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Abstract

Genome-wide association studies (GWAS) have identified thousands of disease-associated non-coding variants, posing urgent needs
for functional interpretation. Molecular Quantitative Trait Loci (xQTLs) such as eQTLs serve as an essential intermediate link between
these non-coding variants and disease phenotypes and have been widely used to discover disease-risk genes from many population-
scale studies. However, mining and analyzing the xQTLs data presents several significant bioinformatics challenges, particularly when
it comes to integration with GWAS data. Here, we developed xQTLbiolinks as the first comprehensive and scalable tool for bulk and
single-cell xQTLs data retrieval, quality control and pre-processing from public repositories and our integrated resource. In addition,
xQTLbiolinks provided a robust colocalization module through integration with GWAS summary statistics. The result generated by
xQTLbiolinks can be flexibly visualized or stored in standard R objects that can easily be integrated with other R packages and
custom pipelines. We applied xQTLbiolinks to cancer GWAS summary statistics as case studies and demonstrated its robust utility
and reproducibility. xQTLbiolinks will profoundly accelerate the interpretation of disease-associated variants, thus promoting a better
understanding of disease etiologies. xQTLbiolinks is available at https://github.com/lilab-bioinfo/xQTLbiolinks.
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INTRODUCTION

than 23 000 genes across 49 human tissues have been identified by

The explosion of GWAS discovery and applications across multiple
disciplines yielded many risk loci mainly located in non-coding
regions, prompting the great need for functional interpretation
of these variants by revealing the underlying mechanisms and
susceptibility genes [1]. The large-scale molecular QTLs data have
been widely used as an essential intermediate link of the non-
coding disease risk variants to disease phenotypes. For example,
more than four million common genetic variants (minor allele
frequency > 0.01) associated with the gene expression of more

Genotype-Tissue Expression (GTEx) Consortium [2], representing
a valuable resource for the molecular interpretation of disease
risk variants. eQTL catalog [3] is another useful resource that
includes uniformly processed expression QTLs (eQTLs) and splic-
ing QTLs (sQTLs), which currently includes 21 studies, and the
data are still increasing. Recently, single-cell expression quan-
titative trait locus (sc-eQTL) studies have emerged, offering a
significant opportunity to gain insights into the biological mecha-
nisms of diseases at the cellular level. Two representative projects,
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the eQTLGen Consortium and the DICE project, are focused on
investigating the genetic architecture of blood gene expression
and regulatory genes in 13 human immune cell types, respectively
[4, 5]. In addition to the traditional transcriptomic phenotype
associated QTLs, there has been an expansion in the identification
of other molecular QTLs associated with epigenetic phenotypes,
such as DNA methylation QTLs (mQTLs) [6] and histone QTLs
(hQTLs) [7]. These molecular QTLs hold significant potential in
providing valuable insights into the functional implications of
non-coding disease risk variants. However, exploring and mining
such a massive volume of xQTLs data remains computationally
challenging. Firstly, xQTLs summaries typically contain millions
of associations between genetic variants and molecular pheno-
types, making retrieving all or a subset of xQTLs data of interest
computationally expensive. Secondly, xQTLs data generated by
different analysis pipelines with varying tools often did not cor-
rectly harmonize with rigorous quality control to boost statistical
power and reduce false discovery in downstream analysis. Thirdly,
currently, no tools can seamlessly annotate the xQTLs data of
their underlying function.

Another challenge for analyzing xQTL data is that xQTLs are
often integrated with GWAS summary statistics data for colo-
calization analysis, widely used to link potentially causal genes
to GWAS risk loci. Several available tools can perform proba-
bilistic colocalization analysis between xQTLs and GWAS sum-
mary statistics, including Coloc [8], HyPrColoc [9], ColocQuial
[10], ezQTL [11], etc. Despite these tools being frequently used
to identify disease-risk genes in many studies, many limitations
remain. For instance, relying solely on a single colocalization
tool may fail to identify reliable disease-related genes due to
insufficient detection power, especially in cases where the sample
size is small, or the causal variants have a relatively small effect
size [12]. In addition, all these tools only focus on statistical
methods without considering the upstream data processing and
downstream visualization of the results, making the colocaliza-
tion analysis still computationally challenging. To our knowledge,
no comprehensive analysis pipeline can seamlessly mine and
analyze both xQTLs and GWAS data.

