N_2O^+ 离子 A^2^+ 电子态的光谱研究^{*}

徐海峰 郭 颖 李奇峰 戴静华 刘世林[†] 马兴孝 (中国科学院选键化学开放研究实验室,中国科学技术大学化学物理系,合肥 230026)

梁 军 李海洋

(中国科学院安徽光学精密机械研究所,合肥 230031) (2003 年 6 月 10 日收到;2003 年 7 月 9 日收到修改稿)

用一束波长为 360.55 nm 的激光,通过 N₂O 分子的 (3 + 1) 共振增强多光子电离过程制备纯净的母体离子 N₂O⁺ $X^2_{3/2,1/2}$ (000).用另一束可调谐激光将 N₂O⁺离子激发至预解离态 A^2_{-+} ,利用飞行时间质谱检测解离碎片 NO⁺离子强度随光解光波长的变化,在 278—328 nm 波长范围内获得了光解碎片的激发 (PHOFEX) 谱.观测到了 N₂O⁺离子 $A^2_{-+} X^2_{-}$ 电子跃迁较丰富的振动谱带.通过对 PHOFEX 光谱的标识,获得了 A^2_{-+} 态较准确和全面的分子光谱 常数.

关键词: N_2O^+ 离子 A^2^+ 电子态, 光碎片激发谱, Fermi 共振, 光谱常数 PACC: 3320L, 3310G, 3520P

1. 引 言

在地球大气电离层中,有一个非常重要的离子 分子反应^[1,2]

 $O^{+}({}^{4}S) + N_{2}(X^{1}) NO^{+}(X^{1}), v)$

+ N(4 S) + 1.10 eV. (1)

实验^[1] 和理论^[2] 研究表明 ,N₂O⁺ (A^{2}^{+}) 是这 个离子分子反应的中间产物. 因此 ,对于 N₂O⁺ 离子 的研究 ,尤其是第一电子激发态 A^{2}^{+} 光谱和光解 离动力学的研究 ,一直受到广泛的关注^[3→7].

关于 N₂O⁺ 离子 A^2 ⁺ 态光谱的较早工作是 1974 年 Callomon 和 Creutzberg^[3] 对 A^2 ⁺ X^2 发 射谱的研究. 此后,大量工作对 A^2 ⁺ 态的发射谱进 行了深入的研究^[3→0],获得 A^2 ⁺ 态一些低振动能 级的寿命和荧光量子产率,同时对基电子态 X^2 可 能存在的相互作用,如自旋-轨道耦合、Renner Teller 效应及 Fermi 共振等,进行了详细的分析. 前人研究 表明, A^2 ⁺ 态为预解离态,除振动基态外,其余振 动能级都存在解离,实验上仅观测到少数几个低振 动能级的荧光发射. Larzilliere 研究小组利用快速离 子束激光光谱(FBLAS) 技术,检测解离碎片 NO⁺的 强度随离子束能量的变化,研究了 A^2 *态(010), (020)和(100)等振动能级的高分辨光谱,获得了这 些能级的转动常数^[11-45].由于这种技术的光谱分辨 很高,因此可以对光谱的超精细结构展开研究.但 是,由于此技术采用的是固定波长的激光,因此不可 能获得大范围波长内的光谱.此外,还有一些研究方 法,如光致碎片光谱^[16]、阈值电子-荧光光子(TEFP) 复合谱^[17]等,对 N₂O⁺ (A^2 *)态的光谱都作了一定 的研究.

尽管前人的工作对 N_2O^+ 离子基电子态 X^2 以 及 A^2 *态的一些低振动能级已有了很深入的研 究,但是对于 A^2 *态的较高振动能级,尤其是 (300) 以上能级的研究至今鲜有报道,对于 A^2 *态 的分子光谱仍有待于进一步研究来加以完善.为此, 本工作利用 N_2O 分子的 (3 + 1) 共振多光子电离 (REMPI) 方法制备纯净且布居单一的母体离子 N_2O^+ ,在 278—328 nm 波长范围内检测 A^2 *态解 离碎片 NO⁺的光解碎片激发(PHOFEX) 谱,对 A^2 * 态更多高振动能级的光谱进行了研究.

