligned} g'(x) =&-\cos(\pi(\sin(x))^2)(\sin x)'+\cos(\pi(\cos x)^2)(\cos x)' \\ =&-\cos x \cdot \cos(\pi\sin^2x)-\sin x \cdot \cos(\pi\cos^2x) \end{aligned} \]

10. $\begin{cases}x=\displaystyle\int_1^t u\ln u dt \\ y=\displaystyle\int_t^1 u^2\ln udu \end{cases}, t>0$

\[\dfrac{dy}{dx}=\dfrac{-t^2\ln t}{t\ln t}=-t \]

例 10. 求导数 $\displaystyle\left(\int_0^x\left(\int_0^{u^2}\arctan(1+t)dt\right)du\right)''$

例 11. $\displaystyle\lim_{x\to0}\dfrac{\int_0^{1-\cos x}\sin(t^2)dt}{e^{x^8-2x^6}-1}$

11. $\displaystyle\left(\int_0^x\left(\int_0^{u^2}\arctan(1+t)dt\right)du\right)''$

$F(u)=\displaystyle\int_0^{u^2}\arctan(1+t)dt$

\[\left(\int_0^xF(u)du\right)'=F(x)=\int_0^{x^2}\arctan(1+t)dt \]
\[\begin{aligned} \left(\int_0^xF(u)du\right)'' =&\left(\int_0^{x^2}\arctan(1+t)dt\right)' \\ =&\arctan(1+x^2)\cdot 2x \end{aligned} \]

17. $\displaystyle\lim_{x\to0}\dfrac{\int_0^{1-\cos x}\sin(t^2)dt}{e^{x^8-2x^6}-1}$

\[\begin{aligned} =&\lim_{x\to 0}\dfrac{\int_0^{1-\cos x}\sin(t^2)dt}{x^8-2x^6} =\lim_{x\to 0}\dfrac{\int_0^{1-\cos x}\sin(t^2)dt}{-2x^6} \\ =&\lim_{x\to0}\dfrac{\sin((1-\cos x)^2)\sin(x)}{-12x^5} =\lim_{x\to0}\dfrac{x(1-\cos x)^2}{-12x^5} \\ =&\lim_{x\to0}\dfrac{x\left(\frac{x^2}2\right)^2}{-12x^5} =-\dfrac1{48} \end{aligned} \]

Newton-Leibniz公式

定理 6.
$f(x)$$I$上连续,则$\Phi(x)=\displaystyle\int_a^x f(t)dt$$f(x)$的一个原函数

定理 7. (Newton-Leibniz公式)
$f(x)$$[a,b]$上连续,$F(x)$$f(x)$$[a,b]$上任一原函数,则

\[\int_a^b f(x)dx=F(x)\bigg|_a^b=F(b)-F(a) \]

证: 由前,$\Psi(x)=\int_a^xf(t)dt$为函数$f(x)$的一个原函数,所以有

\[\Psi(x)=F(x)+c \]

$0=\Psi(a)=F(a)+c$,有$c=-F(a)$,所以有

\[\Psi(b)=F(b)+c=F(b)-F(a) \]

例 12. $\displaystyle\int_a^b x^{\mu}dx=\left.\dfrac{x^{\mu+1}}{\mu+1}\right|_a^b=\dfrac{b^{\mu+1}-a^{\mu+1}}{\mu+1} $, $\mu\neq -1$

例 13. $\displaystyle\int_a^b\dfrac1x dx=\ln(x)\bigg|_a^b=\ln\dfrac{b}{a}$

例 14. $\displaystyle\int_{-\pi}^{\pi}\sin^2(mx)dx=\left.\dfrac12\left[x-\dfrac{\sin(2mx)}{2m}\right]\right|_{-\pi}^{\pi}=\pi$

1. 原函数存在,函数未必可积

\[\begin{aligned} F(x)=\begin{cases}x^2\sin\dfrac1{x^2}, & x\neq 0 \\ 0, &x=0 \end{cases} \end{aligned} \]

2. 函数可积,原函数未必存在

\[\begin{aligned} f(x)=\begin{cases}1, & x>0 \\ 0, &x=0 \\ -1, & x<0 \end{cases} \end{aligned} \]

1.

\[\begin{aligned} f(x) =&F'(x) \\ =&\begin{cases} 2x\sin\dfrac1{x^2}-\dfrac2x\cos\dfrac1{x^2}, & x\neq0 \\ 0, &x=0 \end{cases} \end{aligned} \]