To address these challenges, we developed xQTLbiolinks, a
user-friendly R package, as the first end-to-end bioinformat-
ics tool for efficient mining and analyzing public and user-
customized xQTLs data for the discovery of disease susceptibility
genes. xQTLbiolinks offers the following unique and practical
advantages: (i) enables flexible access to bulk xQTLs data from
23839 samples across 75 human tissues or cell types and provides
quality control and annotation modules for summary statistics
data; (i) provides fast querying of sc-eQTLs from manually
curated 16 studies and 304 datasets; (iii) offers a robust colocal-
ization pipeline that utilizes two popular colocalization methods
to streamline the identification of colocalized disease-associated
genes; (iv) compatible with external tools for downstream analysis
and can flexibly generate detailed outputs and ready-to-publish
figures. Our package is freely available at https://github.com/
lilab-bioinfo/xQTLbiolinks.

METHODS
Implementation of xQTLbiolinks

xQTLbiolinks, a user-friendly R package under the General Public
License (GPLv3) license, can be installed in any operating system
supporting R through the general function install.packages
(‘xQTLbiolinks’) from the Comprehensive R Archive Network
(CRAN: https://cran.r-project.org/). All functions of xQTLbiolinks

are available by standard R commands to manipulate xQTLs
and GWAS data after installation and loading of the package.
A comprehensive user manual introducing all functions and
corresponding usages can be found in the Github repository
(https://github.com/lilab-bioinfo/xQTLbiolinks). Briefly, xQTLbi-
olinks implements four modules: data retrieval, pre-processing,
colocalization analysis and data visualization (Figure 1). Users
can query and download gene expression, sample and variant
details, xQTLs and cell type-specific eQTL (sc-eQTLs) data through
the APIs of GTEx [2], eGTEx [6], eQTL catalog [3], BLUEPRINT
epigenome project [7] and our curated sc-eQTL resource (Table S1
available online at http://bib.oxfordjournals.org/). Available bulk
xQTLs include eQTL, sQTL, 3'aQTL, mQTL and haQTL, while sc-
eQTLs consist of cell type-specific eQTL (genetic variants that are
associated with gene expression in a specific cell type), response
eQTL (genetic variants that are associated with changes in gene
expression in response to stimuli) and dynamic eQTL (genetic
variants that are associated with changes in gene expression
over time). xQTLbiolinks offers a data pre-processing panel that
allows users to perform quality control on GWAS/xQTL summary
statistics datasets using the QQ plot, PZ plot and inflation factor.
Users can perform genomic annotation of GWAS/xQTLs signals
using enrichment analysis or conduct functional annotation by
incorporating customized ChIP-seq data, such as enhancer and
transcription binding site (TFBS). The colocalization analysis
is facilitated through a three-step pipeline, enabling the easy
detection of trait/disease-relevant genes. Moreover, xQTLbiolinks
visualizes the results with publication-ready plots, such as
heatmap, boxplot, scatter plot and locusZoom plot.

Compatibility of xQTLbiolinks

The functions and outputs in xQTLbiolinks are compatible with
other functions and packages. We have provided expression data
objects as the Bioconductor specified ‘SummarizedExperiment’
class, which is a matrix-like container with rows representing
genes of interest (as a GRanges or GRangesList object), columns
representing samples (with sample data summarized as a
DataFrame) and the matrix is filled with normalized expression
profile. ‘SummarizedExperiment’ is critical for allowing the full
integration and use of other popular Bioconductor packages.
We also provided the function ‘xQTL_export’ to export the data
to the specified format, which can be used as direct input for
other tools, including ‘to_clusterP’, ‘to_deseq’ and ‘to_wgcna’.
Users can perform customized analysis with external R packages,
including functional enrichment analysis using clusterProfiler
[11], differential expression analysis using DESeq2 and edgeR
[13, 14], weighted Correlation Network Analysis using WGCNA
[15], etc.

Data retrieval

In this study, we select the available datasets of xQTLs that
are most directly relevant to understanding the regulation of
gene expression, splicing and 3'UTR alternative polyadenylation.
These datasets were generated from the extensive GTEx cohorts,
ensuring a strong representation of the genetic regulation of these
molecular traits. Additionally, we have included single-cell eQTL
datasets to provide insights into the regulation of gene expres-
sion at the single-cell level. Furthermore, we have expanded our
analysis to include important epigenetic modifications, such as
DNA methylation QTLs and histone modification QTLs, which
play a crucial role in gene regulation. The data retrieval module
enables users to query and download publicly available xQTLs
summary data from GTEx and eQTL catalog, and also sc-eQTL
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Figure 1. Overview of xQTLbiolinks data and functions, including four main function categories: data retrieval, pre-processing, analysis and visualization.

