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Abstract
Small regulatory RNAs play a variety of crucial roles in eukaryotes, influencing gene regulation, developmental 
timing, antiviral defense, and genome integrity via a process termed RNA interference (RNAi). This process involves 
Argonaute/small RNA (AGO/sRNA) complexes that target transcripts via sequence complementarity and modulate 
gene expression and epigenetic modifications. RNAi is a highly conserved gene regulatory phenomenon that 
recognizes self- and non-self nucleic acids, thereby defending against invasive sequences. Since its discovery, RNAi 
has been widely applied in functional genomic studies and a range of practical applications. In this review, we focus 
on the current understanding of the biological roles of the RNAi pathway in transposon silencing, fertility, devel-
opmental regulation, immunity, stress responses, and acquired transgenerational inheritance. Additionally, we 
provide an overview of the applications of RNAi technology in biomedical research, agriculture, and therapeutics.
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Introduction
Small regulatory RNAs direct sequence-specific regulation of gene
expression via a mechanism termed RNA interference (RNAi),
which was first described in nematodes in 1998 [1]. In a range of
eukaryotic organisms, small regulatory RNAs and their associated
Argonaute proteins play essential roles in RNAi-mediated gene
silencing, whereby small regulatory RNAs guide the Argonaute-
containing protein complexes to targeted nucleic acids with
sequence complementarity [2‒7]. Small RNA/Argonaute complexes
modulate gene expression via several mechanisms, including
degrading targeted RNAs, inhibiting translation, inducing epige-
netic modifications and heterochromatin formation, and inhibiting
transcription elongation or triggering alternative splicing [8‒14].
There are three main classes of small regulatory RNAs: micro-

RNAs (miRNAs), small interfering RNAs (siRNAs) and PIWI-
interacting RNAs (piRNAs) [15‒18]. Additional classes of small
regulatory RNAs, such as antisense ribosomal siRNAs (risiRNAs)
[19‒21], tRNA-derived small RNAs (tsRNAs), and phased second-
ary small interfering RNAs (phasiRNAs), have also been shown to

act through the RNAi pathway (Table 1) [22‒25]. Notably, recent
developments in novel RNA-sequencing techniques have signifi-
cantly expanded our knowledge of small regulatory RNAs by
overcoming sequencing obstacles, which are caused either by
specific modifications or by terminus multiplicities of small RNAs.
More importantly, many of these newly detected small RNAs have
important functions in different biological processes, such as
reprogramming, lineage specification and apoptosis [26‒28].
Small regulatory RNAs are produced and function through a

variety of mechanisms (Figure 1). In eukaryotes, most miRNAs are
generated through the cleavage of a stem-loop precursor by the
conserved RNase III-like ribonucleases Drosha, followed by export
to the cytoplasm and processing by Dicer into 21‒23 nucleotide
mature miRNAs. Usually, miRNAs silence gene expression in the
cytoplasm by degrading mRNAs or inhibiting translation
[10,15,18,29]. siRNAs are generated by the cleavage of long
double-stranded RNAs into mature 21‒23 nt segments, which guide
the RNA-induced silencing complex (RISC) to target mRNAs for
degradation in the cytoplasm or induce epigenetic modifications
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and inhibit transcription elongation in the nucleus [11,13,18]. In
animal gonads, piRNAs are generated via distinct mechanisms in
different organisms [30,31]. The piRNA pathway is thought to
recognize nascent transcripts of selfish genetic parasites, such as
transposable elements (TEs), and guide sequence-specific silencing
at both the cotranscriptional and posttranscriptional levels [32,33].
Recent evidence indicates that piRNAs are involved in regulating

the expression of protein-coding genes [34,35]. The production of
risiRNAs is elicited by erroneous ribosomal RNA sequences, which
subsequently silence rRNA expression in the nucleolus to maintain
the balance of ribosome biogenesis [14,20]. Depending on the
splicing site, tsRNAs can be divided into two main classes: tRNA
halves (tiRNAs) and tRNA-derived fragments (tRFs) of 18–20 nt.
They have been suggested to exert regulatory functions similar to