[†]通讯联系人. Tel:0551-3602323, E-mail:slliu@ustc.edu.cn

^{*}国家重点基础研究发展规划(批准号:G1999075304)和国家自然科学基金(批准号:20273063)资助的课题。

2. 实 验

实验装置包括脉冲分子束系统、脉冲激光系统和自制的时间飞行(TOF)质谱仪组成,详见文献[18,19].

滞止压力为 200 Pa ,N₂O 浓度为 20 %的 N₂O/He 混合气在配气装置中混合均匀后 ,经一个喉道直径 为 0.5 mm 的脉冲喷嘴喷出进入真空腔体. 喷嘴的开 启时间宽度小于 200 μ s ,其位置距激光-分子束作用 点约 5 cm. 真空腔体由束源室和电离室组成 ,其真空 系统由两台抽速分别为 70 和 15 L/s 的机械泵 (2X-70 型和 2X-15 型 ,成都南光机械厂产品) 和两台抽速 为 1500 L/s 的涡轮分子泵 (F-400 型 ,成都南光机械 厂产品) 组成. 静态 (不进气) 条件下 ,束源室和电离 室的真空度分别约为 9 ×10⁻⁵和 1 ×10⁻⁵ Pa ,动态 (进气)条件下 ,真空度分别约为 4 ×10⁻⁴和 2 ×10⁻⁴ Pa.

一台 Nd: YAG(PRO-190 型, Spectra Physics 公司 产品)激光器输出的线偏振二倍频激光(532 nm,脉 冲能量约 470 mJ)同时抽运两台染料激光器.其中一 台染料激光器(PRSC-LG18型, Sirah 公司产品)的激 光输出经 $KD^{\dagger}P$ 晶体倍频,由一个焦距为 30 cm 的 石英透镜聚焦后,进入腔体内激光-分子束作用区, 作为电离光. 电离光波长固定在 360.55 nm, 脉冲能 量约3 mJ. 另一台染料激光器 (PRSC-LG24 型, Sirah 公司产品)的激光输出经 KD^{*}P晶体倍频,由一个焦 距为 60 cm 的石英透镜收束后,与电离光相向进入 腔体,作为光解光.光解光波长扫描范围为 278 ---328 nm,脉冲能量约1-2 mJ. 此染料激光器的波长扫描 由一个 A/D 转换器 (SR245 型, Stanford Research System 产品)发出的触发信号控制. 扫描时,光解光 的能量被同步监测,同时用空心阴极灯 Ne 原子谱 线实时校正染料激光波长.

电离产生的母体离子 N₂O⁺ 和解离生成的碎片 离子经电场引出、加速后,沿长度为 32 cm 的 TOF 管 飞行,最后被微通道板 (MCP) 接收. MCP 的输出信号 由 Boxcar 平均器 (SR250 型, Stanford Research System 产品) 平均 30 次后送入计算机记录. 同时送入 Boxcar 平均器的还有用于实时校正波长的 Ne 灯信 号和同步监测的激光能量信号. 若只记录 TOF 质 谱,则将离子信号直接接入一台存储示波器 (TDS380 型, Teltronix 公司产品) 中.

3. 结果和分析

3.1. 母体离子的制备和碎片离子的检测

研究分子离子首先要解决母体离子的制备问题.对于 N₂O⁺ 离子的研究,目前文献报道的制备方法主要有直流放电^[3,4,11,12,16]、Penning 电离^[5-9]、电子轰击^[10]以及同步辐射光电离^[17]等.前三种方法的特点是可以制备大量的离子,而且操作简单,但是不能制备纯净且布居单一的母体离子.同步辐射光电离方法可以制备纯净的母体离子,但光源本身的强度和分辨限制了获得光谱更细致的信息.