data from our server. The current version supports xQTLs data
from 23 839 samples across 75 human tissues/cell types, and sc-
eQTL data from 16 studies across 57 cell types. Two commands,
xXQTLquery and xQTLdownload, provide flexible user interfaces to
query and download xQTLs data by tissue, gene, SNP or com-
bination. For example, specifying a specific tissue name to the
xXQTLquery function will display all xQTLs data associated with
the tissue; users can also focus only on xQTLs related to one
single gene by specifying gene ID to the function. xQTLquery is
the primary function that executes the query of entities in xQTLs
data, including genes, variants and samples. At the same time,
xQTLdownload allows users to retrieve xQTLs data with tailored
demands, including eGenes/sGenes, associations between vari-
ants and expression (eQTLs), splicing (sQTLs), 3UTR alternative
polyadenylation (3'aQTLs), DNA methylation QTLs (mQTLs) and
histone modification (hQTLs), normalized gene expressions and
linkage disequilibrium of xQTLs in specified genes. The xQTL-
query_sc and xQTLdownload_sc functions have been developed for
the query and download of sc-eQTLs. These functions allow users
to retrieve sc-eQTLs by gene name, sc-eQTL type, cell type, cell
state and study name. All retrieved xQTLs and sc-eQTL data can
be handled by xQTLanalyze, xQTLvisual and their sub-functions.

Collection and processing of sc-eQTLs

We conducted a manual collection of sc-eQTL datasets from
published literature: (i) The selected studies utilized samples
from a diverse range of biological contexts, including normal
samples, treated samples or samples of disease conditions.
Datasets from meta-analysis or secondary analyses are excluded,
and we only included studies with a minimum of 40 samples
or 5 000 cells to ensure sufficient power for sc-eQTLs. (ii) We
only included single-cell transcriptome data generated from
well-established sequencing technologies such as 10x Genomics,
Smart-seq/Smart-seq2 or CITE-seq. In total, 304 sc-eQTL datasets
from 16 studies were collected, which contain ~2 750 individuals
and approximately 8.04 million cells (Table S2 available online at
http://bib.oxfordjournals.org/). Variants with a dbSNP identifier
are harmonized with the dbSNP build 151 based on the hg38

genome version. The names of cell types across different studies
are standardized based on expert-annotated cell type reference
[16]. The statistical values of sc-eQTL summary statistics data are
contained, including P-value, effect size (beta), standard error and
false discovery rate. We stored the sc-eQTL summary statistics
data in MySQL database and developed open-source API using a
flask-based web framework.

Data pre-processing

xQTLbiolinks allows users to detect possible inflation or deflation
of test statistics due to population stratification, genotyping
errors or other sources of bias for GWAS/QTL summary statistics
datasets. xQTLvisual_qqPlot and xQTLanno_calLambda can plot
quantile-quantile plot (QQ-plot) and calculate genomic control
inflation factor, respectively. xQTLvisual_PZPlot plots the concor-
dance correlation of observed P-values and P-values calculated
from the Z-score derived from beta (representing effect size) and
se (representing standard error of effect size). A P-Z plot is used
to examine the discrepancy between the P-value reported by
association results and the P-value calculated manually from
the Z statistic. In the absence of discrepancies, the points should
fall along the diagonal line, indicating the consistency between
observed and expected P-values. Besides, xQTLanno_genomic
enables users to functionally annotate variants in GWAS/xQTLs
datasets by calculating fold enrichment scores. The functional
categories are referred to ANNOVAR [17] including intron, exon,
3'UTR, 5’UTR, splicing site, intergenic region promoter (1-kb region
upstream of transcription start site) and downstream (1-kb region
downstream of transcription end site). The fold enrichment score
for each functional category is calculated as the proportion of
the significant SNPs with a certain annotation divided by the
proportion of SNPs with the same annotation in the background,
and the corresponding P-value is calculated by performing
Fisher's exact test (one-tailed test) against the entire genome [18].

Colocalization analysis

xQTLbiolinks implements a pipeline that contains three sub-
functions to perform colocalization analysis following the steps
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(Figure S1 available online at http://bib.oxfordjournals.org/):
(i) xQTLanalyze_getSentinelSnp extracts sentinel SNP, which
represents the most prominent signal in a specific genome
region, from GWAS summary statistics data. By default, it
selects the variants with a P-value less than 5 x 1078 within 1
million base pairs. The P-value threshold of 5 x 1078 is decided
according to many previous studies [19-21] where this threshold
was widely used to identify significant disease/trait-associated
variants such as GWAS catalog (https://www.ebi.ac.uk/gwas/). (ii)
XQTLanalyze_getTraits identify trait genes nearby sentinel SNPs
within a 1 Mb region by default. The 1 Mb region is a commonly
used threshold for identifying potential SNP-gene associations,
such as in GTEx and eQTLgen [2, 5]. (iii) xQTLanalyze_coloc and
xXQTLanalyze_coloc_diy perform two commonly used colocalization
methods, Coloc [8] and HyPrColoc [9], for each trait gene.

