隐函数与反函数的微分

多变量函数的微分学

张瑞
中国科学技术大学数学科学学院

隐函数与反函数的微分

例 1. $y(x)$满足$\ln\sqrt{x^2+y^2}=\arctan\frac{y}x$,求$y'(x)$

两边对$x$求导,

\[\begin{aligned} \frac{1}{\sqrt{x^2+y^2}}\frac12\frac1{\sqrt{x^2+y^2}}(2x+2y y'(x)) \\ =\frac1{1+(\frac{y}{x})^2}(\frac{-1}{x^2}y+\frac1x y'(x)) \end{aligned} \]

得到

\[x+y y'=-y+x y' \quad \Rightarrow y'(x)=\frac{x+y}{x-y} \]

若函数$y=\phi(x)$满足$F(x,\phi(x))=0$,则对$x$求导,有

\[\dfrac{d(F(x,\phi(x)))}{dx}=0 \]

利用链式法则,得到

\[\frac{\partial F}{\partial x}(x,\phi(x))+\frac{\partial F}{\partial y}(x,\phi(x))\phi'(x)=0 \]

所以$y'(x)$

\[y'(x)=\phi'(x)=-\frac{F'_x(x,\phi(x))}{F'_y(x,\phi(x))} \]

由方程或方程组确定的函数关系,称为隐函数

例 2. 几个例子:

  1. $xy+x+y-1=0$ ,可以显式解出$y=f(x)$

  2. $x-y^2+\sin y=0$ ,可以显式得到$x=x(y)$

  3. $\frac{x^2}{2x^2+\sin x+1}e^{-y}-y=0 $,没法得到$y=y(x)$,但可以知道每一个$x$对应一个$y$

  4. $x^2+y^2=1$$x$不能表达为$y$的函数,$y$也不能表达为$x$的函数,但局部上是可以的

chap6-4-ex1

$\frac{x^2}{2x^2+\sin x+1}e^{-y}-y=0 $

定义 1.
$F(x,y)$在区域$D\subset\mathbb{R}^2$上有定义, $(x_0,y_0)\in D$$F(x_0,y_0)=0$

  • 若存在$(x_0,y_0)$的邻域$I\times J\subset D$,对于任一$x\in I$都有唯一的$y\in J$,使得$F(x,y)=0$,则由此对应关系确定的$I$上的函数$y=\phi(x)$称为在$(x_0,y_0)$的邻域中由方程$F(x,y)=0$所确定的隐函数
  • 若对于任一$y\in J$都有唯一的$x\in I$,使得$F(x,y)=0$,则由此确定的$J$上的函数$x=\psi(y)$也称为在$(x_0,y_0)$的邻域中由方程$F(x,y)=0$所确定的隐函数

利用方程定义函数时,有两个问题:

  1. 未必能得到解析表达
  2. 函数可能只在局部有定义

例 3. 方程$F(x,y)=x^3+y^3-3xy=0$所确定的曲线,在$(0,0)$附近不存在隐函数

chap6-4-ex2-3d chap6-4-ex2

隐函数存在定理

定理 1. (隐函数定理)
设区域$D\subset\mathbb{R}^2$$(x_0,y_0)\in D$。若$F(x,y)$$D$上有定义,且满足:

(a) $F(x,y)\in C^1(D)$。即$F$$D$上有连续的偏导数

(b) $F(x_0,y_0)=0$

(c) $F'_y(x_0,y_0)\neq 0$

则有如下结论:

(1) 方程$F(x,y)=0$$(x_0,y_0)$附近确定了隐函数$y=\phi(x)$

(2) 隐函数$y=\phi(x)$$C^1$的,且

\[\phi'(x)=-\frac{F'_x(x,y)}{F'_y(x,y)} , x\in I \]

推广到多元函数

例 4. $z=f(x,y)$,满足$F(x,y,f(x,y))=0$,求

\[\frac{\partial z}{\partial x}, \frac{\partial z}{\partial y} \]

例 5. (例6.4.2) $z=z(x,y)$是由方程$ax^2+by^2+cz^2=1$所确定的隐函数,求

\[\frac{\partial ^2z}{\partial x^2},\frac{\partial ^2z}{\partial y^2}, \frac{\partial ^2z}{\partial x\partial y}, \frac{\partial z}{\partial x} \]