我们采用的母体离子制备方法是激光的 REMPI 过程.图1(a)是只有电离光(波长为360.55 nm)作用 时的 TOF 质谱.从图1(a)中可以很清楚地看到,通 过控制电离光的能量(约每脉冲3 mJ)和选择合适的 聚焦透镜(f = 30 cm),电离的绝对主要产物是母体 N₂O⁺离子,而碎片 NO⁺离子强度小于 N₂O⁺离子强 度的1%.同时,前人研究表明^[20-22],在本研究工作 的电离波长下,N₂O 分子的(3 + 1) REMPI 过程经历 的中间态为 3 P⁻¹ (000)里德伯态,此时电离产生 的母体离子 N₂O⁺ 只布居在基电子态的基振动能 级,即 $X^2_{3/2}(000)$ 和 $x^2_{1/2}(000)$.下面我们将要介 绍的 PHOFEX 谱的标识也证实了这点.因此,在电离 波长为360.55 nm 处,我们利用(3 + 1) REMPI 方法, 制备了纯净且布居在单一量子态的母体离子,N₂O⁺

图 1 在只有电离光(360.55 nm)(a)、光解光(305.82 nm)(b)以及 两束光共同作用(c)条件下 TOF 质谱图

7

随后,引入光解光作用于制备的母体离子,以期获得离子激发态光谱的信息.光解光和电离光在空间上严格重合,时间上通过光路延迟约10 ns.我们通过仔细控制光解光的能量,使得光解光单独作用时不产生任何离子,包括母体 N₂O⁺离子和碎片NO⁺离子,如图1(b)所示(光解波长为305.82 nm). 图1(c)是两束光共同作用时的TOF质谱图.图1(c) 与图1(a),(b)不同之处是出现了明显的NO⁺质谱峰.据此,我们可以断定,图1(c)中的NO⁺离子是两 束光共同作用的结果. 同时,通过两束光之间的时间 延迟和空间位置的调节,证实了 NO⁺ 离子为光解光 作用 N₂O⁺ 导致的解离产物. 由于在实验的光解波 长范围内, N₂O⁺ 离子 $X^2_{3/2,1/2}$ (000) 可以通过单光 子共振跃迁至预解离态 A^2^{-+} , NO⁺ 离子的产生应 来自于 N₂O⁺ 离子 A^2^{-+} 电子态的解离. 这样,检测 NO⁺ 信号强度随光解光波长的变化 (PHOFEX 谱), 反映的就是 N₂O⁺ 预解离态 A^2^{-+} 的光谱特征.

图 2 碎片 NO⁺的 PHOFEX 光谱及其标识

3.2. PHOFEX 谱的标识

图 2 是光解波长在 328—278 nm (约 30500 — 36000 cm⁻¹)范围内光碎片 NO⁺的 PHOFEX 谱.图 2 中的谱峰强度已对光解光能量作了归一化.该光谱 是由几种不同的染料记录的光谱段组合而成的.为 改善信噪比,在相同的实验条件下,每个光谱段经多 次重复并累加平均.

 N_2O^+ 离子 A^2^+ 态为非中心对称线形构型,它 的三个振动模式分别为 N-O 伸缩振动(__),弯曲振 动 $(_2)$ 和 N-N 伸缩振动 $(_3)$,其振动频率分别为[~] = 1345.52 cm⁻¹, $\tilde{}_2$ = 614.1 cm⁻¹, $\tilde{}_3$ = 2451.7 cm^{-1[3]}. 由于[~]₃ 2[~]₁ 4[~]₂,因此振动能级(v₁, v_2 , v_3)和 $(v_1 - 1, v_2 + 2, v_3)$, (v_1, v_2, v_3) 和 $(v_1 + v_2)$ 2, v₂, v₃ - 1) 之间能量相近,存在 Fermi 共振.发生 Fermi 共振的一组能级的量子数有如下关系 : $2v_1$ + $v_2 + 4v_3 = P$ (常数),我们称这组能级为量子数为 P 的振动簇(vibrational cluster). 由于 Fermi 共振的存 在,振动能级的谱项值不能简单地由 Dunham 多项 式获得,而是对所谓的有效哈密顿矩阵对角化后得 到^[23]. 如果不考虑不同振动簇之间的相互作用. 有 效哈密顿矩阵是块对角化的,不同的块对应不同的 量子数 P. 对于每个 P 振动簇,矩阵中对角元,即无 Fermi 共振的项、为

式中, \mathbf{M}^{eff} 为有效哈密顿量, \tilde{i}_i 为振动频率, \tilde{i}_i 为非 谐性系数, d_i 为模式简并度.