$f(x)$$[-1,1]$上无界,则$f(x)$不可积。

$F'(x)=f(x), \forall x\in[-1,1]$,即$f(x)$有原函数

\[\lim_{x\to0}\dfrac{F(x)-F(0)}x=\lim_{x\to0}x\sin\dfrac1{x^2}=0=f(0) \]

2. 显然,$f(x)$$0$处为第一类间断点。所以,$f(x)$没有原函数。

$f(x)$可积,

\[\begin{aligned} \int_{-1}^2f(x)dx =&\int_{-1}^0f(x)dx+\int_0^2f(x)dx \\ =&-1+2=1 \end{aligned} \]
  • $f(x)$$[a,b]$上连续,$F(x)$$f(x)$$[a,b]$上的任意一个原函数, 则$\displaystyle\int_a^x f(t)dt=F(x)-F(a) $
  • $f(x)$$I$上连续,则
    \[\int f(x)dx=\int_{x_0}^x f(t)dt+c , x_0\in I \]
  • [习题] $f(x)$$[a,b]$可积,且有原函数$F(x)$, 则$\displaystyle\int_a^b f(x)dx=F(x)\big|_a^b=F(b)-F(a) $
  • $f(x)$$[a,b]$上可积,在$(a,b)$内有原函数$F(x)$,且$F(a+), F(b-)$存在,则$\displaystyle\int_a^b f(x)dx=F(b-)-F(a+) $

目录

本节读完

例 15. 谢谢

15.

例 16. 比较大小 $\displaystyle\int_0^1 e^{-x}dx$$\displaystyle\int_0^1 e^{-x^2}dx$

2. $\displaystyle\int_0^1 e^{-x}dx$$\displaystyle\int_0^1 e^{-x^2}dx$

\[e^{-x}<e^{-x^2} , x\in(0,1) \]

16. $\displaystyle\int_0^1\dfrac{x^4+1}{x^6+1}dx$

\[F(x)=-\dfrac13\arctan\dfrac{3x(x^2-1)}{x^4-4x^2+1} \]

$F(0)=F(1)=0$,显然不可能。

因为$F(x)$在点$x_0=\sqrt{2-\sqrt 3}\in(0,1)$为跳跃点。

\[\int_0^1=\int_0^{x_0-}+\int_{x_0+}^1=\dfrac{\pi}3 \]

例 17. $\displaystyle\lim_{n\to+\infty}(\dfrac{\ln(1+\frac{1}{n})}{n+1}+\dfrac{\ln(1+\frac{2}{n})}{n+2}+\cdots+\dfrac{\ln(1+\frac{n}{n})}{n+n})$

例 18. $\displaystyle\lim_{n\to+\infty}\sum_{i=1}^n\dfrac{i}{n\sqrt{n^2+i^2}}$

例 19. $\displaystyle\lim_{n\to+\infty}\sum_{i=1}^n(1+\dfrac{i}n)\sin\dfrac{i\pi}{n^2}$

15. $\displaystyle\lim_{n\to+\infty}(\dfrac{\ln(1+\frac{1}{n})}{n+1}+\dfrac{\ln(1+\frac{2}{n})}{n+2}+\cdots+\dfrac{\ln(1+\frac{n}{n})}{n+n})$

\[\begin{aligned} =&\lim_{n\to+\infty}\dfrac1n(\dfrac{\ln(1+\frac1n)}{1+\frac1n}+\dfrac{\ln(1+\frac2n)}{1+\frac2n}+\cdots+\dfrac{\ln(1+\frac{n}n)}{1+\frac{n}n}) \\ =&\lim_{n\to+\infty}\sum_{i=1}^n\dfrac{\ln(1+\frac{i}n)}{1+\frac{i}n} \\ =&\int_0^1\dfrac{\ln(1+x)}{1+x}dx=\int_0^1\ln(1+x)d(\ln(1+x)) \\ =&\dfrac{\ln^2(1+x)}2\bigg|_0^1=\dfrac{\ln^22}2 \end{aligned} \]

16. $\displaystyle\lim_{n\to+\infty}\sum_{i=1}^n\dfrac{i}{n\sqrt{n^2+i^2}}$

\[\begin{aligned} =&\lim_{n\to+\infty}\dfrac1n\sum_{i=1}^n\dfrac{\frac{i}n}{\sqrt{1+(\frac{i}n)^2}} \\ =&\int_0^1\dfrac{x}{\sqrt{1+x^2}}dx=\sqrt{1+x^2}\bigg|_0^1 \\ =&\sqrt{2}-1 \end{aligned} \]