Visualization

The visualization module contains a main function xQTLvisual
and several sub-functions that allow users to visualize the
results with publication-ready plots, such as heatmap, boxplot,
scatter plot and locusZoom plot. xQTLvisual_genesExp and
XQTLvisual_geneExpTissues are used to plot the distribution
of gene expression for the queried gene(s). Sub-functions
XQTLvisual_eqtlExp and xQTLvisual_sqtlExp can plot the association
between genotypes and molecular phenotypes with a grouped
boxplot by genotypes. xQTLbiolinks also contains three sub-
functions xQTLvisual_locusZoom, xQTLvisual_locusCompare and
XQTLvisual_coloc visualizing the colocalization results. The first
two sub-functions can plot publication-ready locusZoom on
specific GWAS and xQTLs signals. Finally, xQTLvisual_coloc
visualizes the regulatory sharing effects of colocalized variants
across multiple tissues or cell types.

RESULTS

xQTLbiolinks as a comprehensive tool for
exploring and mining xQTLs data

xQTLbiolinks presents the first end-to-end solution for molecular
QTL data mining and analyzing. Compared to previous tools,
xQTLbiolinks provides comprehensive and versatile approaches
to accessing and manipulating xQTLs summary data (Table 1).
It streamlines the querying and retrieval of bulk and single-cell
xQTL data to meet user-customized demand from public reposi-
tories (i.e. GTEx and eQTL catalog) and our xQTLbiolinks server.
Notably, it can also analyze user-customized xQTLs summary
data. xQTLbiolinks is characterized by its exceptional adaptabil-
ity and user-friendliness for the analysis of xQTLs data. Its key
strengths can be attributed to the following factors: (i) xQTLbi-
olinks was developed as a standardized R package which makes it
easily accessible to users who are familiar with other R packages;
(ii) xQTLbiolinks provides the first querying and mining single-
cell genetic effect from 16 independent studies across 57 cell
types (Table S2 available online at http://bib.oxfordjournals.org/).
(iii) the utilization of xQTLs datasets in public repositories, i.e.
largest atlas of human gene expression, eQTL and sQTL data from
GTEx [2], uniformly processed xQTLs summary statistics across 75
distinct cell types and tissues from the eQTL Catalog [3]. xQTL-
biolinks allows users to conveniently retrieve xQTLs data and
metainformation for further analysis through gene names/IDs,
tissue/cell type names or genomic regions of interest. It also
facilitates easy query and retrieval of either bulk xQTL or sc-
eQTL for a specific gene in a particular tissue or cell type. Such
flexibility saves running time and decreases the requirement of

computational resources, thus taking full advantage of compre-
hensive xQTLs data for GWAS integration of varying scales from
candidate genes to genome-wide.

xQTLbiolinks provides a robust colocalization
module through integration with GWAS data

Colocalization is a powerful approach for integrating xQTLs and
GWAS signals and has been widely used to identify novel dis-
ease susceptibility genes [22]. This approach evaluates whether
xQTLs and GWAS signals statistically share putative causal vari-
ants and can provide valuable insights into the genetic mech-
anisms underlying complex diseases. xQTLbiolinks employs dif-
ferent colocalization methods to achieve more solid results since
single method has limitations in certain scenarios. For example,
the widely used colocalization software, Coloc, is a valuable tool
for estimating posterior probabilities of colocalization between
two traits. However, its effectiveness may be limited when study-
ing smaller sample sizes [8]. HyPrColoc is a Bayesian method
that utilizes clustering to group traits and identify shared genetic
associations for each cluster. However, the assumption of a single
causal SNP hypothesis may lead to potential omissions of causal
signals [9]. Moreover, visualization tools such as eQTpLot and
LocusCompare are solely used for visualization [23, 24]. xQTL-
biolinks provides a comprehensive pipeline that can perform
colocalization analysis across multiple tissues or cell types and
handle upstream data processing and downstream visualization
(Figure S1 available online at http://bib.oxfordjournals.org/). This
framework offers a one-step solution of functions that can be
used for quality control of GWAS significant variants, extraction of
sentinel SNP, identification of trait genes, preparation of curated
or user-customized xQTLs datasets, colocalization analysis and
visualizing the GWAS/xQTLs signals using the locusZoom plot. We
benchmarked the running time of the colocalization module on 10
GWAS datasets from UK Biobank [25]. The mean running time for
each colocalization analysis is approximately 30.5 minutes when
using both methods simultaneously (Figure S2 available online
at http://bib.oxfordjournals.org/). Furthermore, to investigate the
regulatory effect of colocalized xQTLs across multiple tissues/cell
types, we have made a new plot by correlating xQTLs P-values
with linkage disequilibrium (LD) bins across multiple tissues.

