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Abstract An enormous amount of long non-coding RNAs (lncRNAs) transcribed from eukaryotic

genome are important regulators in different aspects of cellular events. Cytoplasm is the residence

and the site of action for many lncRNAs. The cytoplasmic lncRNAs play indispensable roles with

multiple molecular mechanisms in animal and human cells. In this review, we mainly talk about

functions and the underlying mechanisms of lncRNAs in the cytoplasm. We highlight relatively

well-studied examples of cytoplasmic lncRNAs for their roles in modulating mRNA stability,

regulating mRNA translation, serving as competing endogenous RNAs, functioning as precursors

of microRNAs, and mediating protein modifications. We also elaborate the perspectives of

cytoplasmic lncRNA studies.
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Introduction

Mammalian genome is pervasively transcribed into many
different complex families of RNA. However, less than 2%
of mammalian genome is transcribed into mRNA to encode

proteins, whereas a major portion of the genome is transcribed
into interweaved and overlapping transcripts that include
thousands of non-coding RNA (ncRNA) transcripts [1,2].

ncRNAs more than 200 nucleotides in length are called long
ncRNAs (lncRNAs), which are often transcribed by RNA
polymerase II [3,4]. These lncRNAs are usually devoid of open
reading frames (ORFs), with or without the 30 polyadenylation
[5–8]. Interestingly, expression of lncRNA is more tissue-
specific than that of mRNA [9].

In the last several years, a large number of nuclear
lncRNAs have been discovered. These lncRNAs play diverse

roles in the nucleus through various mechanisms [10]. For
example, nuclear lncRNAs control the epigenetic state of par-
ticular genes [11], participate in transcriptional regulation [12],

get involved in alternative splicing and constitute subnuclear
compartments [13,14].

Although for most if not all of the lncRNAs, nucleus is the

place of biogenesis and processing, cytoplasm is the final resi-
dence and site of action for some lncRNAs. Biogenesis of
lncRNAs is quite complicated and share many features of

protein-coding RNAs. Within the nucleus, they occupy the
chromatin fraction. 17% of lncRNAs vs. 15% of mRNAs
are enriched in the nucleus, whereas 4% vs. 26%, respectively,
are enriched in the cytoplasm [6]. Many lncRNA-mediated

mechanisms of gene regulation have been identified in the
nces and
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cytoplasm [8,15,16]. In the last decade or so, thousands of
cytoplasmic lncRNAs have been discovered, indicating their
importance for multiple cellular activities. In this review we

highlight the functions and underlying mechanisms of some
important cytoplasmic lncRNAs that are responsible for post-
transcriptional regulations such as on mRNA stability and

translational control.

Modulation of mRNA stability

In the cytoplasm, several lncRNAs target mRNA transcripts
and modulate mRNA stability. Some lncRNAs such as half-
STAU1-binding site RNAs (1/2-sbsRNAs) and growth arrested

DNA-damage inducible gene 7 (gadd7) decrease the stability of
mRNA, while others such as antisense transcript for b-secretase
1 (BACE1-AS) and the terminal differentiation-induced

ncRNA (TINCR) increase mRNA stability.

1/2-sbsRNAs

mRNAs can be degraded via staufen 1 (STAU1)-mediated
mRNA decay (SMD), when their 30 untranslated region (30

UTR) binds to STAU1 [17]. STAU1 is a double-stranded

RNA (dsRNA)-binding protein, which binds within 30 UTR
of translationally-active mRNA [14,18]. STAU1 binds to a
complex structure of 19-bp stem with 100 nt apex within the
mRNA encoding ADP ribosylation factor 1 (ARF1) [18]. This

stem region is conserved in 30 UTRs of ARF1mRNA of mouse
and rat [6]. However, such stem structures were not identified
in other STAU1 targets [18]. STAU1-binding sites can be

formed by imperfect base-pairing between an Alu element in
the 30 UTR of an SMD target and another Alu element in a
cytoplasmic, polyadenylated lncRNA [18]. These lncRNAs

transactivate the binding of STAU1 to mRNA as only
STAU1 could be immunoprecipitated with lncRNAs called
1/2-sbsRNAs, thus unveiling a pivotal strategy of recruiting pro-
teins to mRNAs and mediating the mRNA decay (Figure 1A).

However, not all mRNAs containing Alu element in their 30

UTR are targeted for SMD, despite the presence of comple-
mentary 1/2-sbsRNAs that target other mRNA for SMD

[17]. One of the 378 identified 1/2-sbsRNAs in humans,
1/2-sbsRNA1 contains a single Alu element that base pairs
with the Alu element in the 30 UTR of plasminogen activator

inhibitor type 1 (SERPINE1) and FLJ21870. 1/2-sbsRNA1
is present in the cytoplasm but absent in the nucleus of HeLa
cells [18] and only STAU1 can be immunoprecipitated with

1/2-sbsRNA1. Two isoforms of 1/2-sbsRNA1, including
1/2- sbsRNA1(S) (short form) and 1/2-sbsRNA1(L) (long
form), have been reported. Both isoforms contain the Alu
element and 3’ UTR with poly (A) tail, although they differ

at the 50 end. Knocking down 1/2-sbsRNA1(S) increased the
level of SERPINE1 and FLJ21870 mRNAs by 2–4.5-folds
above normal. Other 1/2-sbsRNA members such as

1/2-sbsRNA2, 1/2-sbsRNA3, and 1/2-sbsRNA4 are largely
cytoplasmic and polyadenylated as well, containing a single
Alu element. Knocking down these 1/2-sbsRNAs led to upreg-

ulation of their mRNA targets [17]. Functional studies showed
that 1/2-sbsRNA1 contributed to the reduced cell migration by
targeting SERPINE1 and RAB11-family-interacing protein 1
(RAB11FIP1) mRNAs for SMD as confirmed by scarp injury

repair assay [17].
gadd7

gadd7 is a 754-nt polyadenylated lncRNA isolated from
Chinese hamster ovary (CHO) cells [15,16]. Expression of
gadd7 is induced by several types of DNA damage and growth

arrest signals [19,20], and gadd7 plays a pivotal role in regulat-
ing G1/S checkpoint post DNA damage. gadd7 also regulates
lipid-induced oxidative and endoplasmic reticulum (ER) stress
[21]. lncRNAs are known to bind to and regulate the functions

of proteins. One such example is the binding of gadd7 with
TAR DNA-binding protein (TDP-43), and this interaction is
strengthened upon UV exposure [22–24]. TDP-43 is a member

of the heterogeneous nuclear ribonucleoprotein (hnRNP)
family. HnRNP family members are RNA/DNA binding
proteins involved in transcription, splicing, mRNA transport,

and mRNA stability [25,26]. TDP-43 is known to repress the
expression of cyclin-dependent kinase 6 (Cdk6) mRNA in Hela
cells, which is important for G1-phase progression [27,28].

Nonetheless, Cdk6 expression is found to be activated by
TDP-43 in CHO cells [24]. UV-induced gadd7 directly interacts
with TDP-43, thus leading to the decreased interaction
between TDP-43 and Cdk6 mRNA. This results in Cdk6

mRNA degradation, and finally inhibition of cell cycle pro-
gression [24]. gadd7 is not highly conserved at the nucleotide
level [29,30]. Since the structure or the functional motif of

lncRNAs may be more important, and thus would be more
conserved than their nucleotide sequence [9], it remains possi-
ble to identify a functional gadd7 ortholog in humans. This

may be important for unveiling the pathogenesis of diseases
such as frontotemporal lobar degeneration (FTLD) and
amyotrophic lateral sclerosis (ALS), as dominant mutations
in TDP-43 are causative of these two important neurodegener-

ative diseases [24,31,32].

BACE1-AS

Expression of the conserved non-coding BACE1-AS increases
BACE1 mRNA stability when HEK-SW cells are exposed to
cellular stressors like amyloid-b1–42 (Ab1–42) [33]. BACE1-

AS renders BACE1 mRNA stability by masking the binding
site of miR-485-5p (Figure 1A). BACE1-AS and miR-485-5p
compete for binding in the sixth exon of BACE1 mRNA.

The sense-antisense RNA duplex between BACE1 and
BACE1-AS in the cytoplasm potentially perturb the interac-
tion between miR-485-5p and BACE1 mRNA, which to some
extent, explains the mRNA stabilization by BACE1-AS

transcript [34].

TINCR

The TINCR gene resides on chromosome 19 in humans and
encodes a predominantly cytoplasmic 3.7-kb lncRNA. TINCR
regulates human epidermal differentiation by post transcrip-

tional mechanism [35]. Previously found as an uncharacterized
lncRNA, TINCR is now believed to be the most highly-
induced lncRNA during epidermal differentiation [35,36].

TINCR binds to mRNA through a 25-nt ‘TINCR box’ motif,
which is robustly enriched in the interacted mRNAs. TINCR
RNA has a strong affinity for STAU1 protein [17,35,37,38].
TINCR–STAU1 complex mediates the stabilization of

differentiation-related mRNAs, such as KRT80 encoding
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Figure 1 Known working models of cytoplasmic lncRNA function

A. lncRNAs modify mRNA stability, with 1/2-sbsRNA as an example of decreasing the stability of mRNA and BACE1-AS as an example

of increasing the stability of mRNA. B. lncRNAs regulate mRNA translation, with lincRNA-p21 as an example of inhibiting the

translation and AS Uchl1 as an example of promoting translation. C. lncRNAs modulate gene expression by functioning as ceRNAs, with

linc-MD1 as well as CDR1as shown as examples. D. lncRNAs can give rise to microRNAs, with H19 shown as an example. E. Some

lncRNAs affect protein modification, with NKILA as one of such kind of cytoplasmic lncRNAs. ORF, open reading frame; 1/2-sbsRNA,

half-STAU1-binding site RNA; BACE1-AS, antisense transcript for b-secretase 1; linc-MD1, long non-coding RNA muscle

differentiation 1; CDR1as, cerebellar degeneration-related protein 1 antisense transcript; NKILA, NF-jB interacting lncRNA; AS

Uchl1, antisense transcript for ubiquitin carboxy terminal hydrolase L1; SINE, short interspersed element; cdc6, cell division cycle 6.
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keratin 80 in an ultraviolet protection factor 1/2 (UPF1/2)-
independent manner, however the exact mechanism remains
obscure [39].

Modulation of translation

Gene expression control at translational level plays a crucial
role in multiple biological systems and provides valuable
means for the spatiotemporal management of complex protein
dynamics in eukaryotic cells [40–42]. Some lncRNAs also get

involved in such regulation at the translational level, which
can either repress (as exemplified for lincRNA-p21 below) or
promote (as exemplified for AS Uchl1 below) translation.

lincRNA-p21

The human lincRNA-p21 is also known as tumor protein p53

pathway corepressor 1 (Trp53cor1). lincRNA-p21 is �3.0 kb
in length, and the encoding gene is located �15 kb upstream
of p21/cdkn1a gene [23]. It is more abundant in cytoplasm

compared to nucleus, known to co-distribute with ribosomes
[43]. As a post-transcriptional modulator, lincRNA-p21 can
negatively regulate the translation of CTNNB1 (b-catenin)
and JUNB transcripts by imperfectly base pairing at different
sites in the coding and untranslated regions (both 50 and 30

UTRs) of CTNNB1 (15 sites) and JUNB mRNAs (8 sites).
When the level of Hu antigen R (HuR), a ubiquitous RNA
binding protein, reduces, lincRNA-p21 becomes stable and

interacts with its target transcripts including CTNNB1 and
JUNB mRNAs. The resulting lincRNA-p21–mRNA complex
can enhance the interaction between mRNAs and the transla-

tional repressors RCK as well as Fragile X mental retardation
protein (FMRP). Consequently, translation of the target tran-
scripts is repressed through reduced polysome sizes and ribo-
some drop-off (Figure 1B) [43,44].

AS Uchl1

A recent study reported the discovery of a spliced nuclear-

enriched antisense transcript (AS Uchl1) complementary to
the mRNA that encodes mouse ubiquitin carboxy terminal
hydrolase L1 (Uchl1) [45]. Uchl1 is an enzyme specifically

expressed in dopaminergic neurons [24,46,47]. The activity of
the AS Uchl1 depends on the presence of a 73-nt overlapping
sequence complementary with 50 end of Uchl1 mRNA and
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an embedded inverted SINEB2 repetitive element (Figure 1B)
[45]. Under normal physiological conditions, AS Uchl1 is
enriched in the nucleus, and upon rapamycin treatment, inhi-

bition of mTORC1 triggers the transport of AS Uchl1 to the
cytoplasm, which then targets the overlapping Uchl1 mRNA
to active polysomes for cap-independent translation. Exact

molecular mechanism as to how AS Uchl1 promotes the trans-
lation of Uchl1 mRNA under stress conditions is still elusive.

Competing endogenous RNAs

Coding and non-coding RNAs can regulate each other
through their ability to compete for miRNA binding.

lncRNAs harboring multiple binding sites of identical miRNA
are called competing endogenous RNAs (ceRNAs) [48].
ceRNA can sequester miRNAs and therefore protect their tar-

get mRNAs from repression [49–53]. This activity was first dis-
covered in Arabidopsis thaliana and later in mammals [53,54].
Multiple ceRNAs have been identified, and we present some

as examples below.

HULC

Hepatocellular carcinoma (HCC) is one of the most fatal can-
cers [55]. Recent studies have indicated that a large number of
lncRNAs are functionally deregulated in HCC [56–59]. Among
these, highly up-regulated in liver cancer (HULC) is a novel

mRNA-like ncRNA. It is present in the cytoplasm, spliced,
polyadenylated, and resembles the mammalian LTR trans-
poson 1A [60]. As reflected by its name,HULC is highly upreg-

ulated in HCC, and it is also detected in gastric cancer and
colorectal carcinomas that metastasize to the liver [60–62].
The HULC gene resides on chromosome 6p24.3 in humans

and is conserved in primates. It is about 1.6 kb in length and
contains two exons. Expression of HULC gene in Hep3B cells
can be up-regulated by the transcription factor cAMP respon-
sive element binding protein (CREB). HULC acts as endoge-

nous sponge of miR-372 [63]. HULC binding to miR-372
reduces miRNA-mediated translational repression of protein
kinase cAMP-activated catalytic subunit beta (PRKACB),

one of the target genes of miR-372 [63]. PRKACB can induce
phosphorylation of CREB, which in turn stimulates HULC
expression, thus forming a feedforward loop [63].
arch 2025
linc-MD1

linc-MD1 is a muscle-specific lncRNA, which is indispensable

for the timing of muscle differentiation and plays an important
role in myogenesis [64]. linc-MD1 acts as a natural decoy
for two muscle-specific miRNAs, miR-133 and miR-135
(Figure 1C) [64]. Expression of mastermind-like-1 (MAML1)

is controlled by miR-133, and myocyte-specific enhancer factor
2C (MEF2C) is the target of miR-135 [64]. MAML1 and
MEF2C are important myogenic factors required for activa-

tion of muscle-specific genes. MEF2C binds to the promoter
region of cardiac muscle genes and positively regulates the dif-
ferentiation of muscle cells [65,66], while MAML1 acts as a

transcription coactivator in some signal transduction pathways
(such as Notch signaling) related to muscle differentiation [67].
With the depletion of linc-MD1, expression of both MAML1
and MEF2C is repressed, whereas over expression of linc-
MD1 resulted in high levels of MAML1 and MEF2C. These
observations argue for a direct competition between linc-

MD1 and mRNAs for miRNA binding [64].

linc-RoR

The lncRNA regulator of reprogramming (linc-RoR) func-
tions as microRNA (miRNA) sponge against miR-145. Inter-
action between linc-RoR and miR-145 prevents mRNA of

some important transcription factors (TFs) like Oct4, sox2,
and Nanog in human embryonic stem cells (hESCs) from
miRNA-mediated regulation [68,69]. The expression of linc-

RoR is positively correlated with the undifferentiated state
of hESCs [69].

CDR1as and circSry

Recently, additional examples of ceRNA were found in circu-
lar RNAs (circRNAs), which represent a newly identified large
class of lncRNAs [70–72]. circRNAs can be formed by back-

splicing of the 50 end of an upstream exon with the 30 end of
the same exon or a downstream exon. Although some cir-
cRNAs such as EIciRNAs are predominantly localized in the

nucleus, circRNAs are generally cytoplasmic. circRNAs
appear to be non-coding and lack the association with poly-
somes [71,73]. Two cytoplasmic circRNAs have been reported
to act as miRNA sponge. The first one is the cerebellar

degeneration-related protein 1 antisense transcript (CDR1as,
also called ciRS-7), which is a sponge for miR-7 (Figure 1C).
CDR1as contains 74 miR-7 seed matches, out of which 63

are conserved in mammals [72]. The other one is a testis-
specific circRNA encoded by the gene sex-determining region
Y (circSry), which contains 16 putative binding sites for

miR-138 [71,72,74]. These two circRNAs may be special cases,
and it may not be a general phenomenon for circRNAs to
function as miRNA sponges [75].

Precursor of miRNAs

A genome-wide survey predicted that nearly 100 lncRNAs

encode miRNAs [76]. These lncRNAs may not be predomi-
nantly cytoplasmic, but they may be processed in the nucleus
and cytoplasm to give rise to functional miRNAs.

H19

H19 is one of the best known imprinting genes expressed from

the maternal allele and required for proper muscle differentia-
tion and muscle regeneration [77–79]. The H19 gene is present
on chromosomes 11 and 7 in humans and mice, respectively
[80,81]. There is no conserved ORF sequence in H19 RNA

between mice and human. Although the H19 gene is imprinted
paternally, the H19 RNA itself does not take part in imprint-
ing mechanism [82]. Studies based on structure prediction sug-

gest that H19 is a ncRNA, 2.3-kb long, capped, spliced, and
polyadenylated [82,83]. It is reported that H19 lncRNA acts
as a molecular sponge for let-7 family of miRNAs in a

HEK293 cell line [84]. Depleting H19 causes accelerated
muscle differentiation, which can be recapitulated by let-7
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overexpression [84]. In the cytoplasm of undifferentiated
multipotent mesenchymal C2C12 cells, H19 interacts with
the K homology-type splicing regulatory protein (KSRP).

Such binding favors KSRP-mediated destabilization of
myogenin transcripts [85].

Besides the aforementioned roles of H19, exon 1 of H19

also gives rise to miR-675-3p and miR-675-5p (Figure 1D).
miR-675-3p targets the gene encoding the anti-differentiation
TFs smad1 and smad5, which are crucial components of the

bone morphogenetic protein (BMP) pathway [86], whereas
miR-675-5p targets the gene encoding DNA replication initia-
tion factor Cdc6 [86]. In this regard, H19 has a pro-
differentiation function in primary myoblasts and regenerating

skeletal muscles due to the resulting miR-675-3p and miR-675-
5p [86,87]. H19 is also found to regulate placenta growth.
Insulin like growth factor 2 (Igf2), which is also targeted by

miR-675-3p, is an important regulator of growth and is upreg-
ulated in H19-deficient placenta [88]. H19 is also found to
modulate gastric cancer cell proliferation through miR-675,

by targeting the gene encoding the tumor suppressor runt
domain transcription factor1 (RUNX1). Thus H19/miR-675
regulates the expression of RUNX1 to modulate gastric

cancer [89].

linc-MD1 (again)

We discussed linc-MD1 as a ceRNA before. However, linc-

MD1 primary transcript also harbors the pri-miR-133b
sequence. If cleaved by Drosha in the nucleus, linc-MD1 can
give rise to a miRNA precursor. Recently, HuR protein is

described as another component of linc-MD1 regulatory cir-
cuitry [90]. HuR is known to contribute to muscle differentia-
tion [91]. HuR interacts with many coding and non-coding

RNAs, indicating its pleiotropic RNA binding activity
[92,93]. HuR binds to and favors linc-MD1 accumulation at
the expense of miR-133 biogenesis. HuR also recruits miR-

133 onto linc-MD1 in the cytoplasm, thereby reinforcing this
regulatory circuitry. There is an inverse correlation between
levels of HuR and miR-133b. HuR binds the base of the pri-
miR-133b stem loop, and physically interferes with micropro-

cessor activity [90]. Further investigations have to be carried
out to answer how the processing and function of linc-MD1
are regulated either as the pri-miR-133b in the nucleus or as

sponge for miR-133b when exported to the cytoplasm as an
unprocessed transcript.

Regulation of protein modification

In the recent years, several lncRNAs are identified to modulate
modifications of cytoplasmic proteins such as ubiquitination/

deubiquitination or phosphorylation/dephosphorylation.

lnc-DC

Expression of lnc-DC is almost exclusive to human conven-
tional dendritic cells (DCs) [94]. lnc-DC could help activate
STAT3 by binding to it in the cytoplasm, thus promoting

the phosphorylation and preventing dephosphorylation of
STAT3. Knockdown of lnc-DC inhibited the differentiation
to the DC lineage as well as the functions of DCs [94].
NKILA

NF-jB interacting lncRNA (NKILA) binds directly to IjB
and blocks IKK-induced IjB phosphorylation, thus inhibiting
NF-jB activation (Figure 1E) [95]. The expression of NKILA

is also upregulated by NF-jB. NKILA interacts with the
NF-jB/IjB complex, and seems to keep the NF-jB pathway
from over-activation and to suppress cancer metastasis [95].

Another role of lincRNA-p21

lincRNA-p21 was reported to regulate the ubiquitination of
HIF-1a, a transcription factor crucial to hypoxia-induced

effects such as Warburg effect [96]. lincRNA-p21 is induced
by HIF-1a under hypoxia condition, and binds to both HIF-
1a and von Hippel–Lindau tumor suppressor (VHL) protein.

Such binding blocks the interaction between VHL and HIF-
1a, thus inhibiting VHL-mediated ubiquitination of HIF-1a.
This positive feedback loop between HIF-1a and lincRNA-

p21 promotes glycolysis under hypoxia [96].

Perspectives

lncRNAs are recognized as major regulators in life events such
as gene expression, cell differentiation, and tumorigenesis. In
this article, we summarized the roles of some lncRNAs in

the cytoplasm. lncRNAs can function in the posttranscrip-
tional gene expression such as mRNA stability and translation.
Through RNA–protein or RNA–RNA interaction, cytoplas-

mic lncRNAs could also serve as ceRNAs, miRNA precursors,
or modulators of protein phosphorylation.

Recent findings have shown that certain transcripts
previously-annotated as lncRNAs in fact can be translated

to produce small bioactive peptides [97–100]. For instance,
the conserved micropeptide myoregulin (MLN) was found
to be encoded by a skeletal muscle-specific RNA, a previously

putative lncRNA [100]. MLN shows structural and functional
similarity with SERCA inhibitors, phospholamban and sar-
colipin. Interacting directly with SERCA, MLN disrupts the

Ca2+ uptake into the sarcoplasmic reticulum [100]. Similarly,
the endogenous 34-amino acid micropeptide dwarf open read-
ing frame (DWORF) is encoded by another putative muscle-
specific lncRNA. DWORF enhances muscle performance by

physically interacting with SERCA inhibitors such as phos-
pholamban, sarcolipin, and MLN [100]. These examples
demonstrated that some (although maybe limited in numbers)

transcripts that are previously annotated as lncRNAs are
actually coding, and thus should be considered as mRNAs.
Given the vast amount of lncRNAs identified, and many of

them are associated with noncoding functions, it is no doubt
that more functions and functional working mechanisms are
yet to be explored for the large number of cytoplasmic

lncRNAs.
Regulation of lncRNA localization is important to coordi-

nate their functions in the nucleus or in the cytoplasm. There
should exist machinery either directly or indirectly to transport

specific lncRNAs into the cytoplasm, and maybe further to
special subcellular locations or complexes. The final localiza-
tion, concentration, and functions of a specific lncRNA have

to be fine tuned by the RNA biogenesis, transportation,
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degradation, and maybe even modifications. Substantial
efforts are required to investigate these aspects.

A single lncRNA can have multiple roles. For example,

both H19 and linc-MD1 can function as ceRNAs as well as
precursors for miRNAs. How these different roles of the same
lncRNA are coordinated remains to be addressed. On the

other hand, there are undoubtedly more roles and functional
mechanisms remain unknown for cytoplasmic lncRNAs. With
the extensive investigations of the eukaryotic transcriptome by

means of RNA sequencing, most of the lncRNAs including
cytoplasmic ones may have already been described. Further
studies on these lncRNAs may help to classify them into sub-
classes based on their biogenesis and functions.
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