多变量函数的微分学

2. 多变量函数的微分与偏导数

张瑞
中国科学技术大学数学科学学院

多变量函数的微分与偏导数

二元函数的微分与偏导数

一元时,找$A$,满足

\[f(x+\Delta x)-f(x)=A\Delta x+o(\Delta x), \Delta x\to 0 \]

二元时类似。

定义 1. (二元函数的可微性)
$z=f(x,y)$为区域$D\subset\mathbb{R}^2$上的二元函数,$(x_0,y_0)\in D$,记$\rho=\sqrt{(\Delta x)^2+(\Delta y)^2}$

若存在常数$A,B$,满足

\[\begin{aligned} f(x_0+\Delta x,y_0+\Delta y)-f(x_0,y_0) \\ =A\Delta x+B\Delta y+o(\rho), \rho\to0 \end{aligned} \]

则称$f$$(x_0,y_0)$可微,且称$A\Delta x+B\Delta y$$f$$(x_0,y_0)$处的微分,记为$df(x_0,y_0)$

difference-2d

偏导数

$\Delta y=0$,令$\Delta x\to0$,则有

\[A=\lim_{\Delta x\to0}\dfrac{f(x_0+\Delta x,y_0)-f(x_0,y_0)}{\Delta x} \]

就是说,$A$可以看成是一元函数$\phi(x)=f(x,y_0)$$x_0$处的导数。

类似地,$B$是一元函数$\psi(y)=f(x_0,y)$$y_0$处的导数。

difference-partial-x difference-partial-y

定义 2. (偏导数)
$z=f(x,y)$为区域$D\subset\mathbb{R}^2$上的二元函数,$(x_0,y_0)\in D$。若极限

\[\lim_{\Delta x\to0}\dfrac{f(x_0+\Delta x,y_0)-f(x_0,y_0)}{\Delta x} \]

存在,则称它为$f(x,y)$$(x_0,y_0)$处关于$x$偏导数,记为

\[\dfrac{\partial f}{\partial x}(x_0,y_0), \dfrac{\partial z}{\partial x}(x_0,y_0), \left.\dfrac{\partial f}{\partial x}\right|_{(x_0,y_0)}, \left.\dfrac{\partial z}{\partial x}\right|_{(x_0,y_0)}, f_x(x_0,y_0) \]

类似,极限

\[\lim_{\Delta y\to0}\dfrac{f(x_0,y_0+dy)-f(x_0,y_0)}{\Delta y} \]

称为$f(x,y)$$(x_0,y_0)$处关于$y$偏导数。记为

\[\dfrac{\partial f}{\partial y}(x_0,y_0), \dfrac{\partial z}{\partial y}(x_0,y_0), \left.\dfrac{\partial f}{\partial y}\right|_{(x_0,y_0)}, \left.\dfrac{\partial z}{\partial y}\right|_{(x_0,y_0)}, f_y(x_0,y_0) \]

例 1. 求偏导数

1). $f(x,y)=x^y$

2). $f(x,y)=\arctan\dfrac{x}{y}$

1.

定理 1. (可微的必要条件)
$z=f(x,y)$为区域$D\subset\mathbb{R}^2$上的二元函数,$(x_0,y_0)\in D$

(1) 若$f(x,y)$$(x_0,y_0)$处可微,则$f(x,y)$$(x_0,y_0)$处连续

(2)若$f(x,y)$$(x_0,y_0)$处可微,则$f(x,y)$$(x_0,y_0)$处的两个偏导数存在,且

\[df(x_0,y_0)=\dfrac{\partial f}{\partial x}(x_0,y_0)\Delta x +\dfrac{\partial f}{\partial y}(x_0,y_0)\Delta y \]
  • $f(x,y)$$D$中每一点处都可微,则称$f(x,y)$$D$中可微。

  • $f(x,y)$$D$中每一点处都有偏导数$f'_x(x,y)$,则映射$(x,y)\to f'_x(x,y)$确定了$D$上的二元函数$f'_x(x,y)$称为$f(x,y)$关于$x$偏导函数(简称偏导数、偏微商)。