Case study 1: quality control and functional
characterization of breast cancer risk SNPs using
xQTLbiolinks

We first downloaded the Breast cancer GWAS summary statistics
from the literature, representing the largest GWAS study on
breast cancer conducted on more than 80 000 individuals [26].
We then performed a quality control analysis of the data. We
first use xQTLanno_calLambda to estimate the P-values’ inflations,
and it returns a lambda value of 1.147, indicating no strong
population stratification exists. Then we evaluate the quality
of GWAS data by examining whether the observed distribution
of P-values follows the expected distribution under the null
hypothesis of no association between the genetic variants and the
disease using xQTLvisual_qqplot; we found a significant deviation
from the diagonal line, which indicates potential variations from
the null hypothesis that may result from true associations or
LD (Figure 2A). xQTLvisual_PZplot is further used to investigate
the normality of the distribution of Z-scores derived from beta
and se, which outputs the strong concordance between the
observed P-values and those calculated from Z-scores (Figure S3
available online at http://bib.oxfordjournals.org/). We further
annotated all significant GWAS variants by genomic locations
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Table 1: A comparison of different tools for retrieving and analysis of xQTLs data

Features Sub-features Coloc

ColocQuiaL

locuscom-
parer

ezQTL eQTpLot xQTLDbi-

olinks

Platform R/ C++ R
sc-eQTL

Multiple
tissues/cell types
Gene/vari-
ant/sample

xQTLs summary
data

Gene expression
QQ-plot/PZ-
plot/Inflation
factor

Genomic
annotation
Colocalization J J
analysis
LocusZoom
Genotype-
expression/splicing
boxplot
Manhattan plot

Availability
Query xQTLs

Download
Quality
control
Annotation
Analysis

Visualization

web R R

D SO N

LA L&

J

Note: The first two columns of the table represent features and detailed features for each tool, respectively. The cell checked with ‘,/ indicates features that

exist in the tool.

using xQTLanno_genomic (Figure 2B). We also retrieved eQTLs
and sQTLs summary data from GTEx Breast - Mammary tissue
using xQTLdownload_eqtlAllAsso and xQTLdownload_sqtlAllAsso
functions, respectively. In addition, we included our recently
developed 3'UTR alternative polyadenylation quantitative trait
loci (3'aQTLs) as a user-customized xQTLs dataset using xQTL-
download_xqtlAllAsso. We later performed similar quality control
analyses for these xQTLs data and found no inflation or quality
issues on these datasets. The genomic control inflation values
of the xQTLs summary data are 1.149 (eQTLs), 1.049 (sQTLs)
and 1.022 (3'aQTLs), and the corresponding QQ-plots are shown
in Figure 2C-E. We used xQTLvisual_manhattan to generate a
Manhattan plot, which exhibits strong signals of associations
across all chromosomes at a genome-wide level (Figure 2F). By
integrating with eQTL signals, we detected some significant loci
that showed significant associations with disease susceptibility
but also exerted regulatory influence on gene expression. For
instance, rs8018155 was a breast cancer risk variant and an
eQTL, as illustrated in Figure 2G. This suggests that risk variant
158018155 plays a crucial role in modulating the expression of
gene CCDC88C and may have potentially important implications
for breast cancer. Furthermore, the distribution of expression of 12
eQTL-colocalized genes in TCGA breast cancer samples is shown
in Figure S4A available online at http://bib.oxfordjournals.org/.

Case study 2: identification of prostate cancer
susceptibility genes using xQTLbiolinks

Prostate cancer (PCa) is one of the most common cancers, the
pathogenesis of which involves both heritable and environmental
factors [27]. The molecular events involved in the development or
progression of PCa are still unclear. Here, we applied xQTLbiolinks
to integrate the PCa GWAS dataset [28] with xQTLs data
from GTEx prostate tissue and aimed to identify putative
causal variants and susceptibility genes associated with PCa.
We first extracted 94 sentinel SNPs with P <5 x 107% using
XQTLanalyze_getSentinelSnp. We then identified 835 genes for

