导数

单变量函数的微分

张瑞
中国科学技术大学数学科学学院

导数

假定车沿直线运动的位置函数是$x(t)$,则时间段$[t_0,t]$内的平均速度

\[\bar v=\frac{x(t)-x(t_0)}{t-t_0} \]

它反映了汽车运动的快慢。

  • $\Delta t$越靠近0,越能反映汽车在$t_0$时刻的快慢程度。
\begin{tikzpicture}[x=2cm, y=2cm, global scale=0.8] % 上面,用 x=2cm, y=2cm 来设置x,y方向的单位长度,缺省是1cm % \draw[very thin,color=gray] (-1.5,-1.2) grid (1.5,1.22); \path[name path=axis x] (-0.4,0) -- (2.8,0); \draw[->] (-0.4,0) -- (2.8,0) node[right] {$t$}; \draw[->] (0,-0.2) -- (0,2.0) node[right] {$x(t)$}; \draw[thick, name path=func] (-0.2,0.3) .. controls (1,0.3) and (2,0.6) .. (2.5,1.9); \path[name path=l1] (1.1,0) -- (1.1,2.9); \path[name path=l2] ($ (1,0)+(0.01,0) $) -- ($ (1,2.9)+(0.01,0) $); \path[name intersections={of=func and l1, name=o}]; \coordinate (m) at (o-1); \draw[blue, name path=slant] ($(m)!-0.5!(2.6,1.7)$) -- (2.6, 1.7); \path[name intersections={of=func and slant}]; \coordinate (n) at (intersection-2); \fill (m) circle(1pt) node[above] {$M$}; \fill (n) circle(1pt) node[above] {$N$}; \coordinate (xe) at (2.7, 0); \coordinate (orig) at (0,0); \draw[dashed] (n-|orig) -- (n -| xe); \draw[dashed] (m) -- (m -| xe); \draw[dashed] (m) -- (m|-orig) node[below] {$t_0$}; \draw[dashed] (n|-orig) node[below] {$t$}--(n); \node[below] at ($ (m)!0.5!(m-|n) $) {$\Delta t$}; \node[right] at ($ (n)!0.5!(m-|n) $) {$\Delta x$}; \path[name intersections={of=func and l2, name=p}]; \draw[red] ($ (o-1)!-15!(p-1) $)--($ (o-1)!16!(p-1) $); \end{tikzpicture}

称极限$\displaystyle\lim_{t\to t_0}\frac{x(t)-x(t_0)}{t-t_0}$为汽车在$t_0$时刻的瞬时速度

类似地,它也可以表达为几何中,切线的斜率。

导数

定义 1. (导数)
$y=f(x)$$x_0$的邻域内有定义,若

\[\lim_{x\to x_0}\dfrac{f(x)-f(x_0)}{x-x_0} \]

存在有限,则称函数$f$$x_0$可导,并称这个极限值为$f$$x_0$导数,或者微商,记为

\[f'(x_0), \left.\dfrac{df}{dx}\right|_{x=x_0},y'(x_0),\left.\dfrac{dy}{dx}\right|_{x=x0} \]

. 若极限为$\infty$,则称导数为$\infty$

用增量的语言,导数还可以表示为:

\[\lim_{\Delta\to 0}\frac{\Delta y}{\Delta x} =\lim_{\Delta x\to 0}\dfrac{f(x_0+\Delta x)-f(x_0)}{\Delta x} \]
\begin{tikzpicture}[x=2cm, y=2cm, global scale=0.8] % 上面,用 x=2cm, y=2cm 来设置x,y方向的单位长度,缺省是1cm % \draw[very thin,color=gray] (-1.5,-1.2) grid (1.5,1.22); \path[name path=axis x] (-0.4,0) -- (2.8,0); \draw[->] (-0.4,0) -- (2.8,0) node[right] {$x$}; \draw[->] (0,-0.2) -- (0,2.0) node[right] {$y$}; \draw[thick, name path=func] (-0.2,0.3) .. controls (1,0.3) and (2,0.6) .. (2.5,1.9); \path[name path=l1] (1.1,0) -- (1.1,2.9); \path[name path=l2] ($ (1,0)+(0.01,0) $) -- ($ (1,2.9)+(0.01,0) $); \path[name intersections={of=func and l1, name=o}]; \coordinate (m) at (o-1); \draw[blue, name path=slant] ($(m)!-0.5!(2.6,1.7)$) -- (2.6, 1.7); \path[name intersections={of=func and slant}]; \coordinate (n) at (intersection-2); \fill (m) circle(1pt);% node[above] {$M$}; \fill (n) circle(1pt);% node[above] {$N$}; \coordinate (xe) at (2.7, 0); \coordinate (orig) at (0,0); \draw[dashed] (n-|orig) -- (n -| xe); \draw[dashed] (m) -- (m -| xe); \draw[dashed] (m) -- (m|-orig) node[below] {$x_0$}; \draw[dashed] (n|-orig) node[below] {$x_0+\Delta x$}--(n); \node[below] at ($ (m)!0.5!(m-|n) $) {$\Delta x$}; \node[right] at ($ (n)!0.5!(m-|n) $) {$\Delta y$}; \path[name intersections={of=func and l2, name=p}]; \draw[red] ($ (o-1)!-15!(p-1) $)--($ (o-1)!16!(p-1) $); \end{tikzpicture}

定义 2. (右导数、左导数)
若极限

\[\lim_{\Delta x\to 0+}\dfrac{f(x_0+\Delta x)-f(x_0)}{\Delta x} \]

存在,则称之为函数$f(x)$在点$x_0$右导数,记为$f'_+(x_0)$

类似地,若如下极限存在,则称为左导数,记为$f'_-(x_0)$

\[\lim_{\Delta x\to 0-}\dfrac{f(x_0+\Delta x)-f(x_0)}{\Delta x} \]

定理 1.
$f(x)$$x_0$的导数存在,当且仅当$f(x)$$x_0$处左、右导数均存在且相等

定义 3. (导函数)
若函数$f(x)$在区间$(a,b)$内的每一点都可导,则称函数在开区间$(a,b)$内可导,并且称函数

\[f'(x)=\lim_{\Delta x\to 0}\dfrac{f(x+\Delta x)-f(x)}{\Delta x} \]

$f(x)$$(a,b)$上的导函数,简称导数$f'(x)$还记为 $\dfrac{df(x)}{dx}$, $\dfrac{dy(x)}{dx}$, $y'(x)$。 有时候会省略$x$,简记为$f'$ ,$y'$, $\dfrac{df}{dx}$, $\dfrac{dy}{dx}$