而非对角矩阵元,即 Fermi 共振项,为
v_1 , v_2 , v_3 \mathbf{M}^{eff} v_1 + 1, v_2 - 2, v_3
$=\frac{1}{2\sqrt{2}} K_{122} \times \sqrt{v_2^2 (v_1 + 1)} ,$
$v_1, v_2, v_3 \mid \mathbf{M}^{\text{eff}} \mid v_1 + 2, v_2, v_3 - 1$
$=\frac{1}{2\sqrt{2}} K_{113} \times \sqrt{v_3(v_1+1)(v_1+2)} ,$

式中 K₁₂₂和 K₁₁₃为耦合常数.

在此,我们忽略了高阶的 Fermi 共振项,如(v₁, v₂, v₃)和(v₁ - 2, v₂ + 4, v₃),(v₁, v₂, v₃)和(v₁, v₂ + 4, v₃ - 1)之间的相互作用.同时,在本实验的 波长范围内, 3 模最大只能激发至 v₃ = 3,由于涉及 3 模的谱带很少,因此我们亦不考虑 1 和 3 模之 间的耦合,即令 K₁₁₃ = 0.

这样,通过对有效哈密顿矩阵对角化,利用最小 二乘法对实验数据进行拟合,我们的 PHOFEX 谱可 以很好地归属为 A^2 ⁺ (*P*[*i*]) X^2 (000)跃迁.符

表1 N₂O⁺ 光解碎片 NO⁺ 的 PHOFEX 谱峰位置和标识结果

	/cm ⁻¹	1-1-1)		
本工作	文献[16]	标识 ¹⁾		
30662.5	30665.0	$4[1]$ (000) F_1		
30783.5	30776.8	$4[4]$ (000) F_2		
30917.6	30909.0	$4[4]$ (000) F_1		
31386.1		$5[4]$ (000) F_2		
31519.2		$5[4]$ (000) F_1		
31750.2		$6[1]$ (000) F_2		
31884.0		$6[1]$ (000) F_1		
31766.8		$6[2]$ (000) F_2		
31900.6		$6[2]$ (000) F_1		
31869.2		$6[3]$ (000) F_2		
32002.9		$6[3]$ (000) F_1		
31980.7		$6[5]$ (000) F_2		
32114.5		$6[5]$ (000) F_1		
32107.8		$6[6]$ (000) F_2		
32240.9		$6[6]$ (000) F_1		
32463.8		$7[3]$ (000) F_2		
32597.0		$7[3]$ (000) F_1		
32697.0		$7[6]$ (000) F_2		
32830.6		$7[6]$ (000) F_1		
32965.0		$8[1,2]$ (000) F_2		
33099.0		$8[1,2]$ (000) F_1		
32977.2		$8[3]$ (000) F_2		
33110.7		$8[3]$ (000) F_1		
33172.7		$8[6]$ (000) F_2		
33307.0		$8[6]$ (000) F_1		
33274.4		$8[8]$ (000) F_2		
33408.0		$8[8]$ (000) F_1		
33417.1		$8[9]$ (000) F_2		
33552.4 22562 0		$8[9]$ (000) F_1		
22606 6		$9[1] (000) F_2$		
22758 4		$9[1] (000) F_1$		
22802 7		$9[0] (000) F_2$		
33088 0		$9[0] (000) F_1$		
34120 1		$9[9]$ (000) F_2		
34141 9		$10[1]$ (000) F_2		
34276.4		$10[1]$ (000) F_1		
34258.6		$10[1]$ (000) F_2		
34393.2		$10[4]$ (000) F_1		
34278.0		$10[1]$ (000) F_1 $10[5]$ (000) F_2		
34413.0		$10[5]$ (000) F_1		
34835.5		$11[4]$ (000) F_2		
34969.6		$11[4]$ (000) F_1		
35369.5		$12[2]$ (000) F_2		
35503.9		$12[2]$ (000) F_1		
35529.3		$12[8]$ (000) F_2		
35663.9		$12[8]$ (000) F_1		
¹⁾ F1 对应其	电子态 x ² , (00	(0) F ₂ 对应基电子态 x^2		
(000).	J J J J J J J J J J J J J J J J J J J	1/2		