eQTLs, 1 676 genes for sQTLs and 209 genes for 3'aQTLs using
XQTLanalyze_getTraits. Later, for each trait gene, we analyzed the
colocalization pattern between PCa risk variants and xQTLs
using xQTLanalyze_coloc for eQTLs and xQTLanalyze_coloc_diy for
sQTLs and 3'aQTLs. By default, two colocalization methods (Coloc
and HyPrColoc) are used. The colocalization analysis returns
four posterior probabilities corresponding to four different null
hypotheses; notably, the posterior probability under hypothesis 4
(PPH4), representing the potential same causal variants shared by
GWAS variants with xQTLs data, was used to define significant
colocalization events. Using a PPH4 threshold of 0.75, we identified
47 genes, including 27 eQTLs genes, 17 sQTLs genes and seven
3'aQTLs genes that are colocalized with 38 PCa risk loci. Among
these colocalized genes, many have been previously reported to
be associated with PCa susceptibility (Table S3 available online
at http://bib.oxfordjournals.org/). For example, the gene MMP7,
which is strongly colocalized by eQTLs, encodes a member of
the peptidase M10 family of matrix metalloproteinases and is
involved in the breakdown of extracellular matrix in normal
physiological processes. It has been evidenced that PCa can
be promoted via MMP7-induced epithelial-to-mesenchymal
transition by Interleukin-17 [29], and serum MMP7 levels could
guide metastatic therapy for PCa [30]. Besides, we also observed
that 28 of the 47 colocalized genes have been reported as
known susceptibility genes in prostate cancer (Table S3 available
online at http://bib.oxfordjournals.org/), and the remaining 19
genes without evidence could be considered novel candidates
of prostate cancer susceptibility genes. For instance, we iden-
tified the eQTL-colocalized gene GGCX (PP4=0.9905), which
encodes an enzyme called gamma-glutamyl carboxylase that
is responsible for post-translational modifications of vitamin
K-dependent (VKD) proteins [31]. Carboxylation is essential
for the biological function of VKD proteins that control blood
coagulation, vascular calcification, bone metabolism, signal
transduction and cancer cell proliferation. However, the specific
mechanisms and functions of the GGCX gene in tumor growth
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Figure 2. Quality control and annotation of breast cancer and xQTLs summary statistics data. (A) QQ-plot labeled with inflation factor. (B) PZ-plot, the
x-axis stands for the normalized P-values estimated by the z-score derived from beta and standard error and the y-axis stands for the raw normalized
P-values. (C) Genomic annotation of significant breast cancer risk SNPs. (D) QQ-plot for eQTLs. (E) QQ-plot for sQTLs. (F) QQ-plot for 3’aQTLs. (G)
Manhattan plot of the GWAS study of breast cancer. The strongest signals on each chromosome are labeled. (H) Boxplot of normalized expression of

eQTL rs8018155-CCDC88C in the Breast-Mammary Tissue.

and development require further study [32]. We further examined
the dependency score which represents the essentiality of these
genes in cancer cell lines, obtained from CRISPR screening assay
[33]. As shown in the added Figure SSA available online at
http://bib.oxfordjournals.org/, four of the 19 candidate genes are
ranked in the top 10 essential genes. Notably, xQTL-colocalized
genes are largely non-overlapped (Figure 3A), such as MMP7 was
only significantly colocalized by eQTLs (Figure S5B available
online at http://bib.oxfordjournals.org/), AGAP10OP was only
colocalized by sQTLs rather than eQTLs and 3'aQTLs. Additionally,
HOXB2 is colocalized by 3'aQTLs instead of eQTLs and sQTLs
(Figure S5C available online at http://bib.oxfordjournals.org/).
Moreover, five genes in Table S3 available online at http://bib.
oxfordjournals.org/ are identified by colocalization with 3'aQTL
that have never been detected by traditional eQTLs or sQTLs
(Figure 3A). Among them, two known cancer-relevant genes

(ARNT and CFLAR) are founded, and the remaining three genes
(MRPL52, HOXB2 and CCDC97) are potentially novel susceptibility
genes.

To understand the colocalized results, we first visual-
ize the expression distribution of all eQTL-colocalized genes
in the TCGA prostate samples (Figure S4B available online
at http://bib.oxfordjournals.org/). Besides, we checked MMP7
gene expression across 49 GTEx tissues by function xQTLvi-
sual_geneExpTissues. As shown in Figure 3B, MMP7 has a relatively
high expression level in the prostate and relevant tissues, indicat-
ing a potential essential role in these tissues. The distribution of
MMP7 expression level in prostate tissue stratified by the genotype
of the lead SNP was also presented by function xQTLvisual_eqtlExp
(Figure 3C). Then, we visualized the MMP7-colocalized signals by
function xQTLvisual_locusZoom, which reveals a high correlation
between GWAS variants and MMP7 eQTLs (Figure 3D).


https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad440#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad440#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad440#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad440#supplementary-data
http://bib.oxfordjournals.org/
http://bib.oxfordjournals.org/
http://bib.oxfordjournals.org/
http://bib.oxfordjournals.org/
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad440#supplementary-data

[vs)

1e+04

(TPM)

lon

Expressi

1e-02

1e+02

1e+00

3'aQTL genes

sQTL genes

eQTL genes

——
——
——

XQTLbiolinks

C eQTL: rs11568818-MMP7
p-value: 9.98e-08

1e-02

T cc

TC
Genotypes

E Min-max normalized —logqo(p-value)