  • 类似,有$f(x,y)$关于$y$的偏导数$f'_y(x,y)$

  • 偏导数$f'_x(x,y),f'_y(x,y)$也记为$f'_1(x,y), f'_2(x,y)$

$z=f(x,y)$$D$中可微,则对$\forall (x,y)\in D$,有

\[dz(x,y)=df(x,y)=f'_x(x,y)\Delta x+f'_y(x,y)\Delta y \]

类似一元情形,令$f(x,y)=x$,则有$dx=\Delta x$;令$f(x,y)=y$,则有$dy=\Delta y$。因此,常记

\[dz(x,y)=df(x,y)=f'_x(x,y)dx+f'_y(x,y)dy \]

\[dz=df=f'_x dx+f'_y dy \]

$df$称为$f(x,y)$$D$上的微分(或全微分)。

几何含义:表示$f(x,y)$$(x_0,y_0)$处的切平面

difference-2d

\[\begin{aligned} T(h,k)=f'_x(x_0,y_0)h+f'_y(x_0,y_0)k \\ =\begin{pmatrix} f'_x(x_0,y_0) & f'_y(x_0,y_0) \end{pmatrix} \begin{pmatrix} h \\k \end{pmatrix} \end{aligned} \]

其中,矩阵$\begin{pmatrix} f'_x(x_0,y_0) & f'_y(x_0,y_0) \end{pmatrix}$称为$f(x,y)$$(x_0,y_0)$处的 Jacobi矩阵

根据微分的定义,当$|h|, |k|$很小时,有

\[\begin{aligned} f(x_0+h,y_0+k)&-f(x_0,y_0) \\ &\approx f_x(x_0,y_0)h+f_y(x_0,y_0)k=T(h,k) \end{aligned} \]

\[f(x_0+h,y_0+k)\approx f(x_0,y_0)+ T(h,k) \]

例 2. 函数的连续性、可微性、偏导数

\[f(x,y)=\begin{cases} \dfrac{xy}{\sqrt{x^2+y^2}}, x^2+y^2\neq 0 \\ 0, x^2+y^2=0 \end{cases} \]

例 3. 函数的连续性、可微性、偏导数

\[f(x,y)=\begin{cases} (x^2+y^2)\sin\dfrac{1}{x^2+y^2}, x^2+y^2\neq 0 \\ 0, x^2+y^2=0 \end{cases} \]

vertical slide 2

例 4. (例6.2.3) (两个偏导数存在,但不可微)

\[f(x,y)=\begin{cases} \dfrac{x^2y}{x^4+y^2}, x^2+y^2\neq 0 \\ 0, x^2+y^2=0 \end{cases} \]

定理 2.
$f'_x, f'_y$$(x_0,y_0)$的某个邻域内存在,且$f'_x,f'_y$$(x_0,y_0)$连续,则$f(x,y)$$(x_0,y_0)$处可微

证明:

高阶偏导数

函数$z=f(x,y)$在定义区域中每一点都有偏导数$f'_x(x,y), f'_y(x,y)$,则这些偏导函数仍然是二元函数。若它们仍然有偏导数,则可以继续对它们求偏数,这样就得到了高阶偏导数(或高阶偏微商)。

二元函数有四种可能的二阶偏导数:

\[\begin{aligned} \dfrac{\partial}{\partial x}\left(\dfrac{\partial f}{\partial x}\right) =\dfrac{\partial^2f}{\partial x^2} , \dfrac{\partial}{\partial y}\left(\dfrac{\partial f}{\partial x}\right) =\dfrac{\partial^2f}{\partial y\partial x} \\ \dfrac{\partial}{\partial x}\left(\dfrac{\partial f}{\partial y}\right) =\dfrac{\partial^2f}{\partial x\partial y} , \dfrac{\partial}{\partial y}\left(\dfrac{\partial f}{\partial y}\right) =\dfrac{\partial^2f}{\partial y^2} \end{aligned} \]

也可以把偏导数$\dfrac{\partial^2f}{\partial y\partial x}$记为$f''_{xy}, f''_{12}$

例 5. 求函数的2阶偏导数

\[u=x^y \]

例 6. 求函数的2阶偏导数

\[f(x,y)=\begin{cases} xy\dfrac{x^2-y^2}{x^2+y^2} , x^2+y^2\neq 0 \\ 0, x^2+y^2=0 \end{cases} \]

5.