. 4, 对$x$求偏导,有

\[F'_1(x,y,f(x,y))+F'_3(x,y,f(x,y))f'_x(x,y)=0 \]

得到 $f'x = -\frac{F'_x}{F'_z}$

$y$求偏导,有

\[F'_2(x,y,f(x,y))+F'_3(x,y,f(x,y))f'_y(x,y)=0 \]

得到 $f'y = -\frac{F'_y}{F'_z}$

. 4, 对式子微分,有

\[dF(x,y,f(x,y))=0 \]

因而

\[F'_1(x,y,f(x,y))dx+F'_2(x,y,f(x,y))dy+F'_3(x,y,f(x,y))df=0 \]

从而

\[df=-\frac1{F'_3}(F'_1 dx+F'_2 dy) \]

例 6. (例6.4.3) $y=f(x+t)$,其中$t$是由方程$y+g(x,t)=0$所确定的函数$t(x,y)$。 求$\frac{dy}{dx}$

对2个式子做微分,

\[dy = d(f(x+t))=f'(x+t)(dx+dt) \]
\[dy + g'_1(x,t)dx+g'_2(x,t)dt=0 \]

联立解$dy$, $dt$

\[\begin{cases} dy= \frac{f'\cdot(g'_2-g'_1)}{g'_2+f'}dx\\ dt=-\frac{g'_1+f'}{g'_2+f'}dx \end{cases} \]

向量值多变量函数

例 7. 已知$u(x,y)$, $v(x,y)$满足

\[\begin{cases} xu-yv=0 \\ yu+xv=1 \end{cases} \]

$\frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}, \frac{\partial v}{\partial x}, \frac{\partial v}{\partial y}$

. 所有方程对$x$求偏导,得到

\[\begin{cases} x u'_x+u-yv'_x =0 \\ y u'_x+v+xv'_x=0\\ \end{cases} \]

解得$u'_x$, $v'_x$

\[\begin{cases} u'_x = -\frac{xu+yv}{x^2+y^2} \\ v'_x = \frac{yu-xv}{x^2+y^2} \\ \end{cases} \]

一般地,若$u(x,y)$, $v(x,y)$满足

\[\begin{cases} F(x,y,u,v)=0 \\ G(x,y,u,v)=0 \end{cases} \]

则式子对$x$求偏导,有

\[\begin{cases} F_x+F_u u_x+F_v v_x=0 \\ G_x+G_u u_x +G_v v_x=0 \end{cases} \]

写成矩阵形式,有

\[\begin{pmatrix} F_x \\ G_x \end{pmatrix} +\begin{pmatrix} F_u & F_v \\ G_u & G_v \\ \end{pmatrix} \begin{pmatrix} u_x \\ v_x \end{pmatrix} =0 \]
\[\begin{pmatrix} F_x \\ G_x \end{pmatrix} +\begin{pmatrix} F_u & F_v \\ G_u & G_v \\ \end{pmatrix} \begin{pmatrix} u_x \\ v_x \end{pmatrix} =0 \]

类似地,对$y$求偏导,得到

\[\begin{pmatrix} F_y \\ G_y \end{pmatrix} +\begin{pmatrix} F_u & F_v \\ G_u & G_v \\ \end{pmatrix} \begin{pmatrix} u_y \\ v_y \end{pmatrix} =0 \]

两个式子可以合写为

\[\begin{pmatrix} F_x & F_y \\ G_x & G_y \end{pmatrix} +\begin{pmatrix} F_u & F_v \\ G_u & G_v \\ \end{pmatrix} \begin{pmatrix} u_x & u_y \\ v_x & v_y \end{pmatrix} =0 \]

更一般地,记

\[\vec x=(x_1,x_2,\cdots,x_n) , \vec y=(y_1,y_2,\cdots,y_m) \]

$m$个方程组成的方程组,

\[\begin{cases} F_1(x_1,\cdots,x_n,y_1,\cdots,y_m)=0 \\ \cdots \\ F_m(x_1,\cdots,x_n,y_1,\cdots,y_m)=0 \end{cases} \]

简单记为 $\vec F(\vec x,\vec y)=0 $, 其中

\[\begin{aligned} \vec F=(F_1,F_2,\cdots,F_m)^T \\ \end{aligned} \]

$\vec y=\vec f(\vec x)$$\vec x$的函数,类似前面的计算,可以得到

\[\begin{pmatrix} \frac{\partial F_1}{\partial x_1} & \cdots & \frac{\partial F_1}{\partial x_n} \\ \vdots & & \vdots \\ \frac{\partial F_m}{\partial x_1} & \cdots & \frac{\partial F_m}{\partial x_n} \end{pmatrix} +\begin{pmatrix} \frac{\partial F_1}{\partial y_1} & \cdots & \frac{\partial F_1}{\partial y_m} \\ \vdots & & \vdots \\ \frac{\partial F_m}{\partial y_1} & \cdots & \frac{\partial F_m}{\partial y_m} \end{pmatrix} \begin{pmatrix} \frac{\partial y_1}{\partial x_1} & \cdots & \frac{\partial y_1}{\partial x_n} \\ \vdots & & \vdots \\ \frac{\partial y_m}{\partial x_1} & \cdots & \frac{\partial y_m}{\partial x_n} \end{pmatrix} =0 \]

\[J_xF=\begin{pmatrix} \frac{\partial F_1}{\partial x_1} & \cdots & \frac{\partial F_1}{\partial x_n} \\ \vdots & & \vdots \\ \frac{\partial F_m}{\partial x_1} & \cdots & \frac{\partial F_m}{\partial x_n} \end{pmatrix} , J_yF=\begin{pmatrix} \frac{\partial F_1}{\partial y_1} & \cdots & \frac{\partial F_1}{\partial y_m} \\ \vdots & & \vdots \\ \frac{\partial F_m}{\partial y_1} & \cdots & \frac{\partial F_m}{\partial y_m} \end{pmatrix} \]

$\vec y=\vec f(\vec x)$的Jacobi矩阵$Jf(x)$满足

\[Jf(x)=-[J_yF(\vec x,\vec y)]^{-1}J_xF(\vec x,\vec y) \]

隐映射定理

定理 2. (隐映射定理)
$D\subset\mathbb{R}^{n+m}$为开集,映射 $F:D\to\mathbb{R}^m$满足下列条件:

(1) $F\in C^1(D)$ (2) $F(x_0, y_0)=0$

(3) $\mbox{det} J_yF( x_0, y_0)\neq0$

其中$x_0\in\mathbb{R}^n$, $y_0\in\mathbb{R}^m$, 则有下列结论:

(1) 方程组$F(x_0,y_0)=0$$(x_0,y_0)$附近确定了隐映射$y=f(x)$$f=(f_1,\cdots,f_m)^T$

  • 即存在$(x_0,y_0)$的邻域$U\times V\subset D$及映射$f: U\to V$,使得$y=f(x)$$V$中满足$F(x,y)=0$的唯一元素($x\in U$);

(2) 隐映射 $ y= f( x)$$C^1$的,且

\[Jf(x)=-[J_yF(x,y)]^{-1}J_xF(x,y) , x\in U \]

逆映射

\[u=f(x,y), \quad v=g(x,y) \]

是一一映射,则有逆映射

\[x=x(u,v), \quad y=y(u,v) \]

如何求$x'_u, x'_v, y'_u, y'_v$

\[\begin{cases} u=f(x,y)=f(x(u,v),y(u,v)) \\ v=g(x,y)=g(x(u,v),y(u,v)) \\ \end{cases} \]

$u$求偏导数

\[\begin{cases} 1=f'_x x'_u+f'_y y'_u \\ 0=g'_x x'_u+g'_y y'_u \\ \end{cases} \Rightarrow \begin{pmatrix} 1 \\ 0 \end{pmatrix} =\begin{pmatrix} f'_x & f'_y \\ g'_x & g'_y \end{pmatrix} \begin{pmatrix} x'_u \\ y'_u \end{pmatrix} \]

$v$求偏导数

\[\begin{cases} 0=f'_x x'_v+f'_y y'_v \\ 1=g'_x x'_v+g'_y y'_v \\ \end{cases} \Rightarrow \begin{pmatrix} 0 \\ 1 \end{pmatrix} =\begin{pmatrix} f'_x & f'_y \\ g'_x & g'_y \end{pmatrix} \begin{pmatrix} x'_v \\ y'_v \end{pmatrix} \]

得到 $\begin{pmatrix}1 & 0 \\ 0 & 1 \end{pmatrix}=\begin{pmatrix} f'_x & f'_y \\ g'_x & g'_y \end{pmatrix}\begin{pmatrix} x'_u & x'_v \\ y'_u & y'_v \end{pmatrix}$

或者,写成向量函数的形式,

\[\vec y = \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = \vec f(\vec x) = \begin{pmatrix} f_1(x_1, x_2) \\ f_2(x_1, x_2) \end{pmatrix}, \quad \vec x= \vec g(\vec y) \]

其中$\vec g$$\vec f$的“逆映射”。则有

\[d \vec y = J_{\vec x} \vec f \cdot dx =J_{\vec x}\vec f \cdot J_{\vec y} \vec g \cdot d\vec y \]

$I$为单位阵,则

\[J_{\vec x}\vec f \cdot J_{\vec y} \vec g = I \]

互逆映射的Jacobi矩阵互逆

反函数存在定理

定理 3. (逆映射定理)
$D\subset\mathbb{R}^n$为开集,$f:D\to\mathbb{R}^n$$C^1$映射,$x_0\in D$$\mbox{det}Jf(x_0)\neq 0$,则存在$x_0$的邻域$U$,使得$V=f(U)$为一一映射,从而有逆映射$f^{-1}:V\to U$,且对$\forall y\in V$,有

\[Jf^{-1}(y)=[Jf(x)]^{-1} \]

其中$x\in U$$f(x)=y$

在一维中,对于反函数的导数,有如下公式

\[(f^{-1}(y))'=\frac1{f'(x)} \]

其中,$y=f(x)$, $x=f^{-1}(y)$

例 8. (例6.4.5) 求极坐标变换的反变换的偏导数。即由

\[\begin{cases} x=r\cos\theta \\ y=r\sin\theta \end{cases} \]

\[\frac{\partial r}{\partial x}, \frac{\partial r}{\partial y}, \frac{\partial \theta}{\partial x}, \frac{\partial \theta}{\partial y} \]

\[\begin{pmatrix} \frac{\partial r}{\partial x} & \frac{\partial r}{\partial y} \\ \frac{\partial \theta}{\partial x} & \frac{\partial \theta}{\partial y} \end{pmatrix} =\begin{pmatrix} \frac{\partial x}{\partial r} & \frac{\partial x}{\partial \theta} \\ \frac{\partial y}{\partial r} & \frac{\partial y}{\partial \theta} \end{pmatrix}^{-1} =\begin{pmatrix} \cos\theta & -r\sin\theta \\ \sin\theta & r\cos\theta \end{pmatrix}^{-1} \]
\[\begin{pmatrix} \cos\theta & -r\sin\theta \\ \sin\theta & r\cos\theta \end{pmatrix}^{-1} =\begin{pmatrix} \cos\theta & \sin\theta \\ -\frac1r \sin\theta & \frac1r\cos\theta \end{pmatrix} \]
\[\begin{aligned} r'_x = \cos\theta = \frac{x}{\sqrt{x^2+y^2}}&,&& \theta'_x = -\frac{\sin\theta}r = -\frac{y}{x^2+y^2} \\ r'_y = \sin\theta = \frac{y}{\sqrt{x^2+y^2}}&,&& \theta'_y = \frac{\cos\theta}r = \frac{x}{x^2+y^2} \\ \end{aligned} \]

(另解) 由$x=r\cos\theta$,两边对$x$求导,有

\[1=\frac{\partial r}{\partial x}\cos\theta+r(-\sin\theta)\frac{\partial \theta}{\partial x} \]

$y=r\sin\theta$,两边对$x$求导,有

\[0=\frac{\partial r}{\partial x}\sin\theta+r(\cos\theta)\frac{\partial \theta}{\partial x} \]

两式联立,可解出

\[\begin{cases} \frac{\partial r}{\partial x}=\cos\theta \\ \frac{\partial \theta}{\partial x}=-\frac1r\sin\theta \end{cases} \]

目录

谢谢

例 9. 本节读完

例 10. 已知 $x=\phi(u,v), y=\psi(u,v), z=f(u,v)$,求

\[\frac{\partial z}{\partial x}, \frac{\partial z}{\partial y} \]

. $u$,$v$$x$, $y$的反函数,则

\[\begin{pmatrix} u'_x & u'_y \\ v'_x & v'_y \end{pmatrix} =\begin{pmatrix} x'_u & x'_v \\ y'_u & y'_v \end{pmatrix}^{-1} =\begin{pmatrix} \phi'_u & \phi'_v \\ \psi'_u & \psi'_v \end{pmatrix}^{-1} \]

\[\begin{pmatrix} z'_x & z'_y \end{pmatrix} =\begin{pmatrix} f'_u & f'_v \end{pmatrix} \begin{pmatrix} u'_x & u'_y \\ v'_x & v'_y \end{pmatrix} \]

例 10

9.

一维中,由

\[f^{-1}(y)=f^{-1}(f(x))=x \]

两边对$x$求导,由链式法则,有

\[(f^{-1}(y))'f'(x)=1 \]

则有

\[(f^{-1}(y))'=\frac1{f'(x)} \]

多变量也是类似。

$x=(x_1,x_2)$, $y=(y_1,y_2)$$f=(f_1,f_2)$,且有

\[\begin{cases} & y_1=f_1(x_1,x_2) \\ & y_2=f_2(x_1,x_2) \end{cases} \]

及反函数

\[\begin{cases} & x_1=f_1^{-1}(y_1,y_2) \\ & x_2=f_2^{-1}(y_1,y_2) \end{cases} \]

同样有

\[\begin{cases} & x_1=f_1^{-1}(f_1(x_1,x_2),f_2(x_1,x_2)) \\ & x_2=f_2^{-1}(f_1(x_1,x_2),f_2(x_1,x_2)) \end{cases} \]

第一式对$x_1$$x_2$求偏导,可以得到

\[\begin{aligned} \frac{\partial f_1^{-1}}{\partial y_1}\frac{\partial y_1}{\partial x_1}+\frac{\partial f_1^{-1}}{\partial y_2}\frac{\partial y_2}{\partial x_1}=1 \\ \frac{\partial f_1^{-1}}{\partial y_1}\frac{\partial y_1}{\partial x_2}+\frac{\partial f_1^{-1}}{\partial y_2}\frac{\partial y_2}{\partial x_2}=0 \end{aligned} \]

写成矩阵形式为

\[\begin{pmatrix} \frac{\partial f_1^{-1}}{\partial y_1} & \frac{\partial f_1^{-1}}{\partial y_2} \end{pmatrix} \begin{pmatrix} \frac{\partial y_1}{\partial x_1} & \frac{\partial y_1}{\partial x_2} \\ \frac{\partial y_2}{\partial x_1} & \frac{\partial y_2}{\partial x_2} \end{pmatrix} =\begin{pmatrix} 1 & 0 \end{pmatrix} \]

第二式对$x_1$$x_2$求偏导,可以得到

\[\begin{aligned} \frac{\partial f_2^{-1}}{\partial y_1}\frac{\partial y_1}{\partial x_1}+\frac{\partial f_2^{-1}}{\partial y_2}\frac{\partial y_2}{\partial x_1}=0 \\ \frac{\partial f_2^{-1}}{\partial y_1}\frac{\partial y_1}{\partial x_2}+\frac{\partial f_2^{-1}}{\partial y_2}\frac{\partial y_2}{\partial x_2}=1 \end{aligned} \]

写成矩阵形式为

\[\begin{pmatrix} \frac{\partial f_2^{-1}}{\partial y_1} & \frac{\partial f_2^{-1}}{\partial y_2} \end{pmatrix} \begin{pmatrix} \frac{\partial y_1}{\partial x_1} & \frac{\partial y_1}{\partial x_2} \\ \frac{\partial y_2}{\partial x_1} & \frac{\partial y_2}{\partial x_2} \end{pmatrix} =\begin{pmatrix} 0 & 1 \end{pmatrix} \]

组合后,即有

\[\begin{pmatrix} \frac{\partial f_1^{-1}}{\partial y_1} & \frac{\partial f_1^{-1}}{\partial y_2} \\ \frac{\partial f_2^{-1}}{\partial y_1} & \frac{\partial f_2^{-1}}{\partial y_2} \end{pmatrix} \begin{pmatrix} \frac{\partial y_1}{\partial x_1} & \frac{\partial y_1}{\partial x_2} \\ \frac{\partial y_2}{\partial x_1} & \frac{\partial y_2}{\partial x_2} \end{pmatrix} =\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \]

\[Jf^{-1}(y)=[Jf(x)]^{-1} \]