-10 -05 00 0.5 10 -0.5 0.0

Prostate
© Pancreas
% Lung
Stomach

Colon - Sigmoid-

Pearson Correlation

7

PCa GWAS

o]

:

15

15 10

-log1o(p-value)

10

e

A skin
%g Skin - Sun Exposed (Lower leg)
%" pancreatic islet
K Adrenal Gland
Cells - EBV-transformed lymphocytes{
Small Intestine - Terminal lleum

Skin - Not Sun Exposed (Suprapubic)
Pituitary

Minor Salivary Gland

sensory neuron

Spleen/

LCL

Uterus

Colon - Transverse

Breast - Mammary Tissue

Thyroid

Artery - Coronary

adipose

Heart - Atrial Appendage
macrophage1

1) Prostate

rs11568818

0.8

-log1o(p-value)(GWAS)
o

0.6

0.4

-log1o(p-value)

0

Nerve - Tibial

Testis

Adipose - Visceral (Omentum)
Brain - Spinal cord (cervical c-1)
Ovary

Artery - Tibial

Esophagus - Muscularis

Kidney - Cortex

Vagina

Cells - Cultured fibroblasts{
Esophagus - Gastroesophageal Junction
Artery - Aorta

Adipose - Subcutaneous
Esophagus - Mucosa

Brain - Hypothalamus

B S B
o

101.5 102.0 102.5

-logo(p-value)(eQTL) chr11 (Mb)

103.0

oY \eff"‘ ©®*

103.5 LD bins

Figure 3. Integrative analysis of GWAS study of prostate cancer. (A) Venn plot of 47 xQTL-colocalized genes. (B) Gene expression levels (TPM) of MMP7
among 54 GTEx tissues. (C) Boxplot of expression (TPM) of eQTL rs11568818-MMP7 in the prostate. (D) Distribution of GWAS and eQTL signals within a
genome region of MMP7. PCa, Prostate Cancer. (E) Heatmap of eQTL (rs11568818-MMP7) P-values in different LD bins across 40 tissues/cell types. The
y-axis represents the tissues/cell types, and the x-axis represents LD bins. The left panel indicates the median normalized eQTL P-values in different
LD bins. The right panel represents the Pearson correlation between normalized eQTL P-values and values of r-squared of LD.

xQTLbiolinks is highly compatible, allowing for seamless
integration of its outputs with external packages. For example,
we performed gene ontology (GO) enrichment analyses on
the eQTL-colocalized genes with external package clusterPro-
filer [11]. Cancer-related GO terms are significantly enriched,
including ‘positive regulation of T cell receptor signaling
pathway’, ‘Execution phase of apoptosis’ and ‘DNA replica-
tion checkpoint signalling’ (Figure S5D available online at
http://bib.oxfordjournals.org/). We conducted gene set enrich-
ment analysis (GSEA) to identify enriched gene sets and
pathways from the Molecular Signatures Database (MSigDB),
and identified three cancer-related pathways relevant to colo-
calized genes: ‘Regulation of cell death’, ‘Prostate cancer’
and ‘Tumor invasiveness up’ (Figure S5E available online at
http://bib.oxfordjournals.org/). Moreover, we also perform co-
expression analysis using the corrplot package [34] (Figure S5F

available online at http://bib.oxfordjournals.org/). To investigate
the regulatory sharing of colocalized variants across multiple
tissues, we implemented xQTLvisual_coloc to visualize the correla-
tion between P-values of xQTLs LD across numerous tissues/cell
types (Figure 3E). We observed that prostate tissues showed the
strongest correlation indicating that the heatmap can reveal the
potential disease-relevant tissues.

Case study 3: xQTLbiolinks reveals novel cell
type-specific susceptibility genes

Systemic lupus erythematosus (SLE) is a complex autoimmune
disease, with occurrence heavily influenced by genetics [35]. Joint
analysis of immune cell sc-eQTL and SLE GWAS results enable
the identification of susceptibility genes and cell types relevant
to this immune-mediated disease. Here, we applied xQTLbiolinks
to integrate SLE GWAS dataset [36] with sc-eQTL data across
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Figure 4. Integrative analysis of GWAS study of systemic lupus erythematosus (SLE) using both sc-eQTL and bulk eQTL. (A) Posterior probability (PPH4)
of the colocalized genes identified from sc-eQTLs across eight cell types. The x-axis represents the gene names. The y-axis represents the cell types. (B)
Colocalization of signals from GWAS, sc-eQTL and eQTL for gene LNIC02132 with SLE-associated loci.