号 P 代表振动簇量子数,该振动簇包含的能级按能 量递增的顺序排列,序号为 *i*. 光谱标识结果已在图 2 中注出. 可以看到,至每个 A^2 *电子态的 P[i]能 级的跃迁由两组组成,相应的下能级分别为基态 $x^2_{3/2}(000)$ 以及 $x^2_{1/2}(000)$,说明在我们的电离 波长处,(3 + 1) REMPI 产生的母体离子布居在 $x^2_{3/2}(000)$ 和 $x^2_{1/2}(000)$ 两个自旋-轨道分裂态 上.这与 Scheper 等^[22]的光电子谱研究结果是一致 的. 我们得到的 x^2 态自旋-轨道分裂值为 133.8 ± 1.0 cm⁻¹,与前人的研究结果^[3,22]相符.

表 1 列出了我们的光谱标识结果及对应的谱峰 位置,其中 F_1 表示基电子态为 $x^2_{3/2}(000)$, F_2 表 示基电子态为 $x^2_{1/2}(000)$.我们一共标识了 47 个 电子-振动跃迁带,对应的 A^2 *态振动簇为 P =4 —12.对于 N₂O*离子体系,由于 x^2 和 A^2 *态皆 为线形构型,因此 x^2 (000)至 P 为偶数的 A^2 *态 能级的跃迁是允许的,而至 P 为奇数的能级是跃迁 禁阻的.前人的研究也曾观测到类似的禁阻跃迁^[4]. 这可能是 A^2 *态和 x^2 态之间存在的电子-振动 相互作用使得跃迁允许.表 1 中同时列出了前人在 此波段观测到的跃迁.正如在引言中所介绍的,对于 N₂O⁺离子 A² ⁺态的光谱研究,绝大多数工作均集 中在少数几个低振动能级.在我们研究的波长范围 内,所标识的 47 个振动带中有 44 个是我们新观测 到的.

表 2 列出了 $A^2 + \Delta P[i]$ 能级的振动谱项值. 表 2 还同时列出了考虑 Fermi 共振后,各能级包含 的主要组分和所占的比例.据我们所知,至今尚未见 有文献报道关于 N_2O^+ 离子 $A^2 + \infty$ Fermi 共振的研 究. 从表 2 中主要组分所占的比例看, $A^2 + \Delta_1$ 模 和 2模之间存在较强的 Fermi 共振,得到的耦合常 数 K₁₂₂为 21.6 ±1.5 cm⁻¹. 根据 PHOFEX 谱的标识, 我们得到了 A^2 ^{*}电子态的光谱常数.结果列于表 3. 按照这些光谱常数所计算的能级谱项值列于表 2 中,与实验测量结果的偏差在6 cm⁻¹以内.这种大小 的偏差对于振动光谱而言是令人满意的. 与前人研 究结果相比,由于我们观测到的谱带所包含的 A^2 ⁺ 电子态的振动能级是迄今为止最多的,所进 行的光谱标识应该是可靠的.因此我们不仅可以获 得各振动模的振动频率值,而且还可以给出较准确 的非谐性常数和 Fermi 共振耦合常数.

