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Ribosomes are ribonucleoprotein machines that decode the genetic information
embedded in mRNAs into polypeptides. Ribosome biogenesis is tightly coordinated and
controlled from the transcription of pre-rRNAs to the assembly of ribosomes. Defects
or disorders in rRNA production result in a number of human ribosomopathy diseases.
During the processes of rRNA synthesis, non-coding RNAs, especially snoRNAs, play
important roles in pre-rRNA transcription, processing, and maturation. Recent research
has started to reveal that other long and short non-coding RNAs, including risiRNA,
LoNA, and SLERT (among others), are also involved in pre-rRNA transcription and
rRNA production. Here, we summarize the current understanding of the mechanisms
of non-coding RNA-mediated rRNA generation and regulation and their biological roles.
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INTRODUCTION

In humans, there are approximately 300–400 copies of rDNA genes per haploid genome that are
distributed over five chromosomes (Henderson et al., 1973; Boisvert et al., 2007). Each rDNA
unit is ∼43 kb long. rDNAs are transcribed by RNA polymerase I (Pol I) to generate pre-
rRNAs that subsequently undergo multiple modifications and processing steps to remove the
external transcribed spacers (ETSs) and internal transcribed spacers (ITSs) to produce mature
18S, 5.8S, and 28S rRNAs (McStay, 2016). Pol I activity is a key determinant for ribosome
abundance and is essential for cell growth and proliferation (McStay, 2006; Srivastava et al., 2016).
Interestingly, only some rDNA units are transcriptionally active. Uncontrolled rRNA synthesis by
dysregulated Pol I is associated with aberrant cell proliferation and oncogenesis (Peltonen et al.,
2014; Nguyen le et al., 2015).

Non-coding RNAs play essential roles in rRNA regulation. The small nucleolar RNA (snoRNA)
is widely known to guide the nucleotide modifications and processing (Cech and Steitz, 2014; Sloan
et al., 2017). Recently, increasingly more studies have started to reveal the roles of other classes of
non-coding RNAs in regulating rRNA transcription and nucleolar function (Srivastava et al., 2016;
Bazin et al., 2017). In this review, we will focus on recent work investigating how several long non-
coding RNAs (lncRNAs) and antisense ribosomal siRNA (risiRNA) regulate rRNA expression and
their potential biological roles in anti-stress reactions (Table 1).

LncRNAs REGULATE rRNA TRANSCRIPTION IN THE NUCLEUS

Long non-coding RNAs comprise a fast-growing classes of RNA molecules with sizes greater than
200 nt. Most lncRNAs are first transcribed by polymerase II (Pol II), then capped, polyadenylated,
and spliced after transcription (Cech and Steitz, 2014). lncRNAs localize in distinct subcellular
compartments, including the nucleus, nucleolus and cytoplasm. Nuclear-localized lncRNAs, such
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as MANTIS and Xist, may function as transcriptional or
posttranscriptional regulators or structural scaffolds for nuclear
domains (Sun et al., 2017). The nucleolar localization of
lncRNAs suggests that they may modulate rRNA transcription
and maturation (Cech and Steitz, 2014; Chen, 2016). Several
studies revealed that lncRNAs regulate rDNA transcription by
altering rDNA epigenetic status or by acting as “decoys” to
inhibit transcription factor activity. Interestingly, some lncRNAs
might contain short open reading frames that can be translated
(Ji et al., 2015).