eight immune cells [37] and aimed to identify potential suscep-
tibility genes associated with SLE. We first extracted 46 sen-
tinel SNPs with P <5 x 107 using xQTLanalyze_getSentinelSnp and
identified 2 690 trait genes using xQTLanalyze_getTraits. For each
trait gene, we performed colocalization analysis using xQTLana-
lyze_coloc_diy with sc-eQTL from eight immune cells and bulk
eQTL data from whole blood tissue. There were 31 sc-eQTL genes,
and 17 eQTL genes were colocalized with 18 SLE risk signals
using a PPH4 threshold of 0.75 (Tables S4 and S5 available online
at http://bib.oxfordjournals.org/). Three genes including UBE2L3,
BLK and CLIC1 were shared between sc-eQTL and bulk eQTL
(Figure 4A). Interestingly, we found 28 sc-eQTL-colocalized genes
rather than bulk eQTL. For instance, LNIC02132, a long inter-
genic non-protein coding RNA 2132, is strongly colocalized by sc-
eQTL (PPH4=0.98) in CD4+ Naive T cells but not colocalized by
bulk eQTL (PPH4=0.01) (Figure 4B). Additionally, these sc-eQTL-
specific genes enable the potential identification of novel cell
type-specific susceptibility genes and provide insights into dis-
ease genetics and biology.

DISCUSSION

Molecular Quantitative Trait Loci is a crucial step toward better
understanding the effects of non-coding genetic variants on

genes, pathways and their function mechanism and serves as an
essential link between genotype and disease phenotype. Although
many xQTLs summary statistics are available, mining and
analyzing these xQTLs data remains several major bioinformatics
challenges, such as data retrieval, quality control and pre-
processing, which are essentially required steps to promote
the reproducible use of xQTLs resources and accelerate disease
susceptibility genes’ identification remains challenging. Here, we
developed xQTLbiolinks, which is motivated by TCGAbiolinks
that provides several useful functions to search, download and
prepare TCGA samples for data analysis [38]. Here, xQTLbiolinks
aims to ‘link’ xQTLs data to disease genomics research by
providing flexible interfaces to allow users to access xQTLs
data from GTEx and eQTL catalog without having to navigate
through different data portal sites or download whole tables of
millions of xQTLs associations. xQTLbiolinks also provides the
functions for comprehensive querying and mining sc-eQTLs.
The current version of xQTLbiolinks provides access to over 4
million bulk eQTLs and sQTLs, and 16 million sc-eQTLs. It enables
manipulating user-customized xQTLs data, such as our recently
developed 3'UTR alternative polyadenylation QTLs (3'aQTLs)
[39]. To date, >20 molecular traits have been profiled [40]. We
acknowledge our selection does not fully represent the breadth of
xQTL data, such as chromatin accessibility QTLs (caQTLs), RNA
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editing QTLs (edQTLs) and ribosome occupancy QTLs (riboQTL).
However, our plan includes collecting more data resources, such
as the eQTLGen and MetaBrain project [5, 41], and continuously
updating and integrating additional QTL data for other molecular
traits. This will allow us to provide a comprehensive under-
standing of the molecular regulatory mechanisms underlying
complex diseases and traits by incorporating multiple layers of
information.

In addition, colocalization analysis is a powerful approach
widely used to identify new susceptibility genes in disease anal-
ysis by integrating xQTLs and GWAS signals. However, current
colocalization tools have limitations in that they only focus on
colocalization methods without considering the whole analysis
pipeline and the effects of multiple tissue or cell types. Employing
several colocalization tools in the context of numerous tissues
or cell types is a superior option to enhance the robustness
and reliability of the findings [12]. To facilitate the identification
of robust susceptibility genes in colocalization analysis, xQTL-
biolinks provides a comprehensive pipeline that employs two
popular colocalization methods and handles upstream data pro-
cessing and downstream visualization of results in a one-step
solution. Notably, for diseases with no obvious relevant tissue,
we recommend using previously published method TCSC [42] to
identify the most relevant tissue or cell type.

xQTLbiolinks is a scalable tool that facilitates integrating and
utilizing external tools or packages. We will also actively maintain
xQTLbiolinks and respond to user inquiries. As the first end-to-
end bioinformatics framework for mining and analyzing xQTL
data for discovering disease susceptibility genes, it will make
significant contributions toward our understanding of human
non-coding variants, thus promoting a better understanding of
disease etiologies.

Key Points

e xQTLbiolinks is the first end-to-end bioinformatics tool
for mining and analyzing bulk and single-cell xQTL data
for discovering disease susceptibility genes.

e xQTLbiolinks provides flexible interfaces for xQTLs data
retrieval, pre-processing and quality controls from 75
human tissues and cell types and our own integrated
resources.

e xQTLbiolinks provided a robust colocalization module
through integration with GWAS data. The result gener-
ated by xQTLbiolinks can be flexibly visualized or stored
in standard R objects that can easily be integrated with
other R packages and custom pipelines.
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