  • $f(x)$同时在$a$处右可导,在$b$处左可导,则称$f(x)$在闭区间$[a,b]$上可导

. 显然,根据定义,有$f'(x_0) = f'(x)|_{x=x_0}$

例 1. 求下列函数的导数

(1) $y\equiv c$

(2) $y=\sin(x), \tan(x) $

(3) $y=x^n$

(4) $y=\ln(x), x>0$

(5) $y=\ln(-x), x<0$

(6) $y=e^x$

(7) $y=|x|$

例: $y\equiv c$

\[f'(x) =\lim_{\Delta x\to 0}\frac{f(x+\Delta x)-f(x)}{\Delta x} =\lim_{\Delta x\to 0}\dfrac{c-c}{\Delta x} =0 \]

例: $y=\sin(x)$

\[\begin{aligned} f'(x)&=\lim_{\Delta x\to 0}\dfrac{\sin(x+\Delta x)-\sin(x)}{\Delta x} \\ &=\lim_{\Delta x\to 0}\dfrac{2\sin(\dfrac{\Delta x}{2})\cos(x+\dfrac{\Delta x}{2})}{\Delta x} \\ &=\lim_{\Delta x\to 0}\dfrac{\sin(\dfrac{\Delta x}{2})}{\dfrac{\Delta x}{2}}\cos(x+\dfrac{\Delta x}{2}) \\ &=\cos(x) \end{aligned} \]

例: $y=x^n$

\[\begin{aligned} f'(x)&=\lim_{\Delta x\to 0}\dfrac{(x+\Delta x)^n-x^n}{\Delta x} \\ &=\lim_{\Delta x\to0}\dfrac{x^n+nx^{n-1}\Delta x+C_n^2x^{n-2}\Delta x^2+\cdots+\Delta x^n-x^n}{\Delta x} \\ &=nx^{n-1} \end{aligned} \]

例: $y=\ln(x), x>0$

\[\begin{aligned} f'(x)&=\lim_{\Delta x\to0}\dfrac{\ln(x+\Delta x)-\ln(x)}{\Delta x} \\ &=\lim_{\Delta x\to0} \dfrac{\ln(\dfrac{x+\Delta x}{x})}{\Delta x} \\ &=\lim_{\Delta x\to0} \dfrac{\frac{\Delta x}{x}}{\Delta x}\\ &=\dfrac{1}{x} \end{aligned} \]

例: $y=\ln(-x), x<0$

\[\begin{aligned} f'(x)&=\lim_{\Delta x\to 0}\dfrac{\ln(-(x+\Delta x))-\ln(-x)}{\Delta x} \\ &=\lim_{\Delta x\to0} \dfrac{\ln(\dfrac{x+\Delta x}{x})}{\Delta x} \\ %&=\lim_{\Delta x\to0} \dfrac{\ln(1+\dfrac{\Delta x}{x})}{\dfrac{\Delta x}{x}} \dfrac{1}{x}\\ &=\dfrac{1}{x} \end{aligned} \]

这样,我们有$(\ln|x|)'=\dfrac{1}{x}, x\neq 0$

例: $y=e^x$

\[\begin{aligned} f'(x)&=\lim_{\Delta x\to0}\dfrac{e^{x+\Delta x}-e^x}{\Delta x} \\ &=\lim_{\Delta x\to0}\dfrac{e^x(e^{\Delta x}-1)}{\Delta x} \\ &=e^x \end{aligned} \]

例: $y=\tan(x)$

\[\begin{aligned} &\lim_{x\to a}\dfrac{\tan(x)-\tan(a)}{x-a} \\ =&\lim_{x\to a}\dfrac{\frac{\sin(x)}{\cos(x)}-\frac{\sin(a)}{\cos(a)}}{x-a} \\ =&\lim_{x\to a}\dfrac{\sin(x)\cos(a)-\sin(a)\cos(x)}{(x-a)\cos(x)\cos(a)} \\ =&\lim_{x\to a}\dfrac{\sin(x-a)}{x-a}\dfrac{1}{\cos(x)\cos(a)} \\ =&\displaystyle\frac1{\cos^2(a)} \end{aligned} \]

或用$\tan(x)-\tan(a)=\tan(x-a)(1+\tan(x)\tan(a))$

例: $y=|x|$$x=0$

\[\lim_{\Delta x\to 0+}\dfrac{|0+\Delta x|-|0|}{\Delta x}=\lim_{\Delta x\to 0+}\dfrac{\Delta x}{\Delta x}=1 \]
\[\lim_{\Delta x\to 0-}\dfrac{|0+\Delta x|-|0|}{\Delta x}=\lim_{\Delta x\to 0+}\dfrac{-\Delta x}{\Delta x}=-1 \]

函数在$x=0$处的左、右导数存在,但不相等。所以,函数$|x|$$x=0$处的导数不存在。

注: 函数$|x|$$x=0$处是连续的。

$x>0$时,有

\[\lim_{\Delta x\to 0}\frac{(x+\Delta x)-x}{\Delta x}=1 \]

可导函数的连续性

定理 2. (可导则连续)
函数$f(x)$$x_0$处可导(导数存在有限),则函数$f(x)$$x_0$处连续

证:$\Delta y=f(x_0+\Delta x)-f(x_0)$,由$f(x)$$x_0$处可导,则

\[\lim_{\Delta x\to0}\dfrac{\Delta y}{\Delta x}=f'(x_0) \]

\[\lim_{\Delta x\to0} \left(\dfrac{\Delta y}{\Delta x}-f'(x_0)\right)=0 \]

\[\dfrac{\Delta y}{\Delta x}-f'(x_0)=o(1), \Delta x\to 0 \]

\[\Delta y=\Delta x f'(x_0)+o(\Delta x), \Delta x\to 0 \]

得到

\[\lim_{\Delta x\to0} \Delta y =\lim_{\Delta x\to0}( \Delta x f'(x_0)+o(\Delta x)) =0 \]

从而

\[\lim_{\Delta x\to0}(f(x_0+\Delta x)-f(x_0))=0 \]

\[\lim_{\Delta x\to0} f(x_0+\Delta x)=f(x_0) \]

所以,$f(x)$$x_0$处连续

或者,由

\[\lim_{\Delta x\to0}\dfrac{\Delta y}{\Delta x}=f'(x_0) \]

$\epsilon_0=1$,则存在 $\delta_1>0$,满足

\[\left|\dfrac{\Delta y}{\Delta x}-f'(x_0)\right|<1 , \forall |\Delta x|<\delta_1 \]