18. $\displaystyle\lim_{n\to+\infty}\sum_{i=1}^n(1+\dfrac{i}n)\sin\dfrac{i\pi}{n^2}$

可以利用 $\sin(x) \widetilde{~} x (x\to0)$来计算,但要证明丢弃的小量不会影响计算

\[\begin{aligned} \lim_{n\to+\infty}\sum_{i=1}^n(1+\dfrac{i}n)\dfrac{i\pi}{n^2} =&\lim_{n\to+\infty}\pi\dfrac1n\sum_{i=1}^n(1+\dfrac{i}n)\dfrac{i}{n} \\ =&\pi\int_0^1(1+x)xdx=\dfrac56\pi \end{aligned} \]

利用无穷小量公式,有

\[\sin x=x+o(x)=x+o(1)x (x\to 0) \]

$\forall \epsilon>0$$\exists \delta>0$,使得

\[|\sin x-x|<\epsilon|x| , \forall |x|<\delta \]

$\dfrac{k\pi}{n^2}\leq\dfrac{\pi}n$知,$\exists N$,当$n>N$时,有

\[\dfrac{k\pi}{n^2}<\delta, \forall k=1,2,\cdots,n-1 \]

于是有,

\[\begin{aligned} |\sum_{i=1}^n(1+\dfrac{i}n)\sin\dfrac{i\pi}{n^2}-\sum_{i=1}^n(1+\dfrac{i}n)\dfrac{i\pi}{n^2}| \\ \leq\sum_{i=1}^n(1+\dfrac{i}n)|\sin\dfrac{i\pi}{n^2}-\dfrac{i\pi}{n^2}| \end{aligned} \]
\[\begin{aligned} \leq\epsilon\sum_{i=1}^n(1+\dfrac{i}n)|\dfrac{i\pi}{n^2}| =\epsilon(\sum_{i=1}^n(1+\dfrac{i}n)|\dfrac{i\pi}{n^2}|) \\ =\epsilon(\sum_{i=1}^n\dfrac{i\pi}{n^2}+\sum_{i=1}^n\dfrac{i^2\pi}{n^3})<2\pi\epsilon \end{aligned} \]

即有

\[\lim_{n\to+\infty}\sum_{i=1}^n(1+\dfrac{i}n)\sin\dfrac{i\pi}{n^2}-\sum_{i=1}^n(1+\dfrac{i}n)\dfrac{i\pi}{n^2}=0 \]

例 20. $f(x)$$[0,+\infty)$上的正的连续函数,

\[G(x)=\dfrac{\int_0^x tf(t)dt}{\int_0^x f(t)dt} \]

证明:$G(x)$$(0,+\infty)$中严格增

例 21. $f(x)$$[0,+\infty)$上连续,且$\displaystyle\lim_{x\to+\infty}\dfrac{f(x)}{x^2}=1$,求

\[\lim_{x\to+\infty}\dfrac{e^{-2x}\int_0^xe^{2t}f(t)dt}{f(x)} \]

18. $f(x)$为正的,则$\int_0^xf(t)dt$递增

\[\begin{aligned} G'(x)=\dfrac{(\int_0^x tf(t)dt)'\int_0^x f(t)dt-\int_0^x tf(t)dt(\int_0^x f(t)dt)'}{(\int_0^x f(t)dt)^2} \\ =\dfrac{xf(x)\int_0^xf(t)dt-f(x)\int_x^xtf(t)dt}{(\int_0^x f(t)dt)^2} \\ =\dfrac{\int_0^x(xf(x)f(t)-f(x)tf(t))dt}{(\int_0^x f(t)dt)^2} \\ =\dfrac{\int_0^x(x-t)f(x)f(t)dt}{(\int_0^x f(t)dt)^2}>0 \\ \end{aligned} \]

19. $f(x)$$x^2$等价无穷大,则

\[\begin{aligned} \lim_{x\to+\infty}\dfrac{e^{-2x}\int_0^xe^{2t}f(t)dt}{f(x)} =\lim_{x\to+\infty}\dfrac{\int_0^xe^{2t}f(t)dt}{e^{2x}x^2} \\ =\lim_{x\to+\infty}\dfrac{e^{2x}f(x)}{2e^{2x}(x^2+2x)} =\lim_{x\to+\infty}\dfrac{e^{2x}x^2}{2e^{2x}(x^2+2x)} \\ =\lim_{x\to+\infty}\dfrac{x^2}{2(x^2+2x)} =\dfrac12 \end{aligned} \]

