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What happens at or after transcription: Insights into circRNA biogenesis
and function

Chuan Huang and Ge Shan*
School of Life Sciences & CAS Key Laboratory of Brain Function and Disease; University of Science and Technology of China; Hefei, Anhui Province, China

Circular RNAs (circRNAs) are a
large family of noncoding RNAs

(ncRNAs) found in metazoans. System-
atic studies of circRNAs have just begun.
Here, we discuss circRNA biogenesis and
functions with a focus on studies indicat-
ing great diversification of circRNAs. We
highlight the recent identification of a
special subtype of circRNAs, called
EIciRNAs, and their role in transcrip-
tional regulation. New insights on RNA-
RNA interaction and other features asso-
ciated with circRNA biology are also
discussed.

Circular RNAs (circRNAs) are a
recently identified large family of noncod-
ing RNAs (ncRNAs) in metazoan.1-4

Thousands of circRNAs, as alternative
transcripts from exonic backsplicing of
coding genes (exonic circRNAs), have
been found in mammalian cells as well as
in model organisms such as Drosophila
melanogaster and Caenorhabditis elegans.4-6

circRNAs in eukaryotic cells may include
a variety of molecules, such as plant
viroids, the genome of some ssRNA
viruses, the loop of intronic lariats, and so
on. As the majority of circRNAs identified
in animal cells are composed of exonic
circRNAs, in this point-of-view we will
focus on exonic circRNAs; therefore,
when we use the term ‘circRNAs’ we are
referring to exonic circRNAs, unless oth-
erwise specified.7,8

Cotranscriptional or
Posttranscriptional Biogenesis

of circRNAs

In the same way as regular linear splic-
ing, the generation of circRNAs by

backsplicing takes place in the nucleus.
In linear splicing, most introns in the
pre-mRNA are removed before transcrip-
tion is finished.9 We asked whether back-
splicing was also cotranscriptional? Two
lines of evidence were presented to sup-
port this idea in Drosophila (Fig. 1).10

First, a substantial number of circRNAs
were found as nascent chromatin-bound
RNAs. Secondly, a mutant RNA poly-
merase II (RNAP II) with slower elonga-
tion rate in favor of cotranscriptional
splicing increased the ratio of linear to
circRNAs for individual genes. These
results indicated that most fly circRNAs
might be generated cotranscriptionally,
and linear splicing and backsplicing
might compete with each other at the
cotranscriptional level.8 The argument
for the posttranscriptional biogenesis of
circRNAs was brought forward with the
observation that a stable 30 end of pre-
mRNA was in favor of circRNA produc-
tion in mammalian cells when tested
with an overexpressing plasmid
(Fig. 1).11 Future studies are required to
resolve these 2 somewhat conflicting
findings, although a second possibility
could also be considered.

It is possible that some (maybe even
the majority of) circRNAs are generated
cotranscriptionally, while the biogenesis
of the others may be posttranscrip-
tional. In eukaryotic cells, most of the
canonical linear splicing happens
cotranscriptionally, although some
introns are still removed posttranscrip-
tionally.9,12 Cotranscriptional splicing
efficiency is actually higher in Drosoph-
ila than that in mice.13 It is also possi-
ble that circRNAs could be divided into
2 subclasses, according to their co- or
post-transcriptional biogenesis.
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Sequences and Proteins
Mediating the Biogenesis

of circRNAs

Flanking long introns and complemen-
tary repeats such as Alu elements in flank-
ing introns are positively associated with
the biogenesis of circRNAs6,11,14-16, sug-
gesting 2 potential features of circRNA
biogenesis. Long (maybe also hard-to-
splice) introns could serve as marks for the
regions of circularization, and then the 2
backsplicing sites might be brought
together by the flanking complementary
sequences (Fig. 1). On the other hand,
not all circRNAs are associated with long
flanking introns or intronic repeats, and
the exonic sequences involved in back-
splicing may also be crucial for the circu-
larization of some circRNAs.11,15 RNA
binding proteins such as ADAR, QKI,
and MBL, known to be involved in RNA
editing or alternative splicing, are associ-
ated with the biogenesis of specific
circRNAs.6,11,17

Furthermore, circRNAs show expres-
sion profiles of cell specificity often inde-
pendently from the expression patterns of
their parent genes, which points to a regu-
lated biogenesis of circRNAs that is cell-
and gene-specific.1,2,5,14,15,18-20 It is
highly possible that circRNAs are diversi-
fied in various ways in their biogenesis.