所以,对$\forall |\Delta x|<\delta_1$,成立

\[\left|\dfrac{\Delta y}{\Delta x}\right|<|f'(x_0)|+1=M_0 \]

$\color{blue}\forall \epsilon>0$,取 $\color{blue}\delta<\min(\delta_1,\dfrac{\epsilon}{M_0})$,则

\[|\Delta y|<\Delta x M_0<\epsilon , \quad \forall |\Delta x|<\delta \]

也就是

\[\color{blue} |f(x_0+\Delta x)-f(x_0)|<\epsilon , \quad \forall |\Delta x|<\delta \]

连续不一定可导

1. 左、右导数存在,但不等

$y=|x|$,在$x=0$

2. 左、右导数不存在

$y=\left\{\begin{aligned} x\sin(\dfrac{1}{x}) , &x\neq 0 \\\ 0, & x=0 \end{aligned}\right.$,在$x=0$

3. 导数为无穷大

$y=\sqrt[3]x$$x=0$处连续,但不可导

\[\lim_{x\to0}\dfrac{x\sin(\dfrac{1}{x})-0}{x}=\lim_{x\to0} \sin(\dfrac{1}{x}) \]

不存在

\[\lim_{x\to0} \dfrac{\sqrt[3]x-0}{x}=\lim_{x\to0} \dfrac{1}{\sqrt[3]{x^2}}=\infty \]

为无穷大

可导函数的运算特性

可导函数的四则运算规则

定理 3. (导数的四则运算规则)
$f(x)$,$g(x)$可导,则

  1. $(f(x)\pm g(x))'=f'(x)\pm g'(x)$
  2. $(f(x)g(x))'=f'(x)g(x)+f(x)g'(x)$
  3. $g(x)\neq0$时,$\left(\dfrac{f(x)}{g(x)}\right)'=\dfrac{f'(x)g(x)-f(x)g'(x)}{g^2(x)}$

    特别地,
    \[\left(\frac1{g(x)}\right)'=-\frac{g'(x)}{g^2(x)} \]
\[\begin{aligned} (f(x)g(x))'=&\lim_{h\to0}\dfrac{f(x+h)g(x+h)-f(x)g(x)}{h} \\ %&=&\lim_{h\to0}\dfrac{f(x+h)g(x+h)-f(x+h)g(x)+f(x+h)g(x)-f(x)g(x)}{h} \\ =&\lim_{h\to0}\dfrac{f(x+h)g(x+h)-f(x+h)g(x)}{h}\\ &+\lim_{h\to0}\dfrac{f(x+h)g(x)-f(x)g(x)}{h} \\ =&\lim_{h\to0}f(x+h)\dfrac{g(x+h)-g(x)}{h} \\ &+\lim_{h\to0} g(x)\dfrac{f(x+h)-f(x)}{h} \\ =&f(x)g'(x)+f'(x)g(x) \end{aligned} \]
\[\begin{aligned} \left(\dfrac{1}{g(x)}\right)' &=\lim_{h\to0}\left(\dfrac{1}{g(x+h)}-\dfrac{1}{g(x)}\right)\dfrac{1}{h} \\ &=\lim_{h\to0}\dfrac{g(x)-g(x+h)}{g(x)g(x+h)h} \\ &=\lim_{h\to0}\dfrac{g(x)-g(x+h)}{h}\dfrac{1}{g(x+h)g(x)} \\ &=\dfrac{-g'(x)}{g^2(x)} \end{aligned} \]

再用乘法的规则

例 2. 求导函数$(f\cdot g\cdot h)'=?$

. 依乘法规则

\[\begin{aligned} (f\cdot g \cdot h)'&=f'(g\cdot h)+f\cdot(g\cdot h)' \\ &=f'\cdot g\cdot h+f\cdot(g'\cdot h+g\cdot h') \\ &=f'\cdot g\cdot h+f\cdot g'\cdot h+f\cdot g\cdot h' \end{aligned} \]

例 3. $(\tan(x))'$

例:

\[\begin{aligned} (\tan(x))'&=\left(\dfrac{\sin(x)}{\cos(x)}\right)' \\ &=\dfrac{\sin'(x)\cos(x)-\sin(x)\cos'(x)}{\cos^2(x)} \\ &=\dfrac{\cos(x)\cos(x)-\sin(x)(-\sin(x))}{\cos^2(x)} \\ &=\dfrac{1}{\cos^2(x)} \end{aligned} \]

反函数求导

定理 4. (反函数求导)
$f(x)$$I_x$上严格单调,可导,且$f'(x)\neq0$,则

$x=f^{-1}(y)$也在相应的区间$I_y=\{y|y=f(x),x\in I_x\}$上严格单调、可导,且有

\[(f^{-1}(y))'=\dfrac{1}{f'(x)}, \mbox{or} \dfrac{dx}{dy}=\dfrac{1}{\frac{dy}{dx}} \]

证:$f(x)$可导,则$f(x)$连续。所以$f^{-1}(x)$也严格单调、连续。

$\forall x\in I_x$,给$x$一个增量$\Delta x$,则相应$f(x)$的增量$\Delta y\neq 0$(由严格单调性),这样,有

\[\dfrac{\Delta y}{\Delta x}=\dfrac{1}{\frac{\Delta x}{\Delta y}} \]

$x=f^{-1}(y)$的连续性,$\Delta y\to 0$,则$\Delta x\to 0$,所以有

\[\lim_{\Delta y\to 0}\dfrac{\Delta x}{\Delta y} =\lim_{\Delta x\to0}\dfrac{1}{\frac{\Delta y}{\Delta x}} =\dfrac{1}{f'(x)} \]

\[(f^{-1}(y))'=\dfrac{1}{f'(x)} \]

例 4. 求导数

1. $\arcsin(x)$

2. $\arctan(x)$

3. $e^x$

. 3.

\[\begin{aligned} (e^x)'&=\dfrac{1}{\ln'(y)} =\dfrac{1}{\frac{1}{y}} &=y =e^x \end{aligned} \]

例:

\[\begin{aligned} (\arcsin(x))'&=\dfrac{1}{\sin'(y)} =\dfrac{1}{\cos(y)} \\ &=\dfrac{1}{\sqrt{1-\sin^2(y)}} =\dfrac{1}{\sqrt{1-x^2}} \end{aligned} \]

类似可以得到

\[(\arccos(x))'=\dfrac{-1}{\sqrt{1-x^2}} \]