Binding of pRNAs to TIP5 Induces
Heterochromatin Formation of rDNA
Genes
There are several clusters of tandemly arrayed rDNA genes
exist in each mammalian genome, yet not all of these repeats
are transcribed. rDNA exists in two types of chromatin – a
euchromatic conformation that is actively transcribed and a
heterochromatic conformation that is transcriptionally inactive.
Silent rDNA repeats are marked by heterochromatic histone
modifications and CpG methylation at the rDNA promoter
(Schmitz et al., 2010). Silencing of rDNA depends on NoRC,
a chromatin-remodeling complex that directs heterochromatin
formation. NoRC function requires RNA that is complementary
to the rDNA promoter, which is termed as promoter-associated
RNAs (pRNA). pRNAs are 150∼300 nt long and are produced
from rDNA promoters. TIP5 (TIF interacting protein 5), the
large subunit of NoRC, binds to pRNAs. pRNA interacts with
regulatory elements in the rDNA promoter, forms a DNA:RNA
triplex, and is recognized by the DNA methyltransferase
DNMT3b (Figure 1; Mayer et al., 2008; Bierhoff et al., 2010).
Thus, the binding of NoRC to the rDNA promoter represses
rDNA transcription through recruitment of histone modifying
and DNA methylating enzymes (Santoro et al., 2002; Mayer et al.,
2006; Guetg et al., 2010).

Interestingly, by using mature pRNAs to tether
heterochromatin at nucleoli in embryonic stem cells, Savić
et al. (2014) found that localized heterochromatin condensation
of rDNA genes initiates establishment of highly condensed
chromatin structures outside of the nucleolus. Meanwhile,
the formation of such highly condensed, transcriptionally
inactive heterochromatin promotes transcriptional activation
of differentiation genes and loss of pluripotency of embryonic
stem cells. NoRC safeguards genome stability by triggering
heterochromatin formation at telomeres and centromeres
(Postepska-Igielska et al., 2013). Whether and how pRNA and
NoRC function together to maintain rDNA stability requires
further investigation.

LoNA Modulates rRNA to Promote
Learning and Memory
When mice are trained with a Morris water maze, both rRNA
and pre-rRNA levels are significantly elevated (Li et al., 2018).
The trained mice exhibit decreased expression of the lncRNA
LoNA in the hippocampus. LoNA is synthesized by Pol II
and specifically enriched in nucleolus, and it can suppress the

transcription of pre-rRNAs (Figure 2). The 5′ portion of LoNA
interacts with nucleolin (NCL), while its 3′ portion contains
a snoRNA that binds to fibrillarin (FBL). NCL can remodel
rDNA loci, and can, therefore, modulate pre-rRNA transcription
(Abdelmohsen and Gorospe, 2012; Durut and Saez-Vasquez,
2015). LoNA binds to NCL and inactivates the chromatin status
of rDNA region. FBL is a component of C/D box small nucleolar
ribonucleoproteins (snoRNPs), which direct 2′-O-methylation
of rRNAs and participate in rRNA processing (Newton et al.,
2003). LoNA competes with snoRNAs to bind to FBL, thereby
altering the methylation status of rRNAs. By binding to both NCL
and FBL proteins, LoNA suppresses rRNA production and alters
ribosome heterogeneity (Li et al., 2018).

Nucleolar stress is accompanied by decreased rRNA synthesis
and failures in ribosome biogenesis and functions, which are
considered to be cellular stress events associated with aging and
neurodegenerative diseases (Boulon et al., 2010; Wu et al., 2018).
In patients with Alzheimer disease (AD), rRNA production
decreases (Dönmez-Altuntaş et al., 2005). In an AD animal
model, LoNA expression is significantly increased in the mouse
brain, which is accompanied by decreased rRNA levels (Li et al.,
2018). Mice lacking LoNA are more efficient in locating the
hidden platform in Morris water maze tests than are the control
animals. LoNA-deficient AD mice show rescue of the learning
and memory defects compared to the control animals in Morris
water mazes and in object context discrimination behavioral tests.
These results suggest that hippocampal LoNA is involved in
learning and memory and may represent a potential therapeutic
target for AD treatment.

SLERT Regulates DDX21 Rings
Associated With Pol I Transcription
SLERT is a box H/ACA snoRNA-ended lncRNA (Xing et al.,
2017). SLERT contains 694 nt and is highly expressed in many
human cell lines, especially in human embryonic stem cells
and ovarian carcinoma cells. SLERT mainly accumulates in
the nucleolus, and its localization depends on its box H/ACA
snoRNA ends. SLERT depletion results in decreased levels
of the 18S and 28S rRNAs, indicating that SLERT promotes
rRNA production.