circRNAs as microRNA Sponges

Once formed, what, if any, are the
physiological roles of these non-canonical
transcripts? A role in posttranscriptional
regulation was demonstrated for 2 circR-
NAs, circCDR1as and circSry.1,2 Both
circRNAs function as microRNA sponges,
containing multiple copies of microRNA
binding sites. The canonical functional
site of microRNAs is the cytoplasm, and,
interestingly, most circRNAs also localize
in the cytoplasm.2,3 A natural question to
ask following these findings is: could it be
possible that many or even the majority of

circRNAs function as microRNA sponges?
The answer to this question may be nega-
tive when we consider that only a few out
of the thousands of circRNAs in human
cells harbor multiple predicted binding
sites for individual microRNAs.18 How-
ever, Drosophila circRNAs do harbor over
a thousand computational miRNA bind-
ing sites conserved across the genus,5 indi-
cating a possible divergence in circRNA
functions along different branches of the
animal kingdom.

EIciRNA as a Special Subtype
of circRNA

Recently, a distinct subtype of circR-
NAs was found in mammalian cells in our
lab.15 This novel subclass of circRNAs
associated with RNAP II to regulate tran-
scription in the nucleus.15 We speculated
that some of these ncRNAs might regulate
transcription; therefore, we initially
attempted to identify RNAP II-associated
ncRNAs via cross-linked immunoprecipi-
tation (CLIP) and identified >100 circR-
NAs.15 Further analysis revealed that these
circRNAs were composed of both exonic
and intronic sequences of coding genes.
We termed these special circRNAs exon-
intron circular RNAs (EIciRNAs). The
intron retention makes EIciRNAs distinct
from most other circRNAs, which are
composed exclusively of exonic sequences.
EIciRNAs also tend to have flanking long
introns as well as flanking complementary
sequences, just like the other circRNAs,
although other not yet identified features
may lay in the flanking sequences of
EIciRNAs. FISH experiments showed
that EIciRNAs localized predominantly in
the nucleus, consistently with their associ-
ation with RNAP II. Their cellular locali-
zation, again, differentiates EIciRNAs
from the other circRNAs.

EIciRNAs Regulate Transcription
via RNA-RNA Interactions

Since EIciRNAs associate with RNAP
II and localize almost exclusively to the
nucleus, we speculated that these circR-
NAs might play roles in transcriptional
regulation. Indeed, knockdown of

Figure 1. circRNAs are generated co- or post-transcriptionally, and their biogenesis may be medi-
ated by complementary sequences (purple and yellow boxes) in the flanking introns. EIciRNAs asso-
ciate with U1 snRNPs to regulate gene transcription in cis. U1 snRNPs also play roles in preventing
premature polyadenylation and in determining transcriptional direction. The majority of circRNAs is
composed exclusively of exonic sequences and localize to the cytoplasm; 2 of them were are shown
to function as microRNA sponges.
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EIciRNAs with either siRNAs or RNa-
seH-based antisense oligonucleotides
(ASO) decreased the transcription of their
parental genes. With multiple lines of evi-
dence, we showed that EIciRNAs
enhanced the transcription of their paren-
tal genes in cis, although the possibility of
trans effects of these EIciRNAs on the
expression of other genes could not be
excluded.15

How do EIciRNAs promote the
expression of their parental genes? We
found that U1 snRNPs associated with
EIciRNAs at their parental gene promoter.
Indeed, RNA-DNA double FISH assay
showed the colocalization of EIciRNAs
and U1 snRNAs. It may be even possible
that the global distribution of U1 snRNAs
is associated, to some degree, with the dis-
tribution of EIciRNAs in the nucleus.
Further supporting the idea that U1
snRNP mediate the cis effect of EIciR-
NAs, we found that blocking U1 snRNA
with antisense morpholino (AMO) spe-
cific for U1 snRNA abolished the effect of
EIciRNA on the regulation of their paren-
tal genes at multiple levels. Therefore, the
interaction between U1 snRNA and
EIciRNA is indispensable for their role in
transcriptional regulation. Furthermore,
we suspected that EIciRNAs interacted
with U1 snRNA via the 50 splicing site of
their retained introns, which is the U1
snRNA binding site in canonical splicing.
Indeed, sterically blocking these sites with
AMO decreased the interaction between
EIciRNAs and U1 snRNP, and further
interactions among RNAP II, U1 snRNP,
EIciRNAs, and their parental gene pro-
moter. This blocking eventually resulted
in EIciRNA’s inability to regulate parent
gene transcription.15

Multiple Roles of U1 snRNP

It seems that U1 snRNA plays a central
role in mediating the effect of EIciRNAs.
In eukaryotic cells, U1 snRNA is initially
identified as a component of the spliceo-
some.21 U1 snRNA also associates with
TFIIH to mediate transcription initiation
for some specific genes.22 The enhance-
ment of transcription by EIciRNAs
through interaction with U1 snRNP may
also be one of the regulatory mechanisms

of U1 snRNA. Recent studies have dem-
onstrated that U1 snRNAs play roles in
preventing premature mRNA polyadeny-
lation and in determining transcriptional
direction of divergent promoters.23-25 The
number of U1 snRNA molecules is
»100-fold higher than that of other
snRNAs of the mammalian spliceosome.25

Thus, it is highly possible that most or at
least a large proportion of U1 snRNAs
play roles in mechanisms other than splic-
ing. U1 snRNA may even be a Swiss
Army knife-like molecule involved in
multiple regulatory events.

Further Insights on
Transcriptional Regulation

and circRNAs

Transcription is a stringently con-
trolled process that requires many regula-
tory factors. Several ncRNAs participate
in transcriptional regulation by using
diverse mechanisms.26 First, ncRNAs such
as B2 RNA could directly target RNAP II
to exert regulatory functions.27,28 A sec-
ond class of ncRNAs, such as EBER2
RNA, NEAT2 RNA, and NRSE RNA,
influence the status of transcriptional acti-
vators or repressors.29-31 A third class of
ncRNAs includes U1 snRNA and 7SK
RNA and associate with factors participat-
ing in transcriptional initiation, elonga-
tion, or termination.22,32 EIciRNAs seem
to utilize a novel mechanism of RNA-
RNA interaction for their roles in tran-
scriptional regulation.

A major way of regulation by RNA is
via RNA-RNA interactions.33,34 This is
nicely exemplified by the series of RNA-
RNA-mediated events between snRNAs
and pre-mRNAs, which lead to the
removal of eukaryotic introns.9,12,21 A
plethora of ncRNAs also execute their
physiological roles through specific RNA-
RNA recognition and binding.34 RNA-
RNA interaction is essential for the 2 func-
tions so far associated with circRNAs—as
microRNA sponges in the cytoplasm and
as transcriptional regulators in the nucleus.
It is reasonable to speculate that circRNAs
may play roles by interacting with a pleth-
ora of RNAs. Also, intramolecular RNA-
RNA binding is involved in circRNA bio-
genesis, as already discussed.

The discovery of EIciRNAs and the 2
functions so far associated with circR-
NAs—microRNA sponges and transcrip-
tional regulators—as well as the already
discussed disputes around circRNA bio-
genesis, strongly indicate that circRNAs
are a family of RNAs with great diversity.8

Just like linear RNAs, it is possible that
the only common feature of circRNAs is
that they are all circular.

For circRNAs to function as micro-
RNA sponges the number of molecule for
individual circRNAs needs to be high
enough; however, most circRNAs are not
abundant. Low circRNA copy numbers
lead to the argument that the majority of
these molecules may be piggyback prod-
ucts of pre-mRNA splicing and/or noise
of gene expression,18 although their
restricted cellular localization and cell spe-
cific expression profiles argue strongly
against this view. Copy numbers of EIciR-
NAs do not need to be high for their cis
effect in the nucleus. Copy number and
expression profiles are all related to their
biogenesis and the completely unexplored
subject of circRNA degradation. The cel-
lular localization of individual circRNAs
may also even be determined together by
biogenesis, transportation, and degrada-
tion. The only thing known about
circRNA degradation is that circRNAs are
presumably more stable than other
ncRNAs due to their inaccessibility to
exonucleases such as RNase R.35,36 Also,
whether and how circRNAs are actively
transported within eukaryotic cells are
questions that require further
investigation.

ncRNAs participate in numerous bio-
logical events through various mecha-
nisms, although many ncRNAs remain
poorly understood. This is particularly
true about circRNAs. The identification
of certain circRNAs playing microRNA
sponge roles, the specific features associ-
ated with circRNA biogenesis, and the
role of EIciRNAs in transcriptional regu-
lation may provide only a glimpse of the
tip of the iceberg that is circRNA biology.
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