例:

\[\begin{aligned} (\arctan(x))'&=\dfrac{1}{\tan'(y)} ={\cos^2(y)} \\ &=\dfrac{1}{1+\tan^2(y)} =\dfrac{1}{1+x^2} \end{aligned} \]

例:

\[\begin{aligned} (e^x)'&=\dfrac{1}{\ln'(y)} =\dfrac{1}{\dfrac{1}{y}} \\ &=y =e^x \end{aligned} \]

复合函数的导数

定理 5. (复合函数的导数)
$y=g(x)$$I$上定义,$z=f(y)$$J$上定义,且$g(I)\subset J$。若$g(x)$$x_0$处可导,$f(y)$$y_0=g(x_0)$处可导,

则复合函数$z=f(g(x))$$x_0$处可导,且

\[z'(x_0)=(f(g(x_0)))'=f'(g(x_0))g'(x_0) \]

或者写为

\[\left.\dfrac{dz}{dx}\right|_{x=x_0}=\left.\dfrac{dz}{dy}\right|_{y=y_0} \cdot \left.\dfrac{dy}{dx}\right|_{x=x_0} \]

. 通常称为链式法则

证:$y\neq y_0$,记

\[\frac{f(y)-f(y_0)}{y-y_0}=f'(y_0)+\delta(y) \]

则有

\[\lim_{y\to y_0}\delta(y)=0 \]

补充定义$\delta(y_0)=0$,则在$y_0$附近,有

\[f(y)-f(y_0)=f'(y_0)(y-y_0)+(y-y_0)\delta(y) \]

从而

\[\lim_{x\to x_0}\frac{f(g(x))-f(g(x_0))}{x-x_0} =\lim_{x\to x_0} \]
\[\begin{aligned} &\lim_{x\to x_0}\frac{f(g(x))-f(g(x_0))}{x-x_0} \\ =&\lim_{x\to x_0} \left[f'(g(x_0))\frac{g(x)-g(x_0)}{x-x_0} +\frac{g(x)-g(x_0)}{x-x_0}\delta(g(x))\right] \\ =&f'(g(x_0))g'(x_0)+g'(x_0)\lim_{x\to x_0}\delta(g(x)) \end{aligned} \]

注意到$g(x)$$x_0$处还连续,从而

\[\lim_{x\to x_0}\delta(g(x)) =\lim_{y\to y_0}\delta(y) =0 \]

为什么会使用一个辅助函数$\delta(y)$呢?因为

\[\begin{aligned} &\lim_{h\to0}\dfrac{f(g(x_0+h))-f(g(x_0))}{h} \\ =&\lim_{h\to0}\dfrac{f(g(x_0+h))-f(g(x_0))}{g(x_0+h)-g(x_0)}\dfrac{g(x_0+h)-g(x_0)}{h} \\ \end{aligned} \]

表达式要有意义,必须有$g(x_0+h)-g(x_0)\neq 0$, 对充分小的$h$成立。但定理的条件中并没有这个条件。

例 5. 求导数

1. $(f(g(h(x))))'$

2. $(a^x)', a>0$,

3. $\log_a(x), a>0, x>0$

4. $x^\mu, \mu\neq0$

5. $(u(x)^{v(x)})'$ (Leibniz, Johann Bernoulli)

6. $(\ln(-x))', x<0$

7. $f(x)=\ln(x+\sqrt{1+x^2})$

. 1.

\[\begin{aligned} (f(g(h(x))))'=&f'(g(h(x)))(g(h(x)))' \\ =&f'(g(h(x)))g'(h(x))h'(x) \end{aligned} \]

解:

\[\begin{aligned} (a^x)'&=(e^{\ln a^x})'=(e^{x\ln a})' \\ &=e^{x\ln a}(x\ln a)'=e^{x\ln a}\ln a \\ &=a^x \ln a \end{aligned} \]

$\mu\neq0$时,

\[\begin{aligned} (x^\mu)'&=(e^{\ln x^\mu})'=(e^{\mu \ln x})' \\ &=e^{\mu \ln x}(\mu \ln x)'=e^{\mu \ln x}\dfrac{\mu}{x} \\ &=\dfrac{\mu}{x} x^\mu=\mu x^{\mu-1} \end{aligned} \]

解:

\[u(x)^{v(x)}=e^{v(x)\ln u(x)} \]
\[\begin{aligned} \left(u(x)^{v(x)}\right)'&=e^{v(x)\ln u(x)}(v(x)\ln u(x))' \\ &=u(x)^{v(x)} \left(v'(x)\ln(u(x))+v(x)\dfrac{1}{u(x)}u'(x)\right) \end{aligned} \]

或者,令$y(x)=u(x)^{v(x)}$,则

\[\ln(y(x))=v(x)\ln u(x) \]

两边求导

\[\dfrac{y'(x)}{y(x)}=(v(x)\ln u(x))' =\left(v'(x)\ln(u(x))+v(x)\dfrac{1}{u(x)}u'(x)\right) \]

所以

\[y'(x)=u(x)^{v(x)}\left(v'(x)\ln(u(x))+v(x)\dfrac{1}{u(x)}u'(x)\right) \]

解: $x<0$时,

\[(\ln(-x))'=\dfrac{1}{-x}(-x)'=\dfrac{1}{x} \]

这样,

\[(\ln(|x|))'=\dfrac{1}{x} , \forall x\neq0 \]

$f(x)$可导,且$f(x)\neq0$时,

\[(\ln(|f(x)|))'=\dfrac{f'(x)}{f(x)} \]
\[f'(x)=f(x)(\ln(|f(x)|))' \]

解:

\[\begin{aligned} &{\color{blue}\left(\ln(x+\sqrt{1+x^2})\right)'} \\ =&\dfrac{1}{x+\sqrt{1+x^2}}(x+\sqrt{1+x^2})' \\ =&\dfrac{1}{x+\sqrt{1+x^2}}(1+(\sqrt{1+x^2})') \\ =&\dfrac{1}{x+\sqrt{1+x^2}}\left(1+\dfrac{1}{2\sqrt{1+x^2}}(1+x^2)' \right) \\ =&\dfrac{1}{x+\sqrt{1+x^2}}\left(1+\dfrac{1}{2\sqrt{1+x^2}}2x\right) \\ =&\dfrac{1}{x+\sqrt{1+x^2}}\left(1+\dfrac{x}{\sqrt{1+x^2}}\right) {\color{blue}=\dfrac{1}{\sqrt{1+x^2}}} \end{aligned} \]

