# **Supplementary Methods**

#### Synchronization of mouse N2a cells

N2a cells were synchronized through mitotic shake-off. Mitotic cells were harvested by gently tapping on the Petri dishes containing logarithmically growing cells and subsequently released into fresh media.

#### **Protein structure prediction**

The predicted structures of SAF-A isoforms were obtained from the AlphaFold Protein Structure Database (https://alphafold.com). And the protein structure images were made using PyMOL (http://www.pymol.org/pymol).

#### Intrinsically disordered region prediction

Protein disorder estimation was performed using PONDR server (https://www.pondr.org), using both PONDR-VSL2 and PONDR-VL3 prediction algorithms.

#### **Tissue expression analyses**

To analyze the expression levels of SAF-A across various tissues, transcripts per million (TPM) values were obtained from the Genotype-Tissue Expression (GTEx) database (http://gtexportal.org).

| Name            | Sequence (5' to 3')           | Description                           |  |  |
|-----------------|-------------------------------|---------------------------------------|--|--|
| ACAT -: DNIA 1  |                               | siRNA for α-satellite RNA             |  |  |
| ASAI SIKINA_I   | UUUUGAAACACUCUUUUUUUU         | knockdown                             |  |  |
| ASAT GDNA 2     |                               | siRNA for $\alpha$ -satellite RNA     |  |  |
| ASAI SIKINA_2   | AGAUCUGCAAGUGGAUAUUTT         | knockdown                             |  |  |
| Hs-a-sate_qF    | CATTCTCAGAAACTTCTTTG          | qPCR primer                           |  |  |
| Hs-a-sate_qR    | AGCGCTCCAAATATCCACT           |                                       |  |  |
| GAPDH-qF        | CTTCATTGACCTCAACTACATGG       | aDCD primar                           |  |  |
| GAPDH-qR        | CTCGCTCCTGGAAGATGGTGAT        | qrCK primer                           |  |  |
| Hs-U6-qF        | CGCTTCGGCAGCACATATAC          | aDCD primar                           |  |  |
| Hs-U6-qR        | CTCGCTCCTGGAAGATGGTGAT        | qPCK primer                           |  |  |
| Hs-U5-qF        | TGGTTTCTCTTCAGATCGCATA        | aDCD mimor                            |  |  |
| Hs-U5-qF        | CAAAGCAAGGCCTCAAAAA           | qPCK primer                           |  |  |
| ACTB-qF         | CCAACACAGTGCTGTCTGG           | aDCD mimor                            |  |  |
| ACTB-qR         | GAGTACTTGCGCTCAGGAG           | qPCK primer                           |  |  |
|                 | gAggAgggCAgCAAACgggAAgAgTCTTC |                                       |  |  |
|                 | CTTTACgATATTCATTCTCAGAAACTT   |                                       |  |  |
| B1-ASAT-S1      | CTTTGTGATGTTTGCATTCAACTCACA   | smFISH probe                          |  |  |
|                 | GAGTTGAAATATAgCATTCTTTCTTgAg  |                                       |  |  |
|                 | gAgggCAgCAAACgggAAgAg         |                                       |  |  |
|                 | gAggAgggCAgCAAACgggAAgAgTCTTC |                                       |  |  |
|                 | CTTTACgATATTAACATTCCTTTTCATA  |                                       |  |  |
| B1-ASAT-S2      | GAGCAGTTTTGAAACACTCTTTTTGT    | smFISH probe                          |  |  |
|                 | AGAATCTGATATAgCATTCTTTCTTgAg  |                                       |  |  |
|                 | gAgggCAgCAAACgggAAgAg         |                                       |  |  |
|                 | gAggAgggCAgCAAACgggAAgAgTCTTC |                                       |  |  |
|                 | CTTTACgATATTAGTGGATATTTGGAGC  |                                       |  |  |
| B1-ASAT-S3      | GCTTTGAGGCCTTCGTTTGAAACGGG    | smFISH probe                          |  |  |
|                 | AATATCTTATATAgCATTCTTTCTTgAgg |                                       |  |  |
|                 | AgggCAgCAAACgggAAgAg          |                                       |  |  |
| HS-a-satellite- | TTCAACTCACAGAGTTGAACCTTCCC    | 5'-biotin-labeled $\alpha$ -satellite |  |  |
| PD-S            | TTTG                          | RNA pull-down probe                   |  |  |
| HS-a-satellite- | GCGCTCCAAATATCCACTTGCAGATTC   | 5'-biotin-labeled $\alpha$ -satellite |  |  |
| PD-AS           | TAC                           | RNA pull-down probe                   |  |  |
| ASAT-CHIPR-1    | ATTCCCGTTTCAAACGAAGG          |                                       |  |  |
| ASAT-CHIPR-3    | GCAGATTCTACAAAAAGAGTG         | ChIPR-seq probe pool odd              |  |  |
| ASAT-CHIPR-5    | GTTCAACTCTGTGAGTTGAAT         |                                       |  |  |
| ASAT-CHIPR-2    | AAGCGCTCCAAATATCCACT          |                                       |  |  |
| ASAT-CHIPR-4    | CAAAACTGCTCTATGAAAAGG         | ChIPR-seq probe pool even             |  |  |
| ASAT-CHIPR-6    | CAAAGAAGTTTCTGAGAATGC         |                                       |  |  |
| MS-major-sat-   | ACACACTTTAGGACGTGAAATATGGC    | 5'-biotin-labeled major               |  |  |
| PD-S            | GAGG                          | satellite RNA pull-down               |  |  |

Table S1 Primers and oligos used in this study

|                   |                             | probe                        |  |
|-------------------|-----------------------------|------------------------------|--|
| MS-major-sat-     |                             | 5'-biotin-labeled major      |  |
|                   |                             | satellite RNA pull-down      |  |
| PD-AS             | i i c                       | probe                        |  |
| MS minor set      |                             | 5'-biotin-labeled minor      |  |
|                   | GAG                         | satellite RNA pull-down      |  |
| 10-5              | UAO                         | probe                        |  |
| MS_minor-sat_     |                             | 5'-biotin-labeled minor      |  |
|                   |                             | satellite RNA pull-down      |  |
| 10-A5             |                             | probe                        |  |
| PD-scramble       | TTCTCCGAACGTGTCACGTTCGAACG  | 5'-biotin-labeled RNA pull-  |  |
|                   | TGTC                        | down control probe           |  |
| Ms-U5-qF          | CACCGCAACAGGAATCATCCTTCAG   | aPCR primer                  |  |
| Ms-U5-qR          | ACTCTGGTTTCTCTTCAGATCGT     | qi cik primer                |  |
| Ms-U6-qF          | GTGCTCGCTTCGGCAGC           | aDCD mimor                   |  |
| Ms-U6-qR          | AAAAATATGGAACGCTTCACGAAT    | qPCK primer                  |  |
| Ms-minor-qF       | CATGGAAAATGATAAAAACC        | aDCD mimor                   |  |
| Ms-minor-qR       | CATCTAATATGTTCTACAGTGTGG    |                              |  |
| Ms-major-qF       | ACACACTTTAGGACGTGAAA        | qPCR primer                  |  |
| Ms-major-qR       | CCATATTCCACGTCCTACAG        |                              |  |
| 18S-qF            | CGGCGACGACCCATTCGAAC        | »DCD minutes                 |  |
| 18S-qR            | GAATCGAACCCTGATTCCCCGTC     | qPCK primer                  |  |
| T7 seess much a F | TAATACGACTCACTATAGGGAGCATTC |                              |  |
| 1 /-sense probe-F | TCAGAAACTTCTT               | PCR primer for Northern      |  |
| T7-sense probe-   |                             | blot                         |  |
| R                 | TAIGIGAAGAIAITICCTT         |                              |  |
| T7-antisense      | TAATACGACTCACTATAGGGTTATGTG |                              |  |
| probe-F           | AAGATATTTCCTT               | PCR primer for Northern blot |  |
| T7-antisense      |                             |                              |  |
| probe-R           |                             |                              |  |

| Name             | Description                                   | Source                    |  |  |
|------------------|-----------------------------------------------|---------------------------|--|--|
| absata 1         | shRNA vector for SAF-A                        | MISSION shRNA library ID: |  |  |
| SIISAFA-I        | knockdown                                     | TRCN0000001298            |  |  |
| abs A FA 2       | shRNA vector for SAF-A                        | MISSION shRNA library ID: |  |  |
| SIISAFA-2        | knockdown                                     | TRCN0000001299            |  |  |
| ShCtrl           | shPNA control vector                          | MISSION shRNA control     |  |  |
| 511C11           |                                               | vector shC002             |  |  |
| pET28-SAFA-iso-a | E. coli expression of SAF-A                   | This study                |  |  |
| pET28-SAFA-iso-a | E. coli expression of SAF-A                   | This study                |  |  |
| pET28-hnrnpA1    | E. coli expression of hnrnpA1                 | This study                |  |  |
| p3XFLAG-Myc-CMV- | Evenession of full longth SAE A               | This study                |  |  |
| SAFA-FL          | Expression of full-length SAF-A               |                           |  |  |
| p3XFLAG-Myc-CMV- | Expression of domain truncated                | This study                |  |  |
| SAFA-dN1         | SAF-A                                         |                           |  |  |
| p3XFLAG-Myc-CMV- | Expression of domain truncated                | This study                |  |  |
| SAFA-dN2         | SAF-A                                         | This study                |  |  |
| p3XFLAG-Myc-CMV- | Expression of domain truncated                | This study                |  |  |
| SAFA-dC1         | SAF-A                                         | This study                |  |  |
| p3XFLAG-Myc-CMV- | Expression of domain truncated                | This study                |  |  |
| SAFA-dC2         | SAF-A                                         |                           |  |  |
| p3XFLAG-Myc-CMV- | Expression of SAE A isoform h                 | This study                |  |  |
| SAFA-iso-b       | Expression of SAF-A isotorni b                | This study                |  |  |
| CEM T ASATS      | In vitro transcription of $\alpha$ -satellite | This study                |  |  |
| puem-1-ASAI-S    | RNA                                           |                           |  |  |
| DEM TASATAS      | In vitro transcription of $\alpha$ -satellite | This study                |  |  |
| pulm-i-asai-as   | RNA                                           |                           |  |  |

Table S2 Plasmids used in this study

| Antibody             | Catalog No. | Supplier    | Dilution                     |  |
|----------------------|-------------|-------------|------------------------------|--|
| Anti-SAF-A           | Ab180952    | Abcam       | 1:100 for IF, 1:50 for IP    |  |
| Anti-SAF-A           | Ab20666     | Abcam       | 1:1000 for WB                |  |
| Anti-Tubulin         | HC101       | Transgene   | 1:1000 for WB                |  |
| Anti-β-Tubulin       | Ab6046      | Abcam       | 1:200 for IF                 |  |
| Anti-β-Actin         | HC201       | Transgene   | 1:1000                       |  |
| Anti-GAPDH           | 60004-1-Ig  | Proteintech | 1:5000 for WB                |  |
| Anti-Rabbit IgG      | L3031       | Signalway   | 1:5000                       |  |
| Anti-Mouse IgG       | L3032       | Signalway   | 1:5000                       |  |
| Anti-CREST           | HCT-0100    | Bioss       | 1:100                        |  |
| Anti-Rabbit IgG      | Ab150077    | Abaam       | 1:100                        |  |
| (Alexa Fluor 488)    | A0130077    | Abcalli     |                              |  |
| Anti-Human IgG       |             | Invitrogen  | 1.100                        |  |
| (Alexa Fluor 647)    | A-21445     | Invittogen  | 1.100                        |  |
| Anti-Histone H3S10p  | Ab5176      | Abcam       | 1:2000 for WB; 1:100 for IF  |  |
| Anti-ArkA T288p/ArkB | 2014        | CST         | 1:500                        |  |
| T232p/ArkC T198p     | 2914        | 0.51        |                              |  |
| Anti-dsRNA clone rJ2 | MABE1134    | Merck       | 1:200 for RIP                |  |
| Anti I amin          | 46108022    | Abaam       | 1:100 for IP, 1:2000 for WB, |  |
| Anu-Lanni            | A0100922    | Abcalli     | 1:100 for IF                 |  |
| Anti-LAP2            | PA5-52519   | Invitrogen  | 1:2000 for WB, 1:100 for IF  |  |

Table S3 Antibodies used in this study

| Name   | Protein Mass | Uniprot No. | No. of peptide hit | Probability |
|--------|--------------|-------------|--------------------|-------------|
| HNRNPK | 51229.50     | P61978      | 5                  | 99.0%       |
| SAF-A  | 91269.27     | Q00839      | 3                  | 99.0%       |
| TPM3   | 32986.81     | P06753      | 3                  | 99.0%       |
| PPB1   | 74018.88     | P05187      | 3                  | 99.0%       |
| PCBP2  | 34120.54     | F8VZX2      | 3                  | 99.0%       |
| TPM2   | 32944.63     | P07951      | 2                  | 99.0%       |
| РҮС    | 130292.91    | P11498      | 2                  | 97.9%       |
| PCBP1  | 3798712      | Q15365      | 2                  | 93.5%       |
| DHX36  | 115600.27    | Q9H2U1      | 2                  | 92.3%       |

Table S4 Putative  $\alpha$ -satellite RNA binding protein identified by mass spectrometry

| Async |          | Sync(M) |           |                  |          |          |          |
|-------|----------|---------|-----------|------------------|----------|----------|----------|
| with  | SAF-A    | witho   | out SAF-A | with SAF-A witho |          | ut SAF-A |          |
| Motif | E-value  | Motif   | E-value   | Motif            | E-value  | Motif    | E-value  |
| ZN768 | 0.018084 | CENPB   | 0.000422  | NR1H2            | 0.002189 | CENPB    | 0.000341 |
|       |          | ZN232   | 0.003001  | RXRG             | 0.037309 | PRDM4    | 0.000944 |
|       |          | OZF     | 0.003820  | NR4A3            | 0.049904 | ZN768    | 0.002114 |
|       |          | ZN768   | 0.004905  |                  |          | ZN232    | 0.002671 |
|       |          | ZN502   | 0.007144  |                  |          | GLI1     | 0.004416 |
|       |          | FOXH1   | 0.007536  |                  |          | ZN502    | 0.004487 |
|       |          | NR1H2   | 0.008092  |                  |          | SNAI1    | 0.005378 |
|       |          | PRDM4   | 0.008710  |                  |          | ZN250    | 0.008848 |
|       |          | NF2L2   | 0.011175  |                  |          | ZN528    | 0.009663 |
|       |          | SRF     | 0.011633  |                  |          | FOXO6    | 0.019468 |
|       |          | HSF1    | 0.012195  |                  |          | RXRG     | 0.020965 |
|       |          | CPEB1   | 0.013037  |                  |          | THA11    | 0.021602 |
|       |          | NFAC1   | 0.018490  |                  |          | NR4A3    | 0.024058 |
|       |          | STAT6   | 0.018917  |                  |          | ZN121    | 0.025085 |
|       |          | NFAC2   | 0.020727  |                  |          | ZN410    | 0.026126 |
|       |          | NFAC3   | 0.022426  |                  |          | IRF9     | 0.029966 |
|       |          | ZN568   | 0.022577  |                  |          | ZFP28    | 0.030209 |
|       |          | ZNF8    | 0.026733  |                  |          | ZN143    | 0.031224 |
|       |          | SNAI1   | 0.027841  |                  |          | REST     | 0.033024 |
|       |          | ZN436   | 0.029106  |                  |          | BCL6B    | 0.036241 |
|       |          | FOXJ3   | 0.035444  |                  |          | ZSCA4    | 0.039639 |
|       |          | FOXF2   | 0.036943  |                  |          | CR3L1    | 0.042849 |
|       |          | ZN410   | 0.037776  |                  |          |          |          |
|       |          | HXB13   | 0.041031  |                  |          |          |          |
|       |          | RXRG    | 0.044517  |                  |          |          |          |
|       |          | SOX15   | 0.047817  |                  |          |          |          |

Table S5 Motif analysis for aSAT ChIRP-seq and SAF-A CUT&Tag



С

| ASAT-C1        | GTGAAGATATTTCCTTTTCCACCACAGGCCCCAAACTGATCCAAATATCCA          | 51  |
|----------------|--------------------------------------------------------------|-----|
| ASAT-C2        | GTGAAGATATTTCCTTTTCCACCACAGGCCCCAAACTGATCCAAATATCCA          | 51  |
| ASAT-C3        | GTGAAGATATTTCCTTTTCCACCACAGGCCTCAAAGCGCTCCAAATGTCCA          | 51  |
| ASAT-C4        | CTCAGAAACTTCTTTGTGATGTGTGTACTCAATTAACAGAGTTGAACTTTTCTT       | 54  |
| ASAT-C5        | CTCAGAAACTTCTTTGTGATGTGTGCATTCAGCTCACAGAGTTGAACCTTTCTT       | 54  |
| ASAT-consensus | AGCATTCTCAGAAACTTCTTTGTGATGTGTGCATTCAACTCACAGAGTTGAACCTTCCCT | 60  |
|                | ** * *** * * * * * * * *                                     |     |
|                |                                                              |     |
| ASAT-C1        | CATGCAGATCCTTCAAAAGA-AGTGTTTCAAAAACTGTTCGATCAAAAGAAAGGTTCAA  | 108 |
| ASAT-C2        | CATGCAGATCCTTCAAAAGA-AGTGTTTCAAAAACTGTTCGATCAAAAGAAAGGTTCAA  | 108 |
| ASAT-C3        | CTTGCAGATTCTATGAAAAG-AGAGTTTCAAAAACCGCTCAATCAAAAGAAAGGTTTAA  | 108 |
| ASAT-C4        | TTGATAGAGCTGTTTTGAAACACACTTTTTGTAAAATCTGCAAGTGCATATTTGGAT    | 111 |
| ASAT-C5        | CTGGTAGACCAGTTTTAAAACACCCTTTTTGTAGAATCTGCAAGTAGATATTTGGAA    | 111 |
| ASAT-consensus | TTGATAGAGCAGTTTTGAAACACTCTTTTTGTAGAATCTGCAAGTGGATATTTGGAG    | 117 |
|                | * * *** *** * * * * * *                                      |     |
|                |                                                              |     |
| ASAT-C1        | TTCTGTGAGATGAATGCACACATCACAAAGAAGTTTCTGAG- 149               |     |
| ASAT-C2        | TTCTGTGAGATGAATGCACACATCACAAAGAAGTTTCTGAG- 149               |     |
| ASAT-C3        | CTCTGTGAGATGAATGCACACATCACAAAGAAGTTTCTGAG- 149               |     |
| ASAT-C4        | ATCTTTGAGGATTTCATTGGAAAAGGAAATATCTTCAC 149                   |     |
| ASAT-C5        | AGCTTTGAAGCCTATGGTGGAAAAGGAAATATCTTCAC 149                   |     |
| ASAT-consensus | CGCTTTGAGGCCTTCGTTGGAAAAGGAAATATCTTCACATAAAAACTAGACAGA 171   |     |
|                | ** *** * * * ****                                            |     |

**Figure S1 Detection of**  $\alpha$ **-satellite RNA.** (A) Northern blot of  $\alpha$ -satellite RNA in RPE1 and HEK293 cells. AS, antisense transcripts; S, sense transcripts. (B) PCR products of  $\alpha$ -satellite RNA primers were tested in cells transfected with siASATs. (C) Alignment of  $\alpha$ -satellite amplicons with the consensus  $\alpha$ -satellite sequence.

Figure S2



Figure S2 Cell cycle expression profiles of mouse major satellite RNAs and minor satellite RNAs. (A) Flow cytometry analysis showing cell cycle distribution of N2a cells released from mitotic shake-off at indicated time points using PI staining. Asynchronous cells (Async) serve as the control. (B)-(C) RT-qPCR showing expression levels of mouse (B) major satellite RNA and (C) minor satellite RNA in cells at indicated time points after release, normalized to  $\beta$ -actin (ACTB). The predominant cell cycle stage of each time point was indicated on top. Dash line indicate a threshold (fold change =2 relative to Async). The error bars represent SD of three independent experiments.



Figure S3 Impact of Aurora kinase inhibitors on cell cycle progression. (A)-(B) Concentration test for AURKA inhibitor (A) and AURKB inhibitor (B). (C)-(D) Treatment time test for AURKA inhibitor (C) and AURKB inhibitor (D). Percentage of G2/M phase cells were quantified by flow cytometry after PI staining. Statistical evaluation was performed by unpaired t-test and is reported as P > 0.05 ns, P < 0.05 \*, P < 0.01 \*\*, P < 0.0001 \*\*\*\*. Error bars represent SD, n=3. (E)-(H) Representative flow cytometry graphs of cell cycle upon Aurora kinase inhibitor treatment for 30 min. PI, propidium iodide. Percentage of cells at G1, S, G2/M stages shown as the mean ± SD, n=3.