Table 1. The characteristics of different types of small regulatory RNAs

Classification Length (nt) Precursor Production and processing Function

microRNA (miRNA) ~20–25 hairpin loop-like
precursor

transcribed by RNAP II, cleaved by
Drosha and Dicer

transcriptional gene silencing, inhi-
bition of translation and inducing
mRNA decay

PIWI-interacting RNA (piRNA)
(Drosophila, mammals etc)

~18–30 long single-stranded
precursor

transcribed by RNAP II, followed by
processing pathway, amplified by
ping-pong amplification involving
Zuc, Aub and AGO3 in Drosophila

silence gene expression and regulate
genome stability

21U RNA (nematode) 21 pre-piRNA precursor start with U, transcribed by RNAP II,
followed by processing pathway

silence gene expression and regulate
genome stability, recognize self and
non-self nucleic acids

phasiRNA (plant) 21 or 24 long dsRNA iteratively cleaved by Dicer mRNA degradation and develop-
ment regulation

Small interfering RNA (siRNA) ~20–25 long dsRNA transcribed by RNAP II, virus-derived,
cleaved by Dicer

mRNA decay and epigenetic modifi-
cation, transgenerational inheritance

Secondary siRNA (nematode) ~22 starting with G, using mRNA as tem-
plates, synthesized by RdRP

mRNA decay, inhibit RNAP II tran-
scription and epigenetic modification

Antisense ribosomal siRNA
(risiRNA)

~22 starting with G, using rRNA as
templates, synthesized by RdRP

rRNA decay, inhibit RNAP I tran-
scription

tRNA-derived small RNA
(tsRNA)

~15–40 tRNA cleaved by Angiogenin, Dicer, RNase
T2, RNase Z, ELAC2 and Rnylp, etc

mimicry or displacement of tRNA, or
acting like microRNA

rRNA-derived small RNA
(rsRNA)

~21–44 rRNA unclear unclear, may involve in transge-
nerational inheritance

Figure 1. The inputs and outputs of RNAi Small regulatory RNAs can be derived from multiple inputs, which subsequently associate with
conserved Argonaute family proteins. Small regulatory RNA/Argonaute complexes then recognize their targeted nucleic acids harboring
complementary sequences and conduct downstream gene silencing via a variety of transcriptional and post-transcriptional mechanisms.
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those of siRNAs or miRNAs rather than performing the roles of
tRNAs in translation [22,24].
In addition to their roles in RNAi-like mechanisms, some small

regulatory RNAs also exhibit AGO-independent base pairing or 3D
structure-based aptamer-like functions [36,37]. For example, in
mouse cardiomyocytes, miR-1 interacts with the potassium channel
protein Kir2.1 and regulates cardiac electrophysiology through a
core sequence located outside its RNAi seed region [38]. Addition-
ally, certain 5′ tiRNAs can assemble into a tetrameric G-quadruplex
(G4) structure, which interacts with the translation initiation
complex eIF4F and disrupts its stability. This G4 structure formation
depends on a stretch of oligoguanine at the 5′ end of the tiRNAs
[39]. Overall, the diverse types and working mechanisms of small
regulatory RNAs underscore their crucial roles in regulating gene
expression and maintaining cellular homeostasis.
Since its discovery, RNAi has been used as a powerful

experimental technique for studying gene functions in a wide range
of organisms. Small regulatory RNAs of different structures and
origins have become increasingly recognized for their crucial roles
in regulating gene expression across a wide range of biological
processes in eukaryotes, such as fertility, development, immunity
and maintenance of genome stability. Progress in understanding the
mechanism of RNAi and the biogenesis and functions of small
regulatory RNAs has led to important practical applications in
therapeutics, agricultural biotechnology and many other areas.