Mass spectrometry (MS) data of SLERT-associated proteins
identified DDX21, a DEAD-box RNA helicase that is involved in
multiple steps of ribosome biogenesis (Holmström et al., 2008;
Calo et al., 2015; Sloan et al., 2015). SLERT depletion enhances the
interaction between DDX21 and Pol I by tightening the DDX21
rings surrounding Pol I complexes, thereby suppressing rDNA
transcription (Xing et al., 2017). Dysregulated rRNA synthesis
by Pol I is associated with uncontrolled cancer cell proliferation
(Nguyen le et al., 2015). The interaction between SLERT and
DDX21, therefore, represents a potential therapeutic target for
future anti-cancer drug discovery (Peltonen et al., 2014).

PAPAS Responds to Environment
Stresses to Maintain rRNA Suppression
Upon stress, cells utilize various strategies to suppress rDNA
transcription to promote survival, for example, by inactivating
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TABLE 1 | Non-coding RNAs regulate rRNA production.

RNA Classification Synthesis Organisms Length Function References

snoRNA snoRNA Pol II Eukaryotes 70 nt Essential for pre-rRNA processing and modification
by serving as a guide RNA

Cech and Steitz,
2014

risiRNA siRNA RdRP C. elegans 22 nt Suppresses pre-rRNA via the nuclear RNAi pathway
to inhibit the accumulation of erroneous rRNAs

Zhou et al., 2017b;
Zhu et al., 2018

pRNA lncRNA Pol I Mouse, human 150∼300 nt Complementary to rDNA promoters, required for
the NoRC complex to suppress rRNA transcription

Bierhoff et al.,
2010, 2014

LoNA lncRNA Pol II Mouse ∼26 kb Regulates rRNA transcription and methylation,
involved in learning and memory

Li et al., 2018

SLERT lncRNA Pol II Human 694 nt Regulates DDX21 rings associated with Pol I
transcription

Xing et al., 2017

PAPAS lncRNA Pol II Mouse, human 17 kb Interacts with chromatin remodelers at rDNA loci,
responds to various environmental stresses

Bierhoff et al.,
2014; Zhao et al.,
2016a,b

5S-OT lncRNA Pol II Fission yeast and
mammals

847 nt Regulates 5S rRNA production in cis and alternative
splicing in trans

Hu et al., 2016

certain transcription factors and inducing chromatin remodeling
(Bierhoff et al., 2014; Holland et al., 2016). Furthermore,
a class of lncRNAs, PAPAS, is expressed to inhibit pre-
rRNA transcription (Figure 3). PAPAS is transcribed by RNA
polymerase II from a fraction of the rDNA units in an antisense
orientation, and, therefore, it is called “promoter and pre-
rRNA antisense” (PAPAS) (Bierhoff et al., 2010, 2014). PAPAS
comprises a heterogeneous population of 12–16 kb lncRNAs that
are complementary to both the pre-rRNA coding region and
the rDNA promoter. PAPAS responds to distinct stresses and
modulates pre-rRNA synthesis accordingly.

In density-arrested or serum-deprived cells, pre-rRNA
synthesis is suppressed and rDNA is enriched with H4K20me3
marks, while PAPAS is upregulated. After starved cells are
refed with serum, the levels of H4K20me3 modifications and
PAPAS decrease. RNA immunoprecipitation (RIP) experiments
revealed that quiescence-induced PAPAS recruits Suv4-20h2

FIGURE 1 | Promoter-associated RNA (pRNA) targets NoRC to nucleolus to
promote heterochromatin formation and rDNA silencing. pRNA is
complimentary to rRNA genes and folds into a stem-loop structure. TIP5, the
core factor of NoRC, recognizes pRNA, facilitates formation of
heterochromatin at rRNA genes and promotes transcriptional gene silencing.

to transcription-competent rRNA genes to trigger H4K20me3
modification and chromatin compaction. Furthermore, siRNA-
mediated knockdown of endogenous PAPAS decreased the level
of H4K20me3 modifications, but not the level of H3K9me3
modifications (Bierhoff et al., 2014).

Hypo-osmotic stress also upregulates PAPAS and inhibits
rDNA transcription. However, unlike serum deprivation, hypo-
osmotic shock does not increase the Suv4-20h2 occupancy
and H4K20me3 abundance at rDNA loci, but rather induces
the degradation of Suv4-20h2 (Zhao et al., 2016a). The Mi-
2/nucleosome remodeling and deacetylase factor (NuRD) is a
multisubunit protein complex containing the HDAC1 histone
deacetylase and the ATP-dependent remodeling enzyme CHD4
(Xue et al., 1998; Torchy et al., 2015). Upon hypo-osmotic
stress, the elevated PAPAS associates with CHD4/NuRD and
recruits them to rDNA regions where they deacetylate histone
H4, remodel the promoter-bound nucleosomes, and reinforce
transcriptional repression (Zhao et al., 2016a).

Similar to hypotonicity, heat shock also increases PAPAS
expression, induces the degradation of Suv4-20h2, recruits NuRD
to rDNA, and turns off transcription of pre-rRNA (Zhao et al.,
2016b). Recent studies revealed the molecular mechanism of
how PAPAS recruits CHD4/NuRD to rDNA. CHD4 is an RNA-
binding protein that associates with both DNA and RNA via
its N-terminal PHD and chromo-domains. Heat-shock elicits
CHD4 dephosphorylation to facilitate its association with PAPAS
(Zhao et al., 2018). PAPAS binds to the adjacent rDNA sequence
via the formation of a DNA-RNA triplex, thereby directing
CHD4/NuRD to rDNA, where it remodels the chromatin into a
transcription refractory state (Zhao et al., 2016b, 2018).

5S-OT Plays a Cis Role in Regulating the
Transcription of 5S rRNA and a Trans
Role in Alternative Splicing of mRNAs
Unlike other Pol I-transcribed rRNAs, 5S rRNAs are transcribed
by Pol III. 5S rRNA genes are clustered as tandem repeats
with intergenic sequences, and they are located on distinct
chromosomes (Ciganda and Williams, 2011). A number of

Frontiers in Genetics | www.frontiersin.org 3 April 2019 | Volume 10 | Article 290

https://www.frontiersin.org/journals/genetics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-10-00290 April 3, 2019 Time: 17:2 # 4

Yan et al. rRNA Regulation by Non-coding RNAs

FIGURE 2 | LoNA modulates rRNA and promotes learning and memory. LoNA is synthesized by Pol II. LoNA interacts with nucleolin (NCL) and inactivates the
chromatin status of rDNA region via reducing the loading of UBF and Pol I to rDNA loci. Meanwhile, LoNA competes with snoRNAs to bind to FBL, thereby altering
the methylation status of rRNAs. Therefore, by binding to both NCL and FBL proteins, LoNA suppresses rRNA production and alters ribosome heterogeneity.

FIGURE 3 | PAPAS responds to environmental stimuli to suppress rDNA transcription. At rDNA clusters, the lncRNA PAPAS directs Suv4-20h2 for repressive mark
H4K20me3 deposition after growth factor deprivation. Upon hypotonic and heat-shock stresses, PAPAS recruits NuRD to rDNA and induces a nucleosomal “off”
position to repress rDNA transcription.

studies have revealed Pol II binding sites adjacent to Pol III-
transcribed genes, including the 5S rRNA genes (Oler et al., 2010;
Hu et al., 2012). These cryptic Pol II transcripts may therefore
modulate the transcription of neighboring 5S rRNAs.

Hu et al. (2016) identified a lncRNA, 5S rRNA overlapped
transcripts (5S-OT), that is transcribed by RNA polymerase

II and is complementary to the 5S rRNA. 5′ and 3′ rapid
amplification of cDNA ends (RACE) experiments demonstrated
that this transcript contains 847 and 354 nt in mice and
humans, respectively. Chromatin immunoprecipitation (ChIP)
experiments indicated that Pol II binds to the promoter at the
5S-OT transcription start site in both mouse and human cells.
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Inhibition of Pol II with α-amanitin results in a decreased level of
5S-OT transcripts, which further leads to a reduction of nascent
5S rRNAs. Consistently, knocking down 5S-OT by siRNAs also
inhibits the production of nascent 5S rRNAs. It was suggested
that in mammalian cells, the lncRNA 5S-OT associates with
5S rDNA clusters where it promotes the transcription of 5S
rRNAs, thus providing a mechanism to couple Pol II and Pol
III transcription.

Furthermore, human 5S-OT contains an antisense Alu
element at its 3′ end (Hu et al., 2016). Alu is a primate-specific
transposable element. The Alu element in the human 5S-OT gene
belongs to the AluY subfamily (Batzer and Deininger, 2002).
In human cells, 5S-OT regulates alternative splicing of multiple
genes in trans via Alu/anti-Alu pairing with targeted genes and
by interacting with the splicing factor U2AF65.

Therefore, the lncRNA 5S-OT modifies 5S rRNA and mRNAs
via cis and trans mechanisms, respectively. Since 5S-OT is
relatively conserved in eukaryotes from fission yeast to humans,
it will be interesting to examine whether similar mechanisms are
applicable in other organisms.

SMALL REGULATORY RNAs INHIBIT
PRE-rRNA VIA THE NUCLEAR
RNAi PATHWAY

The gene silencing capacity of small interfering RNAs (siRNAs)
was first described in Caenorhabditis elegans two decades ago
(Fire et al., 1991). siRNAs silence complementary nucleic acids in

both the cytoplasm and nucleus. Previous research has focused on
the mechanism of siRNA-dependent regulation of mRNAs. In the
cytoplasm, siRNAs can direct the degradation of targeted RNAs
and inhibit protein translation (Ipsaro and Joshua-Tor, 2015). In
the nucleus, siRNAs can guide heterochromatin formation and
inhibit transcription elongation (Feng and Guang, 2013; Rechavi
and Lev, 2017). Here, we will summarize our recent work that
begins to illustrate the function of siRNAs in the regulation of
ribosomal RNAs (Figure 4; Zhou et al., 2017a; Zhu et al., 2018).

Antisense ribosomal siRNAs (risiRNAs) are widely present in
various organisms. In Schizosaccharomyces pombe lacking Cid14,
rRNAs become substrates for the RNAi pathway, giving rise
to siRNAs targeting rRNA (Buhler et al., 2008). In Neurospora
crassa, DNA damage induces the expression of the Argonaute
protein QDE-2 and a class of RNAs that interact with it (qiRNAs)
from the ribosomal DNA locus (Lee et al., 2009).

In C. elegans, upon exposure to low temperature treatment
or ultraviolet (UV) light, risiRNAs accumulate (Zhou et al.,
2017b). risiRNAs are complementary to the 18S and 26S rRNAs,
contain 22 nt, and start with a 5′ guanosine. risiRNAs belong
to a class of 22G-RNAs that are synthesized by the RNA-
dependent RNA polymerases (RdRPs) in C. elegans. risiRNAs
associate with the Argonaute protein NRDE-3 and translocate
to nucleolus, where they suppress pre-rRNA expression
(Zhou et al., 2017b; Zhu et al., 2018).

