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Male fertility is built on the proper proliferation and differenti-
ation of germline cells within the seminiferous epithelium in the
testis, which continuously produces millions of sperm per day in
mammals [1]. RNA modifications are emerging as crucial epitran-
scriptomic regulators, with diverse roles in a wide range of biolog-
ical processes [2,3]. N4-acetylcytidine (ac4C) is highly conserved
across prokaryotes and eukaryotes, and is catalyzed by the solely
known enzyme ‘‘writer,” N-acetyltransferase 10 (NAT10) [4,5].
NAT10 is closely involved in meiotic progression in both male sper-
matocytes and female oocytes in mice [6,7]. However, the func-
tional importance and the molecular mechanisms by which
NAT10-mediated ac4C modification coordinates the complex, pre-
meiotic process remain poorly understood.

To investigate the role of Nat10 in spermatogonia, we examined
testicular 10× single-cell mRNA datasets (E-MTAB-6946) alongside
our immunofluorescence staining and western blotting results. The
analyses revealed that NAT10 is a nucleolar protein predominantly
expressed in spermatogonia in both mouse and human testes
(Figs. S1 and S2 online). To further explore NAT10’s function in
spermatogonial development, we employed two germline-
. Zhang), shange@ustc.edu.cn
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Elsevier B.V. and Science China Pre
specific Nat10 knockout mouse models: the Nat10-ScKO model,
created by crossing Stra8-Cre mice with Nat10lox/lox mice (Fig. S3
online), and the Nat10-DcKO model, a Ddx4-promoter-driven,
tamoxifen-inducible Nat10 knockout model generated by inter-
crossing our in-house customized Ddx4-CreERT2 mice
(C57BL/6JDdx4 tm1(5×HA-P2A-EGFP-T2A-CreERT2)Bao) with Nat10lox/lox mice
(mouse experiments were approved by the Ethics Committee of
University of Science and Technology of China (USTC) (ethical
approval No. USTCACUC25120124040)) (Fig. S5a and b online).
Nat10 knockout in both mouse models resulted in infertility with
significantly reduced testicular sizes (Figs. S4a, b and S5c, d online).
Histological analysis revealed a prominent loss of germ cells upon
Nat10 KO (Figs. S4c, d and S5e online). Immunofluorescence stain-
ing and western blotting revealed comparable numbers of PLZF-
positive spermatogonia in postnatal day 7 (P7) testes; however,
by P12, most germ cells were depleted in Nat10-ScKO testes,
(Fig. S4e–j online). In comparison, the numbers for both undiffer-
entiated and differentiated spermatogonia were significantly
reduced in Nat10-DcKO testes at P7 (Fig. S5f–n online). These find-
ings suggest that NAT10 is essential for spermatogonial prolifera-
tion and differentiation.

Then we injected Nat10lox/lox;Ddx4GFP-CreERT2 mice between P8–
P10 to delete the Nat10 gene in pre-leptotene spermatocytes
(Fig. S6a–c online). The testes from WT and Nat10-DcKO mice
appeared morphologically similar, with seemingly normal meiotic
ss. All rights are reserved, including those for text and data mining, AI training, and
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DSB repair, although some zygotene spermatocytes were dysregu-
lated in Nat10-DcKO mice (Figs. S6d, e and S7a–h online). In adult
mice, by 32 d post-tamoxifen (dpt), Nat10-DcKO testes exhibited a
‘‘Sertoli cell only” phenotype, which was not observed before 18
dpt (Figs. S6f–h and S7i, j online). These data indicate that NAT10
is essential for maintaining steady-state homeostasis of spermato-
gonia in adult testes.