表 2 N_2O^+ 离子 A^2^+ 态 P[i] 能级的振动谱项值

<i>P</i> [<i>i</i>]	$G(v)_{\rm obs}/{\rm cm}^{-1}$	$G(v)_{\rm cal}/{\rm cm}^{-1}$	$G(v)_{\text{obs}}$ - $G(v)_{\text{cal}}/\text{cm}^{-1}$	主要成分/ %	
4[1]	2432.5	2429.2	3.3	001 (100)	
4[4]	2687.6	2691.5	- 3.9	200 (97. 1)	
5[4]	3289.2	3288.1	1.1	210 (92. 8)	
6[1]	3654.0	3654.7	- 0.7	021 (98. 6)	
6[2]	3670.6	3669.1	1.5	060(77.2), 140(21.8)	
6[3]	3772.9	3772.0	0.9	140(64.4), 060(22.0), 220(13.4)	
6[5]	3884.5	3881.9	2.6	220(81.8), 140(13.7)	
6[6]	4010.9	4012.9	- 2.0	300 (96. 2)	
7[3]	4367.0	4372.6	- 5.6	150(47.0), 070(30.5), 230(21.7)	
7[6]	4600.6	4598.6	2.0	310(90.4), 230(9.0)	
8[1,2]	4869.0	4867.6(8[1])	1.4	080(56.2), 160(38.1), 240(5.5)	
		4871.9(8[2])	- 2.9	041 (92. 6) , 121 (7. 4)	
8[3]	4880.7	4881.9	- 1.2	002(100)	
8[6]	5077.0	5070.3	6.7	240(46.7), $160(31.5)$, $320(16.5)$, $080(5.1)$	
8[8]	5178.0	5181.4	- 3.4	320(76.7), 240(17.2)	
8[9]	5322.4	5318.3	4.1	400 (95. 5)	
9[1]	5466.6	5460.7	5.9	090(45.1), 170(44.3), 250(10.0)	
9[6]	5662.7	5663.4	- 0.7	170(38.2), 250(25.5), 330(25.1), 090(10.0)	
9[9]	5890.1	5892.7	- 2.6	410(88.7), 330(10.4)	
10[1]	6046.4	6049.5	- 3.1	180(47.7), 0100(34.7), 260(16.0)	
10[4]	6163.2	6157.4	5.8	0100(46.9), 260(38.4), 340(11.5)	
10[5]	6183.0	6186.4	- 3.4	141 (68.0), 061 (19.8), 221 (12.1)	
11[4]	6739.6	6745.0	- 5.4	.4 0110(45.6), 270(33.4), 350(19.1)	
12[2]	7273.9	7271.7	2.2	081 (60.0) , 161 (35.4)	
12[8]	7433.9	7432.6	1.3	122(91.1), 042(6.6)	

表 3 N₂O⁺ A² ⁺ 电子态的光谱常数

	本工作	文献[16]	文献[3]	文献[17] 文献[15]		
1	1380.9 ±3.1	1358	1345.52	1360 ±15		
2	627.3 ±1.8		614.1			
3	2433.0 ±7.4		2451.7	2470 ±15		
11	- 8.0 ±0.9	- 5.82				
22	- 0.4 ±0.2			- 1.4		
33	- 11.8 ±4.0					
12	- 13.1 ±1.1					
23	- 3.6 ±0.9					
<i>K</i> ₁₂₂	21.6 ±1.5					
T_0	28230 ±1		28229.94			
自旋-轨道耦合常数						
X ² 3/2,1/2	133.8 ±1.0		132.36	130		

注:1) 表中单位为 cm⁻¹.

2) 文献[15] 列出的为估算值.

- Burley J D, Evin K M, Armentrout P B 1987 J. Chem. Phys. 86 1944
- [2] Komiha N 1994 J. Mol. Struct. 306 313
- [3] Callomon J H, Creutzberg F 1974 Philis. Trans. Roy. Soc. Lond. Ser. A 277 157
- [4] Aarts J F M, Callomon J H 1982 Chem. Phys. Lett. 91 419
- [5] