未定式的极限与L'Hospital法则

单变量函数的微分

张瑞
中国科学技术大学数学科学学院

未定式的极限与洛必达(L'Hospital)法则

L'Hospital法则

定理 1. ($\frac00$型L'Hospital法则)
$f(x)$,$g(x)$$x_0$ 的去心邻域内可导,且$g'(x)\neq 0$。又$\displaystyle\lim_{x\to x_0}f(x)=0$, $\displaystyle\lim_{x\to x_0}g(x)=0$。若

\[\lim_{x\to x_0}\dfrac{f'(x)}{g'(x)}=l \]

则有

\[\lim_{x\to x_0}\dfrac{f(x)}{g(x)}=l \]

结论对$l$$\infty$,$x_0$$\pm\infty$,或单侧极限情况均成立

证: 定义$f(x_0)=0, g(x_0)=0$,则$f(x),g(x)$$x_0$的邻域内连续。

$\forall x\neq x_0$,在区间$[x,x_0]$$[x_0,x]$上用柯西中值定理,

\[\dfrac{f(x)}{g(x)}=\dfrac{f(x)-f(x_0)}{g(x)-g(x_0)}=\dfrac{f'(\xi)}{g'(\xi)} \]

$\xi$$x$$x_0$之间。当$x\to x_0$时,$\xi\to x_0$,所以

\[\lim_{x\to x_0}\dfrac{f(x)}{g(x)}=\lim_{\xi\to x_0}\dfrac{f'(\xi)}{g'(\xi)}=l \]

定理 2. ($\frac\infty\infty$型L'Hospital法则)
$f(x)$,$g(x)$$x_0$的去心邻域内可导,且满足:

(1)$g'(x)\neq0$$x_0$的去心邻域内成立, 且$\displaystyle\lim_{x\to x_0}g(x)=\infty$;

(2)$\displaystyle \lim_{x\to x_0}\dfrac{f'(x)}{g'(x)}=l$,

则有

\[\lim_{x\to x_0}\dfrac{f(x)}{g(x)}=l \]

结论对$l$$\infty$,$x_0$$\pm\infty$,或单侧极限情况均成立

证:$x\to x_0-$, $l$为有限时做证明

  1. $\displaystyle \lim_{x\to x_0-}g(x)=\infty$,则$\exists x_1<x_0$,满足
    \[|\dfrac{g(x_1)}{g(x)}|<1, \forall x \in (x_1,x_0) \]
    (否则,可以构造一个递减的$g(x_n)$序列。这与$g(x)$无穷大矛盾)
  2. $[x_1,x]$上用柯西中值定理,则

$\forall \epsilon>0, \exists \delta>0, \delta<x_0-x_1$, s.t.

\[l-\epsilon<\dfrac{f(x)-f(x_1)}{g(x)-g(x_1)}=\dfrac{f'(\xi)}{g'(\xi)}<l+\epsilon , x\in(x_0-\delta, x_0) \]

\[l-\epsilon<\dfrac{\dfrac{f(x)}{g(x)}-\dfrac{f(x_1)}{g(x)}}{1-\dfrac{g(x_1)}{g(x)}}=\dfrac{f'(\xi)}{g'(\xi)}<l+\epsilon , x\in(x_0-\delta, x_0) \]

$|\dfrac{g(x_1)}{g(x)}|<1$,知分母大于0,

\[\dfrac{f(x_1)}{g(x)}+(l-\epsilon)(1-\dfrac{g(x_1)}{g(x)})<\dfrac{f(x)}{g(x)}<\dfrac{f(x_1)}{g(x)}+(l+\epsilon)(1-\dfrac{g(x_1)}{g(x)}) \]

记左边为$h(x)$,右边为$k(x)$。可以看出

\[\lim_{x\to x_0-}h(x)=l-\epsilon, \lim_{x\to x_0-}k(x)=l+\epsilon \]

所以,$\exists 0<\delta_1<\delta$, 有

\[h(x)>l-2\epsilon, k(x)<l+2\epsilon \]

\[\lim_{x\to x_0}\dfrac{f(x)}{g(x)}=l=\lim_{x\to x_0}\dfrac{f'(x)}{g'(x)} \]

例 1. (例3.4.1) $\displaystyle\lim_{x\to0}\dfrac{x-\sin(x)}{x^3}$

例 2. (例3.4.3) $\displaystyle\lim_{x\to+\infty}\dfrac{\ln(x)}{x^\mu} , \mu>0$

例 3. (例3.4.4) $\displaystyle\lim_{x\to+\infty}\dfrac{x^\mu}{e^x} , \mu>0$

例 4. $\displaystyle\lim_{x\to0}\dfrac{a^x-a^{\sin x}}{x^3}$, $a>0$

例 5. $\displaystyle\lim_{x\to0}\dfrac{\ln(\sin ax)}{\ln(\sin bx)} $

1.

\[\begin{aligned} & \lim_{x\to0}\dfrac{a^x-a^{\sin x}}{x^3} \\ =& \lim_{x\to 0}\dfrac{(a^x-\cos x\cdot a^{\sin x})\ln a}{3x^2} \\ =& \dfrac{\ln a}{3}\lim_{x\to 0}\dfrac{a^x\ln a+\sin x\cdot a^{\sin x}-\cos^2 x\cdot a^{\sin x}\ln a}{2x} \\ =& \dfrac{\ln a}{6}\lim_{x\to0}(\cdots) \\ =&\dfrac{\ln a}{6} \end{aligned} \]
\[\begin{aligned} &\lim_{x\to 0}\dfrac{\ln(\sin ax)}{\ln(\sin bx)} \\ =&\lim_{x\to 0}\dfrac{a\sin bx \cos ax }{b\sin ax \cos bx} \\ =&\dfrac{a}{b}\dfrac{b}{a} \end{aligned} \]

其他类型的未定式

$0\cdot\infty$$f(x)\to 0, g(x)\to \infty$,则

\[f(x)g(x)=\dfrac{f(x)}{\dfrac{1}{g(x)}}=\dfrac{g(x)}{\dfrac{1}{f(x)}} \]

$\infty-\infty$$f(x)\to\infty, g(x)\to \infty$,则

\[f(x)-g(x)=\dfrac{1}{\dfrac{1}{f(x)}}-\dfrac{1}{\dfrac{1}{g(x)}} =\dfrac{\dfrac{1}{g(x)}-\dfrac{1}{f(x)}}{\dfrac{1}{f(x)}\cdot\dfrac{1}{g(x)}} \]

例 6. $\displaystyle\lim_{x\to0}\left(\displaystyle\frac1{x^2}-\cot^2x\right)$

例 7. $\displaystyle\lim_{x\to 1-}\ln x\cdot\ln(1-x)$

例 8. (例3.4.6) $\displaystyle\lim_{x\to0+}x^\mu \ln x , \mu>0$

例 9. $\displaystyle\lim_{x\to0}\left(\dfrac{1}{x}-\dfrac{1}{e^x-1}\right)$

$1^\infty$, $0^0$, $\infty^0$ 取对数

例 10. $\displaystyle \lim_{x\to 0}\left(\dfrac{\sin x}{x}\right)^{\dfrac{1}{1-\cos(x)}}$

例 11. $\displaystyle \lim_{x\to\infty}\left(\frac{\pi}2-\arctan(x)\right)^{\dfrac{1}{\ln x}}$

例 12. (例3.4.8) $\displaystyle \lim_{x\to 0+}x^x $

例 13. $\displaystyle\lim_{x\to 0}\left(\dfrac{(1+x)^{\frac{1}{x}}}{e}\right)^{\frac{1}{x}}$

不能使用洛必达法则的例子

例 14. $\displaystyle\lim_{x\to0}\dfrac{x^2\sin(\frac1{x})}{\sin x}$

例 15. $\displaystyle\lim_{x\to\infty}\dfrac{x-\sin x}{x+\sin x}$

例 16. $\displaystyle\lim_{x\to+\infty}\dfrac{e^{-2x}(\cos x+2\sin x)+e^{-x^2}\sin^2x}{e^{-x}(\cos x+\sin x)}$

例 17. $\displaystyle\lim_{x\to+\infty}\dfrac{1+x+\sin x\cos x}{(x+\sin x \cos x )e^{\sin x}}$

1. $\displaystyle\lim_{x\to0}\dfrac{2x\sin\frac1{x}-\cos\frac1{x}}{\cos x}$ 极限不存在

实际上,

\[\displaystyle\lim_{x\to0}\dfrac{x^2\sin(\frac1{x})}{\sin x}=\lim_{x\to0}x\sin\frac1{x}=0 \]

2. $\displaystyle\lim_{x\to\infty}\dfrac{1-\cos x}{1+\cos x}$极限不存在

\[\lim_{x\to\infty}\dfrac{x-\sin x}{x+\sin x}=\lim_{x\to\infty}\dfrac{1-\dfrac{\sin x}{x}}{1+\dfrac{\sin x}{x}}=1 \]

3.

\[\lim_{x\to+\infty}\dfrac{e^{-2x}(-5\sin x)+e^{-x^2}(-2x\sin^2x+2\sin x\cos x)}{e^{-x}(-2\sin x)} \]

分母$e^{-x}(-2\sin x)$存在为$0$的点

这个极限不存在。(因为分母为$0$的点,分子不为$0$

4.

\[\lim_{x\to+\infty}\dfrac{1+\cos 2x}{((1+\cos 2x)+(x+\sin x \cos x)\cos x)e^{\sin x}} \]

分母

\[\begin{aligned} ((1+\cos 2x)+(x+\sin x \cos x)\cos x)e^{\sin x} \\ =\cos x(2\cos x+x+\sin x\cos x)e^{\sin x} \end{aligned} \]

有极限为$0$的点。

这个极限也不存在

\[\lim_{x\to+\infty}\dfrac{\displaystyle\frac1{x}+1+\dfrac{\sin x\cos x}{x}}{1+\dfrac{\sin x\cos x}{x}}e^{-\sin x} \]

例 18. [复习题] 若函数$f(x)$的二阶导数$f''(x)$存在,则

\[f''(x)=\lim_{h\to0}\dfrac{f(x+h)+f(x-h)-2f(x)}{h^2} \]

例 19. [复习题] 设函数$f(x)$$x=0$有二阶导数,$f(0)=1$$f'(0)=0$,求$\displaystyle\lim_{x\to+\infty}\left(f(\dfrac{1}{\sqrt x})\right)^x$

\[\begin{aligned} f''(x)=&\lim_{h\to0}\dfrac{f(x+h)+f(x-h)-2f(x)}{h^2} \\ =&\lim_{h\to0}\dfrac{f'(x+h)-f'(x-h)}{2h} \end{aligned} \]

2.$t=\dfrac{1}{\sqrt x}$,则$x=\dfrac{1}{t^2}$,则

\[\begin{aligned} \lim_{x\to+\infty}\left(f(\dfrac{1}{\sqrt x})\right)^x= \lim_{t\to 0}\left(f(t)\right)^{\frac{1}{t^2}} \end{aligned} \]

\[\lim_{t\to0}\dfrac{f(t)-1}{t^2}=\lim_{t\to0}\dfrac{f'(t)}{2t}=\lim_{t\to0}\dfrac{f''(t)}{2}=\frac{f''(0)}2 \]

可得,

\[\lim_{x\to+\infty}\left(f(\dfrac{1}{\sqrt x})\right)^x=e^{\frac{f''(0)}{2}} \]

目录

本节读完

例 20. Thanks

例 21. 求极限

\[\lim_{n\to\infty}\left(1+\frac1n\right)^{-n^2}e^n \]

20.

使用pgfplots

Using the pgfplots package we can draw nice plots:

\begin{tikzpicture} \begin{axis}[ height=8cm, width=8cm, grid=major, ] % math plot \addplot {-x^5 +402}; \addlegendentry{model-$x$} % data plot \addplot coordinates { (-4.77778,2027.60977) (-3.55556,347.84069) (-2.33333,22.58953) (-1.11111,-493.50066) (0.11111,46.66082) (1.33333,-205.56286) (2.55556,-341.40638) (3.77778,-1169.24780) (5.00000,-3269.56775) }; \addlegendentry{estimate} \end{axis} \end{tikzpicture}
% Preamble: \pgfplotsset{width=7cm,compat=1.13} \begin{tikzpicture} \begin{loglogaxis}[ xlabel=\textsc{Dof}, ylabel=$L_2$ Error, ] \addplot coordinates { (5, 8.312e-02) (17, 2.547e-02) (49, 7.407e-03) (129, 2.102e-03) (321, 5.874e-04) (769, 1.623e-04) (1793, 4.442e-05) (4097, 1.207e-05) (9217, 3.261e-06) }; \node[coordinate,pin=above:{Bad!$\frac{\Delta y}{dx}$}] at (axis cs:5503,2.027e-03) {}; \end{loglogaxis} \end{tikzpicture}