Ribosomal siRNAs act to surveil erroneous rRNAs and
maintain rRNA homeostasis. Misprocessed rRNAs are
usually detected and degraded by multiple surveillance
machineries, including the exosome and Trf4/Air2/Mtr4p

FIGURE 4 | Ribosomal siRNAs silence pre-rRNAs via the nuclear RNAi pathway. rRNA biogenesis is a multistep process, including a series of pre-rRNA processing,
folding, and modification steps. Endogenous metabolic stresses and environmental stimuli can cause RNA processing disorders, leading to the accumulation of
erroneous RNAs. This accumulation leads to the recruitment of RdRPs to synthesize risiRNA, subsequently turning on the nuclear RNAi-mediated gene silencing
pathway to inhibit pre-rRNA expression.
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polyadenylation (TRAMP) complexes (Schmidt and Butler,
2013). The exonuclease SUSI-1 (ceDIS3L2) is involved in the
3′–5′ degradation of oligouridylated rRNA fragments (Astuti
et al., 2012; Zhou et al., 2017b). When the rRNA modification
or processing steps are disrupted, or upon cold shock treatment
or UV exposure, erroneous rRNAs are oligouridylated and
recognized by RdRPs to generate risiRNAs via a poorly
understood mechanism (Zhou et al., 2017b; Zhu et al., 2018).
risiRNAs in turn silence rRNAs via the RNAi machinery to
prohibit the accumulation of erroneous rRNAs.

Downregulation of rRNA transcription is one of the
major strategies to preserve cellular homeostasis upon
encountering stress conditions and to limit energy consumption
under unfavorable conditions (Parlato and Liss, 2014).
The risiRNA/RNAi-directed feedback loop, therefore, may
compensate for dysfunctions in the exoribonuclease-engaged
degradation of erroneous rRNAs. Consistently, when rRNA
modification and processing steps are defective, the animals
grow more slowly because of the presence of risiRNAs
(Zhu et al., 2018).

PERSPECTIVES

Ribosome biogenesis is tightly coordinated and controlled from
the transcription of pre-rRNAs to the assembly of ribosomes, a
process that is influenced by many developmental programs and
environmental stress challenges (McStay, 2016; Sloan et al., 2017).
Cells respond to these signals by modulating the transcription,
processing, maturation of rRNAs and the assembly and usage
of ribosomes. Defects or disorders in any of these steps lead
to a number of human diseases. In addition to protein factors,
small and long regulatory RNAs also play important roles in
the regulation of pre-rRNA transcription and rRNA maturation.
The regulatory RNAs may act to sense developmental signals
and environmental stresses. For example, PAPAS can sense
nutrition deprivation, heat-shock, and hypo-osmotic stresses.
risiRNAs respond to cold shock and UV and further down
regulate pre-rRNA transcription. risiRNAs also surveil the fidelity
and precision of rRNA modifications and processing to avoid
the accumulation of erroneous rRNAs expressed during the
development of organisms. More interestingly, the lncRNA
LoNA is involved in learning and memory by modulating
rRNA transcription.

Many questions still remain to be addressed to fully
understand the mechanisms and roles of non-coding RNAs in
anti-stress pathways and rRNA regulation. For example, how
do these lncRNAs surveil distinct environmental stresses? Cold
shock could induce untemplated addition of oligouridylation
at the 3′ ends of 26S rRNAs to elicit the production of
risiRNAs (Zhou et al., 2017b). Heat-shock elicits CHD4
dephosphorylation to facilitate its association with PAPAS
(Zhao et al., 2018). Were these surveillance mechanisms
conserved among different organisms during evolution? Do
poikilotherms and homeotherms use similar mechanisms to
sense temperature alterations in the environment? Beside
nuclear non-coding RNAs, cytoplasmic lncRNAs are frequently
bound to and degraded at ribosomes (Carlevaro-Fita et al.,
2016). Whether these cytoplasmic lncRNAs can in turn
regulate rRNAs need further investigation. In particular, what
are the biological roles of non-coding RNAs in regulating
rRNAs during developmental processes? With new emerging
technologies, many novel discoveries will help to answer these
important questions.
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