Functions of RNAi
RNAi and transposon suppression
TEs are common in all living organisms. These repetitive elements
are interspersed throughout the genome and can move from one
region to another. By inserting themselves into various locations
within the host genome, TEs can cause sequence alterations,
abnormal chromosomal recombination and consequently genome
instability. To protect the genome, hosts have developed a number
of defense mechanisms, among which small regulatory RNAs and
RNAi play crucial roles [40,41].
RNAi-based TE silencing was first reported in C. elegans in 1999.

Forward genetic screening was conducted to isolate RNAi-defective
(Rde) mutants, and the results revealed that these mutants also
presented increased rates of transposition [42‒44]. Mutator (Mut)
genes, which are known to suppress transposons in C. elegans,
were cloned from the collected Rde mutants. A subsequent deep
sequencing study revealed numerous TE-derived siRNAs from the
nematode genome, further supporting the role of RNAi in TE
suppression [45].
In most animals, piRNAs, in conjunction with Piwi proteins, are

responsible for silencing TEs in the germline. In C. elegans, the
majority of piRNA genes are located within two clusters on
chromosome IV [46]. Following transcription and processing, the
mature piRNAs bind with PRG-1, the sole functionally characterized
Piwi ortholog in C. elegans [47]. The piRNA-PRG-1 complex targets
transposon RNAs, which are subsequently cleaved by the endonu-
clease RDE-8 and poly-tailed by the poly (UG)-polymerase RDE-3
[48‒52]. Although the piRNA-PRG-1 complex can reduce the
abundance of TE RNAs, its effect is significantly enhanced by the
generation of secondary siRNAs. The poly (UG)-tailed transposon
RNAs serve as templates and further recruit RNA-dependent RNA
polymerases (RdRPs) to generate secondary siRNAs. These
abundant secondary siRNAs either bind with an expanded group

of worm-specific AGOs (WAGOs) to mediate posttranscriptional
gene silencing (PTGS) or associate with the nuclear Argonaute
protein HRDE-1 to inhibit transposon transcription through the
nuclear RNAi pathway [53‒55].
Although RNAi-based TE suppression is particularly important

for both plants and invertebrates, it also plays critical roles in
repressing the activities of TEs in many other eukaryotes [56,57].
For example, in mammals, mutations in two of the three mouse Piwi
homologs lead to increased expression of some TEs, which leads to
male infertility [58,59].

piRNAs and fertility maintenance
The roles of PIWI proteins and their associated piRNAs in fertility
have been widely studied. In Drosophila, PIWI proteins are
essential for primordial germ cell specification and differentiation
[60‒62]. More recently, it was reported that deletion of the piRNA
clusters Su (Ste) and flam caused infertility in male and female
Drosophila, respectively, providing more direct evidence of the
importance of piRNAs in reproduction [63‒66].
In C. elegans, piRNAs are depleted in prg-1 mutants. The prg-1

mutant or its downstream nuclear RNAi-defective (Nrde) mutants
displayed progressive sterility, which is termed the mortality (Mrt)
phenotype [67,68]. Interestingly, prg-1 mutation or piRNA deple-
tion shifted the cellular RNAi machinery toward the progressive
accumulation of risiRNAs and ultimately led to Mrt [21,69].
Moreover, recent progress in the study of the piRNA transcription
machinery revealed that the chromodomain protein UAD-2 directs
clustered piRNA expression in a temperature-sensitive manner. At
elevated temperatures, uad-2 mutants expressed much lower levels
of piRNAs and presented a temperature-sensitive fertility defect
[70,71].
PIWI proteins are conserved across various organisms. In mice,

three PIWI homologs, MIWI, MILI and MIWI2, function in different
stages of spermatogenesis [72,73]. Most species, however, encode
an additional PIWI gene, PIWIL3, which is highly expressed
throughout oogenesis in humans, bovines and hamsters [74,75].
In golden hamster, PIWIL3 mutants present a decreased 19 nt
piRNA population in oocytes and reduced female fertility
[74,76,77].
Humans have all four PIWI proteins. Mutations in PIWIL1 have