定理 3.
$f(x,y)$在区域$D$上有定义,如果$f''_{xy}, f''_{yx}$在区域$D$中连续,则两者相等,即求导的次序可以交换

证:

多元函数与向量值函数的微分

平行地推广二元函数的概念到$n$元函数

\[\begin{aligned} df(x_1,x_2,\cdots,x_n)=&\dfrac{\partial f}{\partial x_1}dx_1+\dfrac{\partial f}{\partial x_2}dx_2+\cdots+\dfrac{\partial f}{\partial x_n}dx_n \\ =&\begin{pmatrix} \dfrac{\partial f}{\partial x_1},\dfrac{\partial f}{\partial x_2},\cdots,\dfrac{\partial f}{\partial x_n}\end{pmatrix} \begin{pmatrix} dx_1 \\ dx_2 \\ \cdots \\ dx_n \end{pmatrix} \end{aligned} \]

对向量值函数

\[\vec f(\vec x)=(f_1(\vec x),f_2(\vec x),\cdots,f_m(\vec x))^T \]

若每个分量函数$f_i$可微,则称映射$\vec f$可微,且微分定义为

\[d\vec{f}=(df_1(\vec x),df_2(\vec x),\cdots,df_m(\vec x))^T \]

其中

\[\begin{aligned} df_j(x_1,x_2,\cdots,x_n) =\begin{pmatrix} \dfrac{\partial f_j}{\partial x_1},\dfrac{\partial f_j}{\partial x_2},\cdots,\dfrac{\partial f_j}{\partial x_n}\end{pmatrix} \begin{pmatrix} dx_1 \\ dx_2 \\ \cdots \\ dx_n \end{pmatrix} \end{aligned} \]

这样

\[d\vec f=\begin{pmatrix} df_1 \\ df_2 \\ \cdots \\ df_m \end{pmatrix} =\begin{pmatrix} \dfrac{\partial f_1}{\partial x_1} & \dfrac{\partial f_1}{\partial x_2} & \cdots & \dfrac{\partial f_1}{\partial x_n} \\ \dfrac{\partial f_2}{\partial x_1} & \dfrac{\partial f_2}{\partial x_2} & \cdots & \dfrac{\partial f_2}{\partial x_n} \\ & \cdots & & \\ \dfrac{\partial f_m}{\partial x_1} & \dfrac{\partial f_m}{\partial x_2} & \cdots & \dfrac{\partial f_m}{\partial x_n} \\ \end{pmatrix} \begin{pmatrix} dx_1 \\ dx_2 \\ \cdots \\ dx_n \end{pmatrix} \]

记这 个矩阵为$Jf$,称为向量值函数的Jacobi矩阵

  • $m=n$时,Jacobi矩阵的行列式简记为

    \[\left|{Jf}\right|=\dfrac{\partial(f_1,f_2,\cdots,f_n)}{\partial(x_1,x_2,\cdots,x_n)} \]
  • $\vec h=(h_1,h_2,\cdots,h_n)\in\mathbb{R}^n$,定义映射

    \[T(\vec h)=Jf\cdot \vec h^T \]

    $|\vec h|=\sqrt{h_1^2+h_2^2+\cdots+h_n^2}$很小时,向量值函数$f$有,

    \[f(\vec x+\vec h)\approx f(\vec x)+T(\vec h) \]

目录

谢谢

例 7. 本节读完

7.