例 22. $f(x)$连续,求$f(x)$满足

\[f(x)(1+\int_0^xf(t)dt)=e^{-2x} \]

例 23. $f(x)$$[a,b]$上连续,则$\exists \xi\in(a,b)$,满足

\[\int_{\xi}^bf(x)dx=(\xi-a)f(\xi) \]

例 24. $f(x)$, $g(x)$$[a,b]$上连续,递增。证明:

\[\int_a^bf(x)dx \int_a^bg(x)dx\leq(b-a)\int_a^bf(x)g(x)dx \]

20. $f(x)$连续,记

\[F(x)=1+\int_0^xf(t)dt \]

$F(0)=1$$F'(x)=f(x)$

由题有,$F'(x)F(x)=e^{-2x}$

\[\begin{aligned} \int_0^xF'(t)F(t)dt=\int_0^xe^{-2t}dt \\ \dfrac{F^2(t)}2|_0^x=-\dfrac12e^{-2x}|_0^x \\ F^2(x)-F^2(0)=1-e^{-2x} \end{aligned} \]

$F(0)=1$,则有

\[F(x)=\sqrt{2-e^{-2x}} \]

21. $f(x)$连续,则$\int_0^xf(t)dt$可导

\[\int_x^bf(t)dt=-\int_b^xf(t)dt=-F(x) \]

则有$F'(x)=f(x)$。要证的为:$\exists\xi$,满足

\[-F(\xi)=(\xi-a)F'(\xi) \]

\[(\xi-a)F'(\xi)+F(\xi)=0 \]

$G(x)=(x-a)\int_x^bf(t)dt$,则$G(x)$连续,且$G(a)=0, G(b)=0$

22.

\[F(u)=(u-a)\int_a^uf(x)g(x)dx-\int_a^uf(x)dx\cdot\int_a^ug(x)dx \]

\[\begin{aligned} F'(u)=\int_a^uf(x)g(x)dx+(u-a)f(u)g(u) \\ -f(u)\int_a^ug(x)dx-g(u)\int_a^uf(x)dx \\ =\int_a^u(f(x)g(x)+f(u)g(u)-f(u)g(x)-g(u)f(x))dx \\ =\int_a^u(f(u)-f(x))(g(u)-g(x))dx \end{aligned} \]

$f(u)-f(x)\geq0, g(u)-f(x)\geq 0, \forall x\leq u$,有

\[F'(u)\geq 0 \]

$F(u)\geq F(a)=0$

例 25. $f(x)$$[a,b]$上的导数连续,

\[a_n=\int_a^bf(x)dx-\dfrac{b-a}{n}\sum_{k=1}^nf(x_k), n\in \mathbb{N} \]

其中$x_k=a+\dfrac{k(b-a)}{n}, k=1,2,\cdots,n$,证明:

\[\lim_{n\to+\infty}na_n=\dfrac{b-a}2(f(a)-f(b)) \]

23.

\[\begin{aligned} a_n=\sum_{k=1}^n\int_{x_{k-1}}^{x_k}f(x)dx-\sum_{k=1}^n\int_{x_{k-1}}^{x_k}f(x_k)dx \\ =\sum_{k=1}^n\int_{x_{k-1}}^{x_k}(f(x)-f(x_k))dx \\ =\sum_{k=1}^n\int_{x_{k-1}}^{x_k}f'(\xi_k)(x-x_k)dx \end{aligned} \]

\[\begin{aligned} \int_{x_{k-1}}^{x_k}f'(\xi_k)(x-x_k)dx = f'(\eta_k)\int_{x_{k-1}}^{x_k}(x-x_k)dx \\ =f'(\eta_k)\dfrac{-(x_k-x_{k-1})^2}{2} \end{aligned} \]
\[\begin{aligned} na_n=n\sum_{k=1}^nf'(\eta_k)\dfrac{-(x_k-x_{k-1})^2}{2} \\ =n\sum_{k=1}^nf'(\eta_k)\dfrac{-(x_k-x_{k-1})}2\dfrac{b-a}{n} \\ =\dfrac{b-a}2\sum_{k=1}^nf'(\eta_k)(-(x_k-x_{k-1})) \\ \end{aligned} \]

$f'(x)$连续知,$f'(x)$可积。所以

\[\lim_{n\to+\infty}na_n=-\dfrac{b-a}2\int_a^bf'(t)dt=-\dfrac{b-a}2(f(b)-f(a)) \]