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Supplemental Figure legends

Figure S1. CRISPR/cas9 knock-in of in-frame GFP & ChIP-seq peaks of known
unc-30 or unc-55 targets (Related to Figure 1 and Figure 2)

(A) Diagram of GFP knock-in; F and R represent the detection primers. Gel analyses
of UNC-30::GFP and UNC-55::GFP PCR productions are shown. The inserted gfp
coding sequences are 717 bp.

(B) Western blots shown UNC-30::GFP and UNC-55::GFP fusion protein, along with
actin as the loading control. UNC-30 itself should be ~35 KD, UNC-55 ~40 KD, and
GFP ~26 KD; UNC-30::GFP fusion should be ~61 KD, and UNC-55::GFP fusion
should be ~66 KD.

(C) Circos plots the distribution of UNC-30 and UNC-55 ChIP-seq signals around the
genome.

(D) Venn diagram of UNC-30 and UNC-55 targeted coding, microRNA, and lincRNA
genes.

(E) UNC-30 ChIP-seq peaks distribute on its targets.

(F) UNC-55 ChIP-seq peaks distribute on known unc-55 targets. hbl-1 and unc-§ are
suppressed by unc-55 in VD MNs (Thompson-Peer et al., 2012; Miller-Fleming, et al.,
2016). unc-8, acr-2, slo-2, unc-129, dbl-1, and del-1 are regulated by unc-55 in AS
neurons (Kerk et al., 2017).

Figure S2. Transcriptional reporters of novel unc-30 or unc-55 targets (Related to
Figure 2)

(A) Transcriptional reporters of some novel unc-30 targets.
(B) Transcriptional reporters of some novel unc-55 targets.

(C) Transcriptional reporters of unc-30 and unc-55 shared targets (vhp-1, acr-14,
myrf-1, and myrf-2).

Figure S3. GO analyses of biological process of UNC-30 and UNC-55 target
genes (Related to Figure 2)

(A) GO analysis of biological process of UNC-30 & UNC-55 shared targets (C1 in
Figure 2).

(B) GO analysis of biological process of UNC-30 targets.



(C) GO analysis of biological process of UNC-55 targets.
(D) GO analysis of biological process of UNC-30 unique targets (C2 in Figure 2).
(E) GO analysis of biological process of UNC-55 unique targets (C3 in Figure 2).

Figure S4. Expression pattern of a longer pde-4 promoter (Ppde-4L) and mutated
pde-4 promoter (Ppde-44u55), and acy-1 as a common target of UNC-30 and
UNC-55 (Related to Figure 3)

(A) Ppde-4L::gfp in wild-type and unc-55(ell70) adults. n=12 worms for each
genotype. GFP intensity in arbitrary units (A.U.) normalized to Punc-47::RFP in D
MNs of adult worms., n=wild-type, 12 worms, 12 DD, 16 VD; unc-55(el170), 12
worms, 10 DD, 17 VD. Ppde-4L is 6 kb, and the promoter (labeled as Ppde-4) used in
Figure 3 and other experiments is 2.6 kb.

(B) Expression intensity of Ppde-44u55::GFP. n=23 wild-type worms, 50 VD.

(C) ChIP-seq peaks of UNC-30 and UNC-55 in acy-1.

(D) Plots of the Pacy-1::gfp expression levels along the time line are shown. n=26
DD (18 worms, 10h); 27 DD (20 worms, 14h); 26 DD (18 worms, 18h).

(E) Images of Pacy-1::GFP in wild-type, unc-30(el91), and unc-55(ell170) adults.
n=wild-type, 22 worms; unc-55(ell170), 12 worms; unc-30(el91), 10 worms. GFP
intensities in arbitrary units (A.U.) normalized to Punc-47::RFP intensity in adults are
shown in the plot figure. n=wild-type, 22 worms, 24 DD, 36 VD; unc-55(el170), 12
worms, 21 VD.

n.s., not significant; * p<0.05; *** p<0.001; One-Way ANOVA with Bonferroni

correction. Scale bar, 20 um.

Figure S5. Representative FRET images, FRET signals in D MNs of different
genotypes, and presynaptic intensities of D MNs (Related to Figure 4); VD
aberrant remodeling in pde-4(0), and FRET signals in D MNs of oig-1 and lin-14
(Related to Figure 6)

(A) Representative FRET images along with the time line (hours after hatching) in
wild-type DD MN:ss, the corresponding FRET signal is labeled below.

(B) FRET signals along the time line in DD or VD MNs in diverse backgrounds; time
points are hours after hatch; n=37-42 DD MNs (33-37 worms), 36-45 VD MNs
(30-34 worms) for pde-4 mutants; 43-56 VD MNs (34-38 worms) for wild-type; 35-55



VD MNs (29-33 worms), for unc-55 mutants.

(C) Images of Punc-25::SNB-1::GFP at different time points (post-hatch) in wild-type
and unc-55. Statistics of GFP intensities are shown in the plot figure.

(D) Presynaptic SNB-1::GFP puncta in DNC in wild-type and pde-4(0).
Representative images are shown, and statistics of extra SNB-1::GFP puncta on dorsal
side in wild-type and pde-4(0) are shown. L4 worms were examined; n=15 for each
genotype. Asterisks indicate extra puncta (with Punc-25::SNB-1::GFP, without
Pflp-13::SNB-1::mCherry) from VD MNs with aberrant remodeling in pde-4 mutant.
(E, F) FRET signals along the time line in DD or VD MNs in different backgrounds;
time points are hours after hatch; n=25-30 DD MNs (22-27 worms), 35-48 VD MNs
(26-30 worms) for oig-I mutants; 25-30 DD MNs (25-29 worms) for /in-14 mutants.
Data in B are the same to Figure 6E for oig-/ and lin-14, and data in C are the same to
Figure 6F for oig-1.

Data are mean= S.E.M. for B-F; Student’s t-test is used in D; One-Way ANOVA with
Bonferroni correction is used in B, E, and F; Two-Way ANOVAwith Bonferroni
correction for C. n.s. not significant, * p<0.05; ** p<0.01; *** p<0.001. Scale bar, 20

pm.

Figure S6. Deficiency of D MN respecification and cAMP levels in pde-4;0ig-1
double mutant (Related to Figure 7); lin-14 regulates pde-4, and irx-1 regulates
acy-1 (Related to Figure 7)

(A) Representative images of wild-type and pde-4(0),0ig-1(0). Worms were 12 hour
post-hatching.

(B) Representative images of wild-type and pde-4(0);0ig-1(0) with presynaptic
SNB-1::GFP puncta in VNC or DNC are shown. DNC, dorsal nerve cord; VNC,
ventral nerve cord.

(C) FRET signals in 12h DD MNs and 28h VD MNs in different backgrounds; images
taken from 12 hours; For DD MNs, n=24 (23 worms, wild-type), 36 (25 worms,
pde-4(0)), 26 (24 worms, o0ig-1(0)), 27 (24 worms, pde-4(0),0ig-1(0)). Images taken
from 28 hours. For VD MNs, n= 42 (35 worms, wild-type), 36 (32 worms, pde-4(0)),
34 (27 worms, oig-1(0)), 28 (22 worms, pde-4(0),0ig-1(0)). Data for wild-type, pde-4,
and oig-1 are the same as in Figures 6E, 6F, S5B, SSE and S5F.

(D) Ppde-4::GFP in wild-type and lin-14(0) L1 worms. n=15 worms, 22 DD for each



genotype.

(E) Images of Pacy-1::GFP in wild-type and irx-1 csRNAi. n=28 DD (20 worms
wild-type), 31 DD (25 worms, irx-1 csRNAQ)

Data are mean == S.E.M. One-Way ANOVA with Bonferroni correction for C;
Student’s t-test for D and E. n.s., not significant; ** p<0.01; *** p<0.001. Scale bar,

20 pm.

Figure S7. Effects of ectopic unc-55 expression, and comparison of UNC-30 &
UNC-55 ChIP-seq targets to some related data (Related to Figure 7 and
DISSCUSION)

(A) Expression of Ppde-4::GFP in control (wild-type, Punc-47::RFP) and UNC-55
ectopically expressed (wild-type, Punc-47::UNC-55a::s2::RFP) worms. n=15 DD
(12 worms, control) and 20 DD (15 worms, Punc-47::unc-55a::sl2::RFP).

(B) Statistics of Pacy-1::GFP fluorescence intensity in the control and UNC-55
ectopically expressed worms. n=28 DD (20 worms, wild-type) and 31 DD (26 worms,
Punc-47::unc-55a::s12::RFP).

(C) Representative images (time point of imaging at 24 hours) of T1 (ethanol control)
and T2 (auxin treated) worms. Statistics of fluorescent intensity are shown, n=20 DD
(15 worms, T1) and 22 DD (15 worms, T2). This panel is supplementary to Figure 7D.
DNC, dorsal nerve cord. Dashed boxes are enlarged (DNC) to show presynaptic
puncta. Solid boxes are enlarged to show DD2 and DD3 cell body, and the nuclear
levels of UNC-55a::degron::GFP protein (labeled as UNC-55) are significantly
decreased upon auxin induction.

(D) Venn diagram of 188 genes with elevated expression levels in VD MNs in unc-55
mutant (Petersen et al., 2011) for their closest UNC-55 ChIP-seq binding peak. Eight
genes (T23B12.5, C10C5.2, F35D2.3, nspb-12, F53H4.3, kin-15, C50F7.5, D1079.1)
have UNC-55 binding peaks within 2.0 kb of their TSS.

(E) Venn diagram of UNC-30 ChIP targets, UNC-55 ChIP targets, and GABAergic
neuron enriched genes in Cinar et al., 2005.

n.s., not significant; ** p<0.01; *** p<0.001; Student’s t-test; data are mean+S.E.M

in A and B. data are mean=SD in C. Scale bar, 20 um.



Table S1 ChIP-seq peaks (related to Figure 1 and Figure 2).
Table S2 C. elegans strains (related to Star Methods).

Table S3 primer information (related to Star Methods).
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