been identified in patients with azoospermia, and modeling such
mutations in mice suggests that one role of PIWI proteins is to
regulate histone-to-protamine exchange during spermiogenesis
[78‒80]. Additionally, defects in piRNA processing may also lead
to male infertility. For example, poly(A)-specific RNase-like domain
containing 1 (PNLDC1), which participates in the maturation of
piRNAs by trimming the 3′ end of pre-piRNAs, is essential for male
fertility in mice [81]. Patients with azoospermia who carry PNLDC1
mutations exhibit diminished expressions of piRNA-processing
proteins, lower levels of pachytene piRNAs and spermatogenic
arrest [80,82].

RNAi and developmental regulation
Small regulatory RNAs and the RNAi pathway are also well known
for their roles in developmental regulation by directing the precise
spatiotemporal expression of specific genes. Genes involved in
developmental processes are often enriched for miRNA binding
sites [83,84], and animals that are unable to produce mature
miRNAs usually do not grow or reproduce [85,86]. The first two

small RNAs and their functions 3

Feng et al. Acta Biochim Biophys Sin 2024



identified miRNAs, lin-4 and let-7, were both found to regulate
developmental processes in C. elegans. Lin-4 suppresses the
expression of the heterochronic gene lin-14 to allow the transition
from larval stage L1 to L2 [87], whereas let-7 modulates the
expression of multiple genes to promote progression to adulthood
[88,89]. In Drosophila, both Ago1 and Dicer1 are required for
miRNA-induced gene silencing, and ago1; dcr-1 double mutant
embryos present reduced Wg protein (Wingless) expression and
strong segmentation defects [90]. Similarly, in Arabidopsis, muta-
tions in the Dicer homolog CARPEL FACTORY lead to developmen-
tally defective leaves and excessive proliferation of floral meristems
[91].
In mammals, although some miRNA-depleted tissues are able to

differentiate and pattern properly, the morphogenesis of many
tissues or organs is often disrupted [29,92]. In mice, miRNA-133
promotes the differentiation of adult satellite cells into brown
adipose tissue by targeting the transcription factor Prdm16 [93], and
depletion of miR-133 leads to reduced brown adipose tissue
formation and potentially affects energy metabolism and thermo-
regulation. During epidermal development, miR-205 is crucial for
the proliferation and maintenance of follicular progenitors because
it targets genes involved in cell cycle regulation and differentiation,
such as ZEB1, Foxo1 and PTEN. Ablation of miR-205 impairs the
proliferation of follicular progenitors and causes severe defects in
epidermal growth [94,95]. During lung development, more than 100
miRNAs are differentially expressed. Some of these miRNA clusters
were found to regulate the balance between the proliferation and
differentiation of the lung epithelium or affect the size of the lumen
during a specific developmental window [96]. Thus, RNAi path-
ways, particularly those regulated by miRNAs, are required for the
proper timing and direction of development [92].

RNAi and anti-stress reaction
Organisms are challenged by enormous amounts of endogenous
and environmental stimuli, which can affect the homeostasis of a
variety of RNAs. In C. elegans, lower temperatures, UV irradiation,
and deficiencies in rRNA modification or splicing can result in the
accumulation of risiRNAs [97]. In turn, risiRNAs silence pre-rRNA
expression via the nucleolar RNAi pathway [14]. A similar
phenomenon has also been observed in Arabidopsis: aberrant
rRNA processing events in fiery1 (fry1) mutants or xrn2 xrn3 double
mutants are accompanied by risiRNA production [98]. Therefore,
the risiRNA/RNAi-directed feedback loop is speculated to act as a
mechanism to prohibit the accumulation and spread of erroneous
rRNAs in the population.
In plants, various abiotic stresses, such as salinity, drought, heat

and cold, also elicit differential expression of different types of small
regulatory RNAs [99,100]. For example, under high-salinity stress,
many miRNAs are up- or downregulated in maize [101]. Some of
these miRNAs target transcription factors involved in plant
development and organ formation, such as MYBs, NAC1, and HD-
ZIP. In Arabidopsis, miR319 is upregulated in response to salt stress
[102]. Interestingly, overexpressing one member of the rice miR319
gene family, Osa-miR319b, led to increased tolerance to cold in rice
[103,104]. Another abiotic stress that threatens the health of plants
is heavymetal pollution, which is often resulted from the large-scale
use of chemical fertilizers and pesticides. Recent studies have
shown that following metal exposure, a group of miRNAs exhibit
differential expression, which may coordinate with plant responses

through regulating antioxidant functions, root growth, hormone
signals, and the expressions of metal transporters [105,106].
Like normal physiological conditions, some of these abiotic

stress-regulated small regulatory RNAs induce RNAi responses via
transcript cleavage, translation inhibition, or changes in epigenetic
modifications [107‒109]. In plants, RNAi responses are often
mediated via the hypermethylation of DNA sequences, which is
commonly known as the RNA-directed DNA methylation (RdDM)
pathway [110,111]. Plants employ RNA polymerase IV, RNA-
dependent RNA polymerase 2, and Dicer-like protein 3 for the
generation of 24-nt siRNAs. These 24-nt siRNAs initiate the
formation of a silencing effector complex, which directs the
methylation of homologous DNA loci [112]. In Arabidopsis, this
canonical RdDM pathway accounts for at least one-third of the
methylated loci [113]. Additionally, these DNA methylations could
serve as transgenerational stress memories, allowing subsequent
generations to adapt better to future exposures [110,113].

RNAi and pathogen defense
RNAi is a strong antiviral defense mechanism in plants, worms, and
insects [114,115]. Upon infection, RNA viruses generate dsRNAs,
which are further processed by Dicer into 19–25 siRNAs and loaded
into Argonaute-containing complexes for the cleavage and degrada-
tion of viral RNA [116]. In addition to these virus-induced primary
siRNAs, which are usually expressed at low levels, C. elegans and
plants can generate more antiviral siRNAs through RdRP-mediated
amplification [117,118]. These secondary siRNAs also serve as
important prerequisites for non-cell-autonomous RNAi, by which
the silencing signal is transported from one cell to another or even to
distant tissues [119].
Mammalian cells lack RdRPs. Thus, the level of virus-specific

siRNAs is relatively low [117]. Upon viral infection, mammalian
cells activate the interferon response by inducing the expressions of
interferon-stimulated genes (ISGs), which are the first line of
antiviral defense [120]. Nevertheless, recent evidence has also
suggested a direct role of RNAi in controlling viral infection in
mammalian cells. After viral infection, multiple virus-derived
siRNAs are detected via deep sequencing in mammalian host cells.
In addition, viral replication is enhanced in cells with mutations in
the components of the RNAi machinery [121‒123]. It is likely that
the RNAi and interferon pathways are both critical components of
antiviral innate immunity.
In addition to functioning in viral infection, RNAi is also a

common defense mechanism against other pathogens. In Arabi-
dopsis, Ago2 mutants are more susceptible to Pseudomonas
syringae pv. tomato (Pst) infection, the most well-characterized
bacterial disease in plants [124]. Leaves treated with Pst-derived
peptide express relatively high levels of miR-393, which confers
antibacterial defense through the suppression of auxin signaling
[125]. In addition, RNA-dependent RNA polymerase 6 (RDR6) is a
key RNAi factor against bacterial infection in plants. RDR6 is
involved in the biogenesis of the bacterium-induced long siRNA
AtlsiRNA-1 and natural antisense transcript (NAT)-associated
siRNAs. Consequently, rdr6-knockout mutants are highly suscep-
tible to various bacterial infections [126,127].

RNAi and transgenerational inheritance
Organisms have developed a variety of strategies to remember their
exposure to invaders and transmit experiences to their descendants.
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Some of the information is transmitted in the form of non-DNA
sequence-based signals, such as DNA methylation, histone mod-
ification and noncoding RNAs [128‒131]. It is proposed that the
inherited signals are either preserved during gametogenesis and
fertilization and thus directly transmitted from the parental
generation to the progeny or that the primary epigenetic signals
are erased but later reconstructed from various secondary signals
[132].
The ability of small regulatory RNAs to induce gene silencing over

generations has been known since the discovery of the RNAi
phenomenon in C. elegans [133]. Upon stimulation or infection by
nonself nucleic acids, small regulatory RNAs direct the RNAi
machinery to deposit suppressive epigenetic modifications on the
targeted locus, which can persist for at least tens of generations
[53,134‒136]. These transgenerational suppression effects depend
on the RdRP-mediated production of secondary 22G siRNAs, which
ensures the maintenance of these signals across many generations
without dilution [137,138]. Certain environmental conditions, such
as starvation or heat, can also induce the expression of a set of
endogenous, transgenerationally transmitted siRNAs for at least
three to four generations. Importantly, these starvation-induced
siRNAs target genes involved in metabolism, and the descendants of
the starved parents consistently exhibit increased lifespans com-
pared with those of control worms [139,140].
During the early development of mammals, reprogramming

occurs in primordial germ cells and early embryos, which
potentially resets chromatin modifications and limits transgenera-
tional information flow [141]. Despite these barriers, recent studies
in mice suggest that sperm small regulatory RNAs, particularly
miRNAs, tsRNAs, and certain RNA modifications, may serve as
vectors for epigenetic inheritance [142‒144]. For example, stress
exposure can increase the expression of a group of miRNAs in
sperm, which contributes to reduced hypothalamic–pituitary–
adrenal (HPA) axis responsivity in offspring [145]. Additionally,
injecting small regulatory RNAs derived from the sperm of male
mice fed with a high-fat, high-sugar diet into normal zygotes
produced offspring with traits reflecting paternal metabolic dis-
orders [142,146,147].
Despite these intriguing observations in mice, several issues

remain to be addressed in future studies. One critical issue is to
carefully track how many generations of these inherited epigenetic
signals can persist. Additionally, since mammals lack RdRP or its
orthologs, elucidating the mechanism underlying the maintenance
of small regulatory RNAs in each generation will also be critical for
fully understanding themechanism of transgenerational inheritance
in mammals.

The Applications of Small Regulatory RNAs and RNAi
RNAi as a research tool for reverse genetics
For more than 25 years after its discovery, RNAi has been widely
used as a pivotal reverse genetic tool in functional genomic studies.
By harnessing the specificity of small regulatory RNAs, RNAi
enables the targeting of any specific genes and uncovering their
roles in development, metabolism, aging, stress response and other
critical processes [148‒151]. A variety of powerful RNAi-based
research products have been developed for high-throughput
screening. In C. elegans, for example, Ahringer and colleagues
produced an RNAi library, which represents approximately 86% of
the genes of C. elegans [152, 153]. In Drosophila, a genome-wide

transgenic RNAi library for conditional gene inactivation was also
generated, which covers 88% of the predicted protein-coding genes
in the Drosophila genome [154,155]. A similar strategy has also
been successfully applied in multiple other model organisms as well
as in humans [57,156‒160].

Applications of RNAi in agricultural biotechnology
In agricultural biotechnology, RNAi has been exploited to improve
plant agronomic traits by modifying their biochemical and
physiological characteristics. For example, plant biologists use this
tool to manage pest and pathogen infection, increase abiotic stress
tolerance and improve yield and nutritional quality [161‒163].
RNAi can be used to increase crop yield by regulating meristem

activities and growth patterns. Knocking down OsDWARF4, a gene
encoding a C-22 hydroxylase in rice, results in dwarf plants with
erect leaves. This characteristic potentially enhances photosynth-
esis in the lower leaves, thereby improving yields in densely
growing environments [164]. In potato, downregulating the
expression of sucrose-phosphatase SPP in potato tubers via siRNA
reduces SPP activity, which greatly affects the hexose-to-sucrose
ratio of the tubers [165]. In wheat, the expression of hairpin RNA
fragments derived from Fusarium graminearum chitin synthase-3b
(FgChs3b) enhances plant resistance to Fusarium head blight, a
serious wheat disease caused by pathogenic fungi [166].
Currently, the applications of RNAi technology in agriculture are

largely based on the generation of transgenic plants that express
dsRNAs [167‒169]. Alternatively, exogenous dsRNAs or siRNAs
can be introduced through microinjections, soaking or direct
spraying on leaves [170‒172]. For example, topical application of
in vitro-produced dsRNA molecules derived from either the coat
protein or the proteinase of Papaya ringspot virus-Tirupati (PRSV)
isolate can efficiently protect papaya against PRSV infection [173].
Although the application of RNAi technology for plant protection

and improvement appears promising, several issues, such as
optimizing the concentration, length and stability of the applied
regulatory RNAs, improving the efficiency of production and
delivery techniques, and minimizing off-target effects, need to be
resolved before practical applications can be fully realized.

Application of small regulatory RNAs in diagnosis
Aberrant expression of small regulatory RNAs has been linked to a
wide range of human diseases, such as cancers, neurological
disorders, infectious diseases, and cardiovascular diseases
[174,175]. In diseased tissues, the expression of small regulatory
RNAs is usually dysregulated as a consequence of perturbed
genomic structure, epigenetic modifications or transcription activ-
ities [176,177]. Understanding the physiological meaning and
underlying mechanism of these changes could pave the way for
the development of innovative diagnostic and intervention tools.
This is particularly important for the diagnosis of certain cancers,
for which late detection leads to poor prognosis, and ideally, for the
discovery of accurate biomarkers to achieve personalized treat-
ment.
Although many small regulatory RNAs have shown potential for

use as biomarkers, only a small fraction of them have reached
clinical trials [178‒180]. One of the most broadly tested small
regulator RNA markers in cancer is miR-21-5p, which has been
validated as a diagnostic and prognostic biomarker in some highly
prevalent cancers, such as lung cancer, breast cancer and colorectal
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cancer [181,182]. It has also been reported that the use of a miRNA
classifier, which profiles the expression of multiple correlated
miRNAs, could yield more reliable results for the diagnosis of
certain diseases [183,184]. Notably, in addition to small regulatory
RNAs, long non-coding RNAs (lncRNAs) are also potential
diagnostic markers for many clinical diseases. For example,
HOTAIR, a lncRNA involved in chromatin reprogramming, has
been tested as a diagnostic biomarker in ovarian, colorectal, breast,
and pancreatic cancers [185‒187].
Despite recent technological advancements, there are also some

technical limitations to be resolved before small regulatory RNAs,
and more broadly, non-coding RNAs, can be widely utilized in
diagnostics. Some of the current difficulties include understanding
their precise functions, elucidating their disease specificity and
accurate quantification [180,188,189].

RNAi and siRNAs in therapy
The concept of using nucleic acids as drugs emerged in the 1970s
with the rapid progress of oligonucleotide synthesis techniques, and
the discovery of RNAi as a fundamental mechanism for silencing
gene expression further suggested that small regulatory RNAs hold
great potential in the development of new drugs and therapeutic
approaches [190‒192]. The prospect of controlling any disease-
associated gene by simply synthesizing and applying sequence-
specific siRNAs appears compelling and promising. For example,
viral and human genes that are needed for viral replication can be
targeted to generate virus-resistant host cells [193,194], and tumor
growth can be inhibited by targeting oncogenes essential for
malignant cell replication or molecules important for neovascular-
ization [195‒198].
Although many proof-of-concept studies have revealed the

potential effectiveness of RNAi-based therapies, early siRNA-
derived drugs exhibit a variety of dose-related toxicities or
insufficient therapeutic activity. In addition, there are a number of
side effects, such as undesired immunostimulatory activity,
competition for endogenous RNAi pathway components, and off-
target effects [199‒201]. In the past few years, with major technical
breakthroughs being made in sequence selection, chemical mod-
ification, compound delivery, and even synergistic therapeutic
approaches, safer and more effective siRNA-based drugs have been
developed [202‒206]. For example, the conjugation of siRNAs to
GalNAc (N-acetylgalactosamine) represents a breakthrough in the
tissue-specific targeting of RNA therapeutics, which specifically
enhances the uptake of RNA molecules by hepatocytes. Twenty
years after the discovery of the RNAi phenomenon, the FDA
approved the first siRNA drug, patisiran, for the treatment of
hereditary transthyretin amyloidosis [207‒209]. By 2024, five
additional siRNA therapeutics have been approved, and all six
drugs target disease-causing genes in the liver [197,210,211]. Efforts
to achieve robust gene silencing in other tissues, such as the central
nervous system, eye, lung, and muscle, are rapidly increasing,
which will remarkably increase the number of diseases that can be
treated by RNAi therapeutics. Currently, multiple candidates for
treating kidney injury and eye diseases are in phase II and III clinical
trials [197,212‒214].

Perspective
Soon after the discovery of RNAi in C. elegans, Tuschl and Elbashir
demonstrated that RNAi could also function through synthetic 21-

nucleotide RNA duplexes in human cells in 2001 [91]. These
dsRNAs can be readily synthesized, transfected into cultured cells,
and used to control gene expression, suggesting their enormous
potential for future applications.
Although the natural mechanisms of small regulatory RNA

biogenesis and RNAi have largely been understood after twenty
years of extensive study and RNAi and synthetic RNAs have already
been widely used as laboratory tools for controlling gene expres-
sion, a number of critical questions remain unresolved, both in
basic research and in clinical applications.
One critical question is how cellular RNAs are selected for

targeting by particular small regulatory RNA pathways. The
molecular characteristics of certain genes or transcripts, including
their sequence context, strength of regulatory elements, and
transcript localization, are among the many features that may
contribute to this selection [51]. In plants, Argonaute proteins may
determine their bound siRNA partners by recognizing the 5′-end
nucleotides of the siRNAs [215]. However, the mechanism bywhich
certain small regulatory RNAs are selected for inclusion in
exosomes and subsequently translocated to neighboring or distant
cells remains largely unknown [216].
Although RNAi can take place in the cytoplasm as well as in the

nucleus via a range of distinct mechanisms, it is unclear how RNAi
can be conducted in particular subcellular organelles. Both risiRNAs
and mitochondrial miRNAs can silence gene expression at specific
cellular locations [217,218]. However, whether and how other
organelle-specialized RNAi processes occur remain intriguing.
Third, although the use of dsRNAs and synthetic siRNAs is

relatively straightforward, off-target effects are frequently identi-
fied. Small regulatory RNAs could have partial complementarity to
many other RNA targets, since the complementarity of as few as 6-8
base sequences (seed sequences) between siRNAs and their targets
is sometimes sufficient for gene silencing. Additionally, a high dose
of introduced small regulatory RNAs can overwhelm the cellular
RNAi machinery, leading to off-target silencing and disrupted
cellular processes. More critically, dsRNAs can also bind with
certain proteins in a sequence-independent manner, and these
nonspecific interactions may induce cellular stress, such as
interferon responses, whichmay lead to additional off-target effects.
Fourth, although the chemical synthesis of small regulatory RNAs

is quite easy, these nucleic acids frequently require chemical
modifications to improve their stability, efficient delivery, and
potent gene knockdown [219]. Whether and how these chemical
modifications can increase the stability and transportability of
siRNA drugs is intriguing. Advances in understanding the chemical
and biological characteristics of small RNAs will facilitate their
clinical design and continue to increase the likelihood of their
successful application.
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