We next explored the transcriptomic changes in Nat10-null
spermatogonia. Spermatogonial cells were purified via
fluorescence-activated cell sorting (FACS) using EGFP reporter in
Ddx4-CreERT2 model [7,8]. The results revealed similar numbers
of up- and down-regulated genes, with Gene Ontology (GO) analy-
sis indicating that down-regulated genes were primarily associated
with the cell cycle and cell division (Fig. S8a–d online). Addition-
ally, key genes involved in spermatogonial proliferation and differ-
entiation, including Ccna2, Ccnb2, Sox3, Dmrt1, Stra8, and lin28a,
were significantly downregulated (Fig. S8e–g online). We further
verified these findings by measuring mRNA levels of cell-cycle reg-
ulators in tamoxifen-inducible Nat10 knockout mouse embryonic
fibroblast (MEF) cell lines [7], demonstrating significant downreg-
ulation of cell-cycle genes such as Ccnb2, Ccna2, Ccne1, Ccnd1,
Cdc20, and Cdca3 (Fig. S8h online). Strikingly, attempts to produce
a Nat10 homozygous knockout cell line in F9, a testicular teratoma-
derived cell line, failed, suggesting that Nat10-null mutation causes
cell lethality (Fig. S9 online). Collectively, these data suggest that
NAT10 regulates a common set of cell-cycle genes crucial for cell
viability.

Since NAT10 is the only known ‘‘writer” of the ac4C, we further
carried out liquid chromatography/mass spectrometry (LC-MS/MS)
analysis to analyze the RNA modifications. Our findings revealed
that ac4C levels were significantly lower in Nat10-depleted testes
(Fig. S10a–d online). NAT10 requires a cofactor for ac4C deposition
in 18S rRNAs and tRNAs in mammalian cells [5,9], but global
snoRNA (SNORD13) knockout models have shown that NAT10/
SNORD13-mediated ac4C modification of rRNA does not affect cell
survival or proliferation [10], suggesting ac4C mark on rRNA is dis-
pensable for cellular development. We next assessed whether
NAT10/THUMPD1-deposited ac4C modification in tRNAs functions
in mammalian cells. We generated two stable Thumpd1 knockout
F9 cell lines (Fig. S11 online). Only ac4C levels in tRNAs were signif-
icantly lower in Thumpd1-null F9 cells (Fig. S10e–g online), sup-
porting the previous notion that NAT10 partners with THUMPD1
to deposit ac4C in tRNAs [5]. Notably, however, the protein transla-
tion, cell proliferation or apoptosis was indistinguishable between
Thumpd1-null and WT F9 cells (Fig. S10h–j online). These data rule
out the possibility that NAT10/THUMPD1-deposited ac4C in tRNAs
is responsible for cell lethality in both germline and somatic cells.

Given these findings, we next reasoned that NAT10-deposited
ac4C in mRNAs might account for the deleterious effects. To this
end, we deciphered the ac4C-modified mRNA landscape using an
in-house optimized ac4C-RIP-seq protocol in pubertal mouse testes
(Fig. 1a). Consistent with prior studies [4], most ac4C-enriched
peaks were located across the 5′UTR and coding sequence region
(CDS) of mRNA transcripts (Fig. 1b and Fig. S12a–d online). GO
enrichment analysis suggested that ac4C-modified mRNAs were
primarily associated with cell cycles and cell differentiation
(Fig. 1c), while transcripts without ac4C showed no significant dif-
ference between up- and down-regulated mRNAs (Fig. 1d, e and
Fig. S12e, f online). These data suggest that NAT10 stabilizes mRNA
transcripts by depositing the ac4C mark. The ac4C-positive mRNAs
that were only down-regulated upon Nat10 loss comprised a
cohort of representative genes in relation to cell proliferation/dif-
ferentiation and the cell cycle (Fig. 1f and Fig. S12g, h online). Both
visual inspection and ac4C-RIP-PCR/qPCR assays confirmed that
Dmrt1, Six5, Sox3, and Ccna2 are ac4C-modified by NAT10
(Fig. 1g–h). An in vitro mRNA decay assay revealed that the Dmrt1
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and Sox3 mRNA stability was significantly reduced in Nat10-
deficient testes (Fig. S12i online). Together, this evidence suggests
that mRNA ac4C modification accounts for spermatogonial defects
upon Nat10 KO.

Prior studies imply that ac4C modification is associated with
enhanced mRNA translation [4,7], we employed an in-house opti-
mized Ribo-seq assay [7,11] (Fig. 1i), which demonstrated high
quality and reproducibility. However, following Nat10 deletion,
the majority of RPF transcripts were downregulated (Fig. S13a–f
online), suggesting global translational repression upon Nat10 loss.
Combined with RNA-seq data, the downregulated genes exhibited
declined RPF occupancy and were primarily enriched in pathways
related to the cell cycle and germline development (Fig. 1j, k).
Notably, the number of genes exhibiting up- or down-regulation
at the mRNA levels was similar for transcripts with elevated RPFs.
Further analysis revealed that more of the downregulated genes
also showed decreased translation levels (Fig. S13g, h online).
Moreover, we observed a greater number of ac4C-positive mRNAs
with decreased RPF intensity in Nat10-deficient testes compared
with WT testes (423 vs. 262) (Fig. 1l). These mRNAs were involved
in cell cycle, multicellular organism development, and cell differ-
entiation (Fig. 1m). We also validated the expression of representa-
tive downregulated genes from Ribo-seq and mRNA-seq (Fig. S13i–
m online). These findings underscore the critical role of NAT10 in
enhancing the translation of ac4C-modified mRNA substrates, par-
ticularly those involved in cell cycle and germline development.

To further explore these changes at proteome level, we con-
ducted label-free quantitativeMS (Fig. 2a), which identified dysreg-
ulated proteins in Nat10-deficient testes (up: down, 326:296)
(Fig. 2b). GO enrichment analysis revealed that these proteins were
closely associated with cell cycle, cell division, proliferation, and
germline development (Fig. 2c). We overlapped the dysregulated
proteins with the gene transcripts detected by Ribo-seq and found
43% of the downregulated proteins exhibited reduced RPF occu-
pancy (Fig. 2d). Furthermore, among the genes with downregulated
RPFs, mRNA transcripts, and ac4C-positive transcripts, a total of 280
transcripts were commonly enriched in cell cycle and multicellular
development (Fig. 2e, f). We intersected the downregulated pro-
teins with the shared 280 transcripts and identified six ac4C-
modified genes, including Dmrt1 and Ccna2, that are subject to
attenuated gene expression regulation (Fig. 2g and Fig. S14a
online). These results were further validated by qPCR and
immunoblotting (Fig. 2h–j). Collectively, these integrative analyses
unambiguously showed that, at least in part, both DMRT1 and
CCNA2 are bona fide substrates for NAT10-catalyzed ac4C modifica-
tion in vivo, responsible for defective spermatogonial homeostasis.

To interrogate which cofactors interplay with NAT10 to deposit
ac4C modification, we optimized an in-house, sensitive ‘‘on-beads”
protein digestion protocol designed for immunoprecipitation mass
spectrometry (IP-MS) using testicular spermatogonia and F9 cells.
We introduced a Flag-SBP-HA(FSH) tag in-frame at the N-terminus
of the NAT10 protein, and confirmed its expression (Fig. 2k and
Fig. S15 online). After normalization, we identified 254 and 333
unique NAT10-interacting proteins in F9 cells and P7 testes,
respectively (Fig. 2l). GO enrichment classified these proteins as
primarily related to cell cycle, mRNA processing, and translation
(Fig. S14b online). Of interest, motif conservation analysis and
functional screening established PRRC2B as the principal NAT10-
interacting protein by recognizing the conserved motif
‘‘CuuCcUCcU” (Fig. 2m and Table S3 online) [12,13]. PRRC2B
associates with NAT10 in an RNA-dependent manner, which was
corroborated through co-immunoprecipitation, as well as by the
colocalization of the two proteins in the nuclei via immunofluores-
cence staining (Fig. 2n, o). Further, the knockdown assay using two
siRNAs against Prrc2b confirmed that PRRC2B is critical for the
expression of genes targeted by NAT10-mediated ac4C deposition,

move_f0005
move_f0010


X. Zhu et al. Science Bulletin 70 (2025) 842–846

Digestion

P7 testis
 total RNA extraction

mRNA puification 
and fragmation

DDX4 positive cells

AAA
AAA

ac4C 
antibody IgG

Sequencing Align to transcripts
MACS2( acRIP vs IgG)

ac4C peaks
ac4C peak Locations

5′ UTR 3′ UTRCDS

ac
4 c

 s
ite

s

mRNA processing
Cell cycle

Multicellular organism development
RNA splicing

Cell differentiation
Multicellular organism growth

Regulation of mRNA stability
Positive  regulation of translation

Cell division

100 150
Count

2
4
6

−log10 (FDR)

500

0

3

6

9

12

n = 149

n = 325

ac4C +

9630

12

lo
g 2 T

PM
 N

at
10

-D
cK

O
 a

ve
ra

ge

log2 TPM WT  average
0.0

0.2

0.4

0.6

0.8

1.0

 log2 fold change 

C
um

ul
at

iv
e

 F
re

qu
en

cy

ac4C−
ac4C +

-4 -2 0 42

Cumulative Differential
     mRNA Abundance

 [(TPM+1)DcKO/(TPM+1)WT]

−1

log2FC

G
O

 T
er

m
s Cell proliferation Spermatogenesis

mRNA stability
Cell cycleCell differentiation−7

M

100 bp

200 bp
300 bp

700 bp IgGac4 C
IgGac4 C

IgGac4 C
ac4 C

ac4 C IgGIgGIgGac4 C
ac4 CIgG

Gapdh Dmrt1 Stra8 Six5 Jag2  Gli1 Sox3

M

Ribosome-RNA 
Complexes

Stable with 
high RNase

Other RBP 
Complexes

Unstable with 
high RNase

RNaseI Digestion

RNA fragment 
purification

5′ 3′

3′ 5′ cDNA

Coverage

Adapter ligation

Reverse transcription

Amplification and
 sequencing

2978

622

443

1604

1924

down-regulated
genes

up-regulated
genes

log2 [(TPM+1)DcKO/(TPM+1)WT]<-1
RPF

RNA-Seq

RNA-Seq

0

4

8

12

10

Ribo-Seq
up:
n = 262

Ribo-Seq
down：
n = 423

ac4C+

50
log2 [(TPM+1)WT ]

lo
g 2 [

(T
PM

+1
) D

cK
O

 ]

mRNA catabolic process

Apoptotic process

Establishment or maintenance of cell polarity

 Cell differentiation

Cell growth

Homeostasis of number of cells within a tissue

1.5
−log10(P Value)

Count
10
20
30

1.5
2.0
2.5
3.0

−log10(P Value)Multicellular organism development

Cell cycle

(a) (b) (c)

(d) (e) (f)

(g)

(i)

(j)

(m)

Dmrt1Jag2 Sox3Stra8 Gli1 Six5
0

2

4

6

8

Fo
ld

 c
ha

ng
e 

of
 e

nr
ic

hm
en

t

IgG
ac4C

ns

**
**

*

**
**

(h) (k)

Rnf114
Twist2
Dmrt1

Piwil4
Six5
Nanos2
Tdrd9
Ccne1
Cdc20
Ccna2
Cdc7
Ccnb2
Cdk6

−2
−1
0
1
2

C
el

l c
yc

le
Sp

er
m

at
og

en
es

is

WT Nat10- DcKO
Rep1 Rep1Rep2 Rep2 Rep3Rep3

log2 [(TPM+1)DcKO/(TPM+1)WT]<-1RPF：

(l)

C
ep250

Six5
G

li1

Col13a1

HnrnpD

Pcbp4

Alkbh5Ets1Dmrt1Bmp1Npr2Nde1
Zbtb16

Jag2
Ezh2

Cdkn2c

Smad6

Dnmt1

Notch3

Dsn
1

Cac
ng

7
Cd

kn
1c

Hm
ga

1
M

cm
2

So
x1

1
St

ra
8

So
x3

Map4k1

2.0 2.5 3.0

Fig. 1. NAT10 mediates the post-transcriptional expression regulation of a cohort of mRNA substrates in an ac4C-dependent manner. (a) Schematic overview for ac4C-RIP-Seq
workflow. (b) Distribution of ac4C-enriched peaks across the full length of mRNAs. (c) Functional terms enriched for the ac4C target genes. (d) Scatter plot showing the
numbers of up- and down-regulated gene transcripts among the ac4C target genes. (e) Cumulative distribution function (CDF) plot depicting differential expression of ac4C-
negative (ac4C−) or ac4C-positive (ac4C+) transcripts in the NAT10 versus IgG group. (P < 0.0001, Mann-Whitney test). (f) Functional annotation of representative overlapping
genes among down-regulated genes and ac4 C target genes. (g, h) Validation of ac4C peaks for representative genes using acRIP-PCR and acRIP-qPCR. ***P < 0.001; n.s., not
significant; Student’s t-test. (i) Schematic for the Ribo-Seq workflow and library preparation. (j) Venn diagram comparing the overlapping gene transcripts between the DEGs
and the down-regulated transcripts by Ribo-Seq in Nat10-DcKO testis at P7. (k) Integrated analysis of commonly down-regulated genes by RNA-seq and Ribo-Seq. (l) Scatter
plot comparing transcript RPFs among ac4C-positive target genes. RPF values were calculated via average TPM+1 between Nat10-DcKO and WT testes at P7. Gene transcripts
with RPFs dys-regulated ≥2-fold are in red and blue, respectively. (m) Functional annotation of representative overlapping genes between those down-regulated in Ribo-Seq
and ac4C target genes.
as well as for cell proliferation (Fig. 2p, q and Fig. S14c–f online).
Together, these data identify PRRC2B as an intimate in vivo cofactor
of NAT10, potentially facilitating the deposition of the ac4C mark
on NAT10 mRNA substrates.
844
In this study, we exploited our highly efficient, tamoxifen-
inducible Nat10 KO mouse models, and revealed a prominent role
of NAT10 in priming a coordinated post-transcriptional repertoire
in testicular spermatogonia during both first-wave spermatogene-
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Fig. 2. Multi-omic analyses identified a NAT10 cofactor, PRRC2B, in post-transcriptionally regulating DMRT1 and CCNA2 substrates. (a) Workflow for identification of
differentially expressed proteins (DEPs) upon Nat10 KO. (b) Volcano plot showing significant DEPs in the Nat10-DcKO testis at P7. (c) Major GO terms associated with DEPs in
(b). (d) Pie charts showing translatome-wide distribution of DEPs (RPF: green, up-regulated; red, down-regulated; blue, not significant). (e) Integrated analysis of the gene
transcripts by overlapping among ac4C peaks, the down-regulated mRNAs and RPFs in the testes of Nat10-DcKOmice. (f) GO terms enriched in the significantly DEGs in (e). (g)
Venn diagram showing NAT10-responsive ac4C target genes by combinatorial analysis of the mRNA-Seq, Ribo-Seq, and proteomic data. (h) Global analysis of the translational
activity in P7 mouse testes using polysome profiling. (i) qPCR assay showing the relatively declined mRNA levels of the six overlapping genes from polysome profiling in
Nat10-DcKO testes. **P < 0.01, ***P < 0.001, n.s., not significant; Student’s t-test. (j) Validation of protein expression levels for key genes involved in spermatogonial
development upon Nat10 KO (n = 3 for biological replicates). (k) Workflow for identification of NAT10-interacting proteins. (l) Venn diagram of NAT10-interacting proteins
identified in the testes and F9 cell line. (m) The top hit of enriched consensus motifs deduced from ac4C-RIP-Seq data, compared with published PRRC2B PAR Clip-Seq data, by
MEME [12]. (n)Reciprocal co-immunoprecipitation validating the interaction between NAT10 and PRRC2B, with or without RNase A treatment. (o) Immunofluorescence co-
staining of NAT10 (red) and PRRC2B (green) in the C18-4 cell line. The nuclei were stained with DAPI (blue). Scale bar, 50 lm. (p) Detection of ac4C-positive target gene
expression of Nat10 following Prrc2b knockdown by RT-qPCR. (q) Quantification of ac4C modification levels upon Prrc2b knockdown in C18-4 cell line. Data are presented as
the mean ± SEM; *P < 0.05, **P < 0.01, ***P < 0.001.

845
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sis and adult steady-state spermatogenesis. Through integrative
analysis of RNA-seq, ac4C-RIP-seq, Ribo-seq, and proteomic data,
we identified DMRT1 and CCNA2 as downstream ac4C-modified
substrates of NAT10. Remarkably, knockout mouse models for
either Dmrt1 or Ccna2 phenocopied the spermatogonial defects
observed in Nat10 knockout mice [14,15]. Additionally, we identi-
fied PRRC2B as a key partner that assists NAT10 in vivo. These find-
ings not only enhance our understanding of the mechanisms
underlying spermatogonial development at the epitranscriptomic
level, but also provide valuable insights for future functional stud-
ies on NAT10 substrates and cofactors in other milieux.
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