初等函数导数表

\[\begin{aligned} &\sin'(x) = \cos(x), && \cos'(x) = \sin (x) \\ &\tan'(x)'=\sec^2(x)=\dfrac{1}{\cos^2(x)}, &&\cot'(x)=\dfrac{-1}{\sin^2(x)} \\ &\arcsin'(x)=\dfrac{1}{\sqrt{1-x^2}}, &&\arccos'(x)=\dfrac{-1}{\sqrt{1-x^2}} \\ &\arctan'(x)=\dfrac{1}{1+x^2}, &&\mbox{arccot}'(x)=\dfrac{-1}{1+x^2},\\ &(e^x)'=e^x, &&(a^x)'=a^x \ln a, \\ &(\ln(|x|))'=\dfrac{1}{x}, &&(\log_a x)'=\dfrac{1}{x\ln a} \\ &(x^\mu)'=\mu x^{\mu-1}, & \end{aligned} \]
\[\begin{aligned} (\sinh(x))'&=\left(\frac{e^x-e^{-x}}2\right)'=\frac{e^x+e^{-x}}2=\cosh(x) , \\ (\cosh(x))'&=\left(\frac{e^x+e^{-x}}2\right)'=\sinh(x) \\ (\tanh(x))'&=\displaystyle\frac1{\cosh^2(x)} \\ (\mbox{arcsinh}(x))'&=\left(\ln(x+\sqrt{1+x^2})\right)'=\dfrac{1}{\sqrt{1+x^2}} \\ (\mbox{arccosh}(x))'&=\left(\ln(x+\sqrt{x^2-1})\right)'=\dfrac{1}{\sqrt{x^2-1}} \\ (\mbox{arctanh}(x))'&=\left(\frac12\ln\dfrac{1+x}{1-x}\right)'=\dfrac{1}{1-x^2} \end{aligned} \]

例 6. [习题]可导偶函数的导函数为奇函数

例 7. (对数法求导)设$y=f(x)$可导,且$f(x)\neq 0$,则

\[(\ln|f(x)|)'=\frac{f'(x)}{f(x)} \]
\[f'(x)=f(x)\left(\ln(|f(x)|)\right)' \]

例 8. 求导,$\displaystyle ~f(x)=\frac{(x+5)^2(x-4)^{\frac13}}{(x+2)^5(x+4)^\frac12}, x>4$

证明. $f(-x)=f(x)$,且可导,则两边求导,

\[f'(-x)(-1)=f'(x) \]

则有$f'(x)$为奇函数

证明. $g(x)=\ln|x|, x\neq 0$,则$g'(x)=\frac1x$。且

\[\ln|f(x)| = g(f(x)) \]

由链式法则,得证。

参数方程求导

定理 6. (参数方程求导)
参变量函数 $\left\{ \begin{aligned} x=\phi(t) \\ y=\psi(t) \end{aligned}\right.$$\psi(t)$$\phi(t)$在区间$(a,b)$内可导,且$\phi'(t)\neq 0$,则 $y=y(x)$ 可导,且

\[\dfrac{dy}{dx}=\dfrac{\psi'(t)}{\phi'(t)} \]

证:$\phi'(x)\neq 0$,则$\phi'(x)$$(a,b)$内不变号(留到后面再证明)。

这样,$\phi'(x)$要么恒正,要么恒负。所以,$\phi(x)$为严格单调函数(留到后面再证明)。

所以,$t=\phi^{-1}(x)$也是严格单调且可导的函数,且$(\phi^{-1}(x))'=\dfrac{1}{\phi'(t)}$

\[y'(x)=y'(t)t'(x)=\psi'(t)\dfrac{1}{\phi'(t)} \]

例 9. (例3.1.20) 求函数

\[\left\{\begin{aligned} x=a\cos(t) \\ y=b\sin(t) \end{aligned}\right. , t\in[0,2\pi] \]

$t=\dfrac{\pi}{4}$处的切线,法线.

例 10. 证明函数

\[\begin{cases} x=2t+|t| \\ y=5t^2+4t|t| \end{cases} \]

$t=0$时可导,并求这个导数。

2.$t\geq0, x=3t$,$t<0, x=t$可知,$x(t)$是严格递增函数。这样,反函数$t(x)$存在,所以$y(x)$有意义。

又,

\[\lim_{\Delta x\to 0+}\dfrac{\Delta y}{\Delta x}=\lim_{t\to 0+}\dfrac{9t^2}{3t}=0 \]
\[\lim_{\Delta x\to 0-}\dfrac{\Delta y}{\Delta x}=\lim_{t\to 0-}\dfrac{t^2}{t}=0 \]

可以看到,$y=y(x)$$x=0$处可导,导数为$0$.

隐函数求导

没有显式的表达,看一些简单的例子

例 11. (例3.1.21) $y^3+y^2=2 x^2$$(1,1)$处的切线和法线方向

例 12. $x^2+2xy+y^2=2x$确定的隐函数$y(x)$的导数,并求$x=2,y=4$$x=2,y=0$处的导数。

例 13. 对数螺线, $\arctan\dfrac{y}{x}=\ln\sqrt{x^2+y^2}$的导数$y'(x)$

1.

两边求导,

\[3y^2y'+2y y'=4x \]
\[y'=\dfrac{4x}{3y^2+2y} \]

切线:

\[y'(1)=\dfrac{4\times 1}{3\cdot 1^2+2\cdot 1}=\dfrac{4}{5} \]

3.

\[\displaystyle\frac1{1+(y/x)^2}\cdot\dfrac{y'x-y}{x^2}=\frac12 1\cdot\dfrac{2x+2yy'}{x^2+y^2} \]

整理后,可以得到

\[y'(x)=\dfrac{x+y}{x-y} \]

又可以将方程看作$r=e^\theta$,以参数方程写,

\[y'(x)=\dfrac{\sin \theta+\cos\theta}{\cos\theta-\sin\theta}=\dfrac{x+y}{x-y} \]

分段函数

1. 若函数在点$x_0$处不连续,则不可导

2. 若函数在点$x_0$处连续,用定义来求

例 14. (例3.1.23) 求函数$f(x)$的导数

\[f(x)=\left\{\begin{aligned} x^2\cos\left(\dfrac{1}{x}\right), & x\neq 0 \\ 0, & x=0 \end{aligned}\right. \]

$x=0$处,连续。导数为

\[\lim_ x\dfrac{x^2\cos\left(\dfrac{1}{x}\right)}{x}=\lim_ x x\cos\left(\dfrac{1}{x}\right)=0 \]

$x\neq0$处,

\[\left(x^2\cos\left(\dfrac{1}{x}\right)\right)'=2x\cos\dfrac{1}{x}+\sin\dfrac{1}{x} \]