Figure S4 SAF-A interacts with mouse major satellite RNA but not minor satellite RNA. (A)-(B) RNA pull-down in N2a cells using (A) major satellite RNA and (B) minor satellite RNA targeting probes. Scr. scramble; S. sense; AS antisense. (C) RNA immunoprecipitation with SAF-A antibody and non-specific IgG antibody. Relative enrichments of RNA transcripts were quantified using RT-qPCR. 18S is a negative control; U5 and U6 are positive controls. The error bars represent SD, n=3. Statistical significance is calculated using unpaired t-tests and is reported as P < 0.01 \*\*\*, P < 0.001 \*\*\*\*, P > 0.05 ns.

A

В

0.0

0 VSL2 VL3 150

300



**Figure S5 Structural prediction of SAF-A isoforms.** (A) Protein structure of SAF-A isoforms predicted by AlphaFold. Secondary structure elements are color-coded as follows: blue, helices; magenta, sheets; pink, loops. Red spheres highlights the 19 amino acid residues that differ between the two isoforms. (B) Prediction of intrinsic disorder regions in SAF-A. The grey box highlights amino acid 212-230, which differ between SAF-A isoform a and b.

450

**Residue Number** 

600

750





**Figure S6 Expression profiles of SAF-A isoforms.** (A) Expression levels of SAF-A isoforms in human tissues based on GTEx datasets. Total n=19788, n $\geq$ 29 for each tissue type. (B) Cell cycle expression profiles of SAF-A isoforms in RPE1 cells. Dash lines, fold change of 2 relative to the level in asynchronous cells. The error bars represent SD, n=6.



Figure S7 Impact of ectopic expression of FLAG-tagged SAF-A truncations on endougenous SAF-A and  $\alpha$ -satellite RNA. (A) Quantification of endogenous SAF-A levels upon transfection of FLAG-SAF-A constructs. (B) Relative expression levels of  $\alpha$ -satellite RNA. ACTB, internal control. Protein and RNA levels are normalized to cells transfected with EV, empty vectors. The error bars represent SD, n=3. Statistical significance is calculated using unpaired t-tests and is reported as P < 0.05, \*, P > 0.05 ns.



Figure S8 Colocalization of  $\alpha$ -satellite RNA and SAF-A. (A) Colocalization of  $\alpha$ -satellite RNA ChIRP-seq peaks and SAF-A CUT&Tag peaks, calculated using 100,000 times permutation test. (B) CTCF motif counts per kilobases in genomic regions covered by  $\alpha$ -satellite RNA ChIRP-seq peaks with or without SAF-A CUT&Tag peaks.



Figure S9 Impact of  $\alpha$ -satellite RNA and SAF-A knockdown on cell cycle progression. (A) Northern blots demonstrates the knockdown of  $\alpha$ -satellite RNA by siASATs. (B) Ratio of G2/M phase cells in siASAT knockdown cells. (C) Ratio of G2/M phase cells in shSAFA knockdown cells. Error bars represents SD, n=3. Statitical significance is calculated using unpaired t-tests and is reported as P > 0.05 ns.



Figure S10 SAF-A knockdown does not influence the localization of  $\alpha$ -satellite RNA. Representative images of  $\alpha$ -satellite RNA smFISH, SAF-A IF and CREST staining at different cell cycle stages after SAF-A knockdown with shRNA constructs. shCtrl, non-specific control shRNA construct. Scale bar, 10  $\mu$ m.



**Figure S11** *α***-Satellite RNA regulates the reassembly of LAP2.** (A) Representative images of α-satellite RNA smFISH and LAP2 IF at different cell cycle stages. (B) IP with LAP2 antibody with co-IP of SAF-A. Lamin, positive control; GAPDH, negative control. (C) Representative α-satellite RNA smFISH and LAP IF images show the misassembly of LAP2 upon SAF-A knockdown. (D) Quantification of mitotic cells with misassmbled LAP in (C). (E) Representative α-satellite RNA smFISH and LAP2 IF images show the misassembly of LAP2 upon siASAT knockdown. (F) Quantification of mitotic cells with misassmbled LAP2 in (E). Scale bar, 10  $\mu$ m. The error bars represent SD, three independent experiments are conducted, n > 200 mitotic cells in each experiment. Statistical significance was calculated using unpaired t-tests and is reported as P < 0.05 \*, P <0.01 \*\*, P < 0.0001 \*\*\*\*.