函数在某点的导数,是导函数在这个点的极限

定理 7.
分段函数$f(x)$在点$x_0$的邻域内连续,在去心邻域内可导,且

\[\lim_{x\to x_0}f'(x)=k \]

则有 $f'(x_0)=k$。(对$k=\infty$也成立。)

证明以后再说

. 定理对单侧导数的情形也成立

若函数$f(x)$的导数$f'(x)$在某个区间内存在有限,则导函数$f'(x)$在区间内点$x_0$处如果有左、右极限,则这个极限必为$f'(x_0)$。这样,要么$f'(x)$$x_0$处连续,要么$x_0$$f'(x)$的第二类间断点

$f(x)$$x_0$的领域内处处可导,且$f'(x)$$x_0$的右极限存在,则有

\[\lim_{x\to x_0+}f'(x_0)=f'_+(x_0) \]

$f(x)$$x_0$处可导,有$f'_+(x_0)=f'(x_0)$,即

\[f'(x_0+)=f'(x_0) \]
  • 这样,$f'(x)$$x_0$处右连续
  • 同样,若$f'(x)$$x_0$的左极限存在,则$f'(x)$$x_0$处左连续。
  • 因此,若$f'(x)$$x_0$处的左、右极限都存在的话,这个极限必为$f'(x_0)$,即$f'(x)$$x_0$处连续。
  • 因此,$f'(x)$不会存在左、右极限存在,但不相等,或者左、右极限存在相等,但不为$f'(x_0)$的情形。即$f'(x)$不能有第一类间断点。

例 15. (例3.1.24) 求导数$f'(0)$

\[f(x)=\left\{\begin{aligned} x^3\cos\left(\dfrac{1}{x}\right), & x\neq 0 \\ 0, & x=0 \end{aligned}\right. \]

例 16. (例3.1.25) $f(x)=x\arcsin(x)+\sqrt{1-x^2}$在区间$[-1,1]$端点处的可导性

1.$x=0$处,连续。

2.$x\neq0$处,导数为

\[\left(x^3\cos\left(\dfrac{1}{x}\right)\right)'=3x^2\cos\dfrac{1}{x}+x\sin\dfrac{1}{x} \]

3. 可以看到,$x\to0$时,导数的极限为$0$

这样,

\[f'(x)=\left\{\begin{aligned} 3x^2\cos\dfrac{1}{x}+x\sin\dfrac{1}{x} ,& x\neq 0 \\ 0, & x=0 \end{aligned}\right. \]

1. $x\neq0$时,

\[f'(x)=\arcsin(x)+x\dfrac{1}{\sqrt{1-x^2}}+\dfrac{1}{2}\dfrac{1}{\sqrt{1-x^2}}(-2x)=\arcsin(x) \]

2.

\[\lim_{x\to1-}f'(x)=\arcsin(1)=\dfrac{\pi}{2} \]
\[\lim_{x\to-1+}f'(x)=\arcsin(-1)=\dfrac{-\pi}{2} \]

3.

\[f'_{+}(-1)=\dfrac{-\pi}{2}, f'_{-}(1)=\dfrac{\pi}{2} \]

高阶导数

定义 4. (二阶导数)
若导函数$f'(x)$$x_0$处可导,即极限

\[\lim_{\Delta x\to 0}\dfrac{f'(x_0+\Delta x)-f'(x_0)}{\Delta x} \]

存在,则称函数$f(x)$$x_0$二阶可导。这个极限称为$f(x)$二阶导数,记为

\[f''(x_0),y''(x_0),\left.\dfrac{d^2f}{dx^2}\right|_{x=x_0},\left.\dfrac{d^2y}{dx^2}\right|_{x=x_0} \]

\[f''(x_0)=\lim_{\Delta x\to0}\dfrac{f'(x_0+\Delta x)-f'(x_0)}{\Delta x} \]

类似,可以定义$n$阶导数

\[f^{(n)}(x_0)=\lim_{\Delta x\to 0}\dfrac{f^{(n-1)}(x_0+\Delta x)-f^{(n-1)}(x_0)}{\Delta x} \]

记为

\[f^{(n)}(x_0),y^{(n)}(x_0),\left.\dfrac{d^nf}{dx^n}\right|_{x=x_0},\left.\dfrac{d^ny}{dx^n}\right|_{x=x_0} \]

例 17. 求下列函数的高阶导数

1. $x^n$

2. $e^{ax}$

3. $a^x$

4. $\ln(1+x)$

5. $\sin(x)$, $\cos(x)$

1.

\[\begin{aligned} (x^n)'&=nx^{n-1} \\ (x^n)''&=n(n-1)x^{n-2} \\ \cdots \\ (x^n)^{(k)}&=n(n-1)\cdots(n-k+1)x^{n-k} \\ \cdots \\ (x^n)^{(n)}&=n! \\ (x^n)^{(n+l)}&=0,l\in N \\ \end{aligned} \]

2.

\[\begin{aligned} (a^x)'=x^a \ln a \\ (a^x)''=x^a (\ln a)^2 \\ \cdots \\ (a^x)^{(k)}=x^a (\ln a)^k \\ \end{aligned} \]
\[\begin{aligned} (e^{ax})'=a e^{ax} \\ (e^{ax})''=a^2 e^{ax} \\ \cdots \\ (e^{ax})^{(k)}=a^k e^{ax} \\ \end{aligned} \]

3.

\[\begin{aligned} (\ln(1+x))'&=\dfrac{1}{1+x}=(1+x)^{-1}\\ (\ln(1+x))''&=((-1)(1+x)^{-2}\\ \cdots \\ (\ln(1+x))^{(k)}&=(-1)^{(k-1)} (k-1)! (1+x)^{-k}\\ \end{aligned} \]

4.

\[\begin{aligned} (\sin(x))'&=\cos(x)\\ (\sin(x))''&=-\sin(x)\\ (\sin(x))'''&=-\cos(x)\\ (\sin(x))^{(4)} &=\sin(x)\\ (\sin(x))^{(5)} &=\cos(x)\\ \cdots \\ (\sin(x))^{(k)}&=\sin(x+\dfrac{k\pi}{2}) \end{aligned} \]
\[(\cos(x))^{(n)}=\cos(x+\dfrac{n\pi}{2}) \]

莱布尼兹公式

定理 8. (莱布尼兹公式)
$u(x),v(x)$$n$阶可导,则

\[(u(x)v(x))^{(n)}=\sum_{k=0}^nC_n^ku^{(n-k)}(x)v^{(k)}(x) \]

证: 数学归纳法

\[\begin{aligned} y^{(n+1)}=&\left(\sum_{k=0}^nC_n^ku^{(n-k)}(x)v^{(k)}(x)\right)' \\ =&\sum_{k=0}^nC_n^ku^{(n-k+1)}(x)v^{(k)}(x)+\sum_{k=0}^nC_n^ku^{(n-k)}(x)v^{(k+1)}(x) \\ =&u^{(n+1)}(x)v(x)+\sum_{k=1}^nC_n^ku^{(n-k+1)}(x)v^{(k)}(x) \\ &+\sum_{k=0}^{n-1}C_n^ku^{(n-k)}(x)v^{(k+1)}(x)+u(x)v^{(n+1)}(x)\\ \end{aligned} \]
\[\begin{aligned} y^{(n+1)} =&u^{(n+1)}(x)v(x)+\sum_{k=1}^nC_n^ku^{(n-k+1)}(x)v^{(k)}(x) \\ &+\sum_{i=1}^{n}C_n^{i-1}u^{(n-(i-1))}(x)v^{(i)}(x)+u(x)v^{(n+1)}(x)\\ =&u^{(n+1)}(x)v(x)+\sum_{k=1}^n(C_n^k+C_n^{k-1})u^{(n-k+1)}(x)v^{(k)}(x) \\ &+u(x)v^{(n+1)}(x)\\ =&u^{(n+1)}(x)v(x)+\sum_{k=1}^n(C_{n+1}^k)u^{(n-k+1)}(x)v^{(k)}(x) \\ &+u(x)v^{(n+1)}(x)\\ \end{aligned} \]
\[y^{(n+1)}=\sum_{k=0}^{n+1}C_{n+1}^ku^{(n-k)}(x)v^{(k)}(x) \]

例 18. $y=\arcsin(x)$,求$y^{(n)}$

例 19. [习题] $y=\arcsin(x)$,求$y^{(n)}(0)$

例 20. (例3.1.33) $y=\arctan(x)$,求$y^{(n)}(0)$

例 21. $(x^2\cdot\cos(ax))^{(50)}$

1. $y'=\dfrac{1}{\sqrt{1-x^2}}=\dfrac{1}{\sqrt{1+x}}\dfrac{1}{\sqrt{1-x}}$

\[y^{(n+1)}=\left(\dfrac{1}{\sqrt{1+x}}\dfrac{1}{\sqrt{1-x}}\right)^{(n)} \]

3.1.33 $y'(x)=\dfrac{1}{1+x^2}$,则 $y'(x)(1+x^2)=1$,所以

\[(y'(x)(1+x^2))^{(n)}=0 \]
\[(1+x^2)y^{(n+1)}+n\cdot 2 x y^{(n)}+\dfrac{n(n-1)}{2}2 y^{(n-1)}=0 \]

$x=0$,则有

\[y^{(n+1)}(0)=-n(n-1)y^{(n-1)}(0) \]

$y(0)=0,y'(0)=1$,有

\[y^{(n)}(0)=\left\{\begin{aligned} 0, & n=2k \\ (-1)^k (2k)!, & n=2k+1 \end{aligned}\right. \]

3.$y'=\dfrac{1}{\sqrt{1-x^2}}$

\[\begin{aligned} y''=&\frac{-1}2\displaystyle\frac1{\sqrt{1-x^2}}\dfrac{1}{1-x^2}(-2x) \\ =&\dfrac{x\cdot y'}{1-x^2} \end{aligned} \]

这样,有

\[(1-x^2)\cdot y''-x\cdot y'=0 \]

对上式求$n$阶导,利用莱布尼兹公式,可以得到

\[\begin{aligned} &y^{(2m)}(0)=0 \\ &y^{(2m-1)}(0)=1^2\cdot 3^2\cdots(2m-1)^2=((2m-1)!!)^2 \end{aligned} \]

4.$u=\cos(ax), v=x^2$,则

\[\begin{aligned} &u^{(k)}=a^k\cdot\cos(ax+k\dfrac{\pi}{2}), \\ &v'(x)=2x, v''=2, v'''=...=0 \end{aligned} \]

这样,有

\[\begin{aligned} (uv)^{(50)}=&x^2a^{50}\cos(ax+50\cdot\frac12\pi) \\ &+\dfrac{50}{1}2xa^{49}\cos(ax+49\cdot\frac12\pi) \\ &+\dfrac{50\cdot49}{1\cdot2}2a^{48}\cos(ax+48\cdot\frac12\pi) \\ =&a^{48}((2450-a^2x^2)\cos(ax)-100ax\sin(ax)) \end{aligned} \]

例 22. $y=\dfrac{x^2}{1-x}$ , 求$y^{(8)}$

例 23. [习题] $y=\dfrac{1+x}{\sqrt{1-x}}$ , 求$y^{(100)}$

例 24. [习题] $y=\dfrac{\ln x}{x}$ , 求$y^{(5)}$

例 25. $y=\sin(x)\sin(2x)\sin(3x)$ , 求$y^{(10)}$

1. $\dfrac{x^2}{1-x}=\dfrac{x^2-1+1}{1-x}=-x-1+\dfrac{1}{1-x}$

\[y^{(8)}=\frac{8!}{(1-x)^9} \]

2. $\dfrac{1+x}{\sqrt{1-x}}=\dfrac{2}{\sqrt{1-x}}-\sqrt{1-x}$

\[\begin{aligned} y^{(100)}=2(-1)^{100}(-\frac12)(-\frac32)\cdots(-\frac12-99)(1-x)^{-\frac{201}2} \\ -(-1)^{100}\frac12(-\frac12)\cdots(-\frac12-98)(1-x)^{-\frac{199}2}\\ =\frac{(197!!)(399-x)}{2^{100}(1-x)^{100}\sqrt{1-x}} \end{aligned} \]

3. $y'=\frac{-\ln x+1}{x^2}$, $y''=\frac{2\ln x-3}{x^3}$, 令$y^{(n)}=\dfrac{a_n\ln x+b_n}{x^{n+1}}$,则由$y^{n+1}$可以得到递推公式

\[a_{n+1}=-(n+1)a_n , b_{n+1}=-(n+1)b_n+a_n \]

$a_2=2$, $b_2=-3$, 可以得到$a_5=-120$, $b_5=274$

4.

\[\begin{aligned} \sin(x)\sin(2x)\sin(3x)=&\frac121(\cos(x)-\cos(3x))\sin(3x) \\ =&\displaystyle\frac14(\sin(2x)+\sin(4x)-\sin(6x)) \end{aligned} \]
\[y^{(10)}=-2^8\sin(2x)-2^{18}\sin(4x)+2^83^{10}\sin(6x) \]

含参变量函数的高阶导数

含参变量函数 $\begin{cases}x=\phi(t) \\ y=\psi(t)\end{cases},\,\, t\in(a,b)$ 的导数$\frac{dy}{dx}=\frac{\psi'(t)}{\phi'(t)}$

对新的参变量函数

\[\begin{cases} x&=\phi(t) \\ y'&=\frac{\psi'(t)}{\phi'(t)} \end{cases} \]

求导,即为二阶导数

得到二阶导数

\[\begin{aligned} \dfrac{d(y')}{dx}&=\dfrac{\left(\frac{\psi'(t)}{\phi'(t)}\right)'}{\phi'(t)} \\ &=\dfrac{\psi''(t)\phi'(t)-\psi'(t)\phi''(t)}{(\phi'(t))^2}\dfrac{1}{\phi'(t)} \end{aligned} \]

应用

例 26. 求和

\[\begin{aligned} S_n=\sin x+\sin 2x+\cdots+\sin nx , \\ T_n=\cos x+2\cos 2x+\cdots+n\cos nx \end{aligned} \]

1.$ 2\sin\frac12 x\sin kx=\cos(k-\frac121)x-\cos(k+\frac12 x) $

\[\begin{aligned} 2\sin\frac12 x(\sin x+\sin 2x+\cdots+\sin nx) \\ =\cos\frac12 x-\cos\frac12{2n+1}x \end{aligned} \]
\[\begin{aligned} T_n=(S_n)'=\left(\dfrac{\cos\frac12 x-\cos\frac12{2n+1}x}{2\sin\frac12 x}\right)' \\ =\dfrac{n\sin(n+\frac121)x}{2\sin\frac12 x}+\dfrac{\cos(nx)-1}{4\sin^2\frac12 x} \end{aligned} \]

目录

本节读完

例 27. Thanks

27.

例 28. 求阿基米得螺线 $r=a\theta$ 的导数

. 含参变量函数 $ \left\{ \begin{aligned} x=r\cos\theta \\ y=r\sin\theta \end{aligned}\right. $, $r=r(\theta)$, 则

\[\dfrac{dy}{dx}=\dfrac{y'_\theta}{x'_\theta}=\dfrac{r'_\theta \sin\theta+r \cos\theta}{r'_\theta\cos\theta-r \sin\theta} \]

$\dfrac{dr}{d\theta}=a$代入,可得

\[\dfrac{dy}{dx}=\dfrac{a \sin\theta+a \theta \cos\theta}{a \cos\theta-a \theta \sin\theta}=\tan(\theta+\arctan\theta) \]

例 29. 摆线$\left\{ \begin{aligned}x=a(t-\sin t) \\y=a(1-\cos t)\end{aligned}\right.$ 在任意点的切线方程

. 方程

\[\left.\dfrac{dy}{dx}\right|_{t=t_0}=\left.\dfrac{a\sin t}{a(1-\cos t)}\right|_{t=t_0}=\cot(\frac12{ t_0}) \]

所以,切线的方程为

\[y-a(1-\cos t_0)=\cot(\frac12{t_0}) (x-a(t_0-\sin t_0)) \]

化简得

\[y-2a=(x-at_0)\cot(\frac12{t_0}) \]

摆线表示圆滚动时,圆周上定点的运动轨迹。可以看到法线正好是这个点与圆周与$x$轴的交点。

例 30. 求和

\[S_n=\frac12 \tan\frac{x}2+\cdots+\frac{1}{2^n}\tan\frac{x}{2^n} \]

. 注意到

\[\left(\ln|\cos\dfrac{x}{2^k}|\right)'=-\dfrac{1}{2^k}\tan\dfrac{x}{2^k}, (k=1,2,\cdots,n) \]

\[\cos\dfrac{x}{2}\cos\dfrac{x}{4}\cdots\cos\dfrac{x}{2^n}=\dfrac{\sin x}{2^n \sin\dfrac{x}{2^n}} \]

可得

\[S_n=-\cot x+\displaystyle\frac1{2^n}\cot\dfrac{x}{2^n} \]

$x\to 0$时,$g(x)\to 0$,(且存在$0$的某去心邻域,使得$g(x)\neq 0$),则利用变量代换

\[\lim_{x\to 0}\dfrac{f(x_0+g(x))-f(x_0)}{g(x)}=\lim_{h\to 0}\dfrac{f(x_0+h)-f(x_0)}{h}=f'(x_0) \]

例 31. $f(x)$$x_0$处的导数存在有限,求

\[\lim_{h\to 0}\dfrac{f(x_0+\alpha h)-f(x_0-\beta h)}{h} \]

.

\[\begin{aligned} & \lim_{h\to 0}\dfrac{f(x_0+\alpha h)-f(x_0-\beta h)}{h} \\ =&\lim_{h\to 0}\dfrac{f(x_0+\alpha h)-f(x_0)}{h}+\lim_{h\to 0}\dfrac{f(x_0)-f(x_0-\beta h)}{h} \\ =&\alpha \lim_{h\to 0}\dfrac{f(x_0+\alpha h)-f(x_0)}{\alpha h}+\beta \lim_{h\to 0}\dfrac{f(x_0)-f(x_0-\beta h)}{\beta h} \\ =& \alpha f'(x_0)+\beta f'(x_0) \end{aligned} \]

例 32. $f(x)$$x_0$处的导数存在有限,求

\[\lim_{x\to x_0}\dfrac{xf(x_0)-x_0f(x)}{x-x_0} \]

. :

\[\begin{aligned} &\lim_{x\to x_0}\dfrac{xf(x_0)-x_0f(x)}{x-x_0} \\ =&\lim_{x\to x_0}\dfrac{xf(x_0)-xf(x)+xf(x)-x_0f(x)}{x-x_0} \\ =&\lim_{x\to x_0}\dfrac{xf(x_0)-xf(x)}{x-x_0}+f(x) \\ =&f(x_0)-x_0f'(x_0) \end{aligned} \]

例 33. $\beta_n>x_0>\alpha_n$, $\displaystyle \lim_{n\to+\infty}\alpha_n=\lim_{n\to+\infty}\beta_n=x_0$, $f(x)$$x_0$处可导,则有:

\[\lim_{n\to+\infty}\dfrac{f(\beta_n)-f(\alpha_n)}{\beta_n-\alpha_n}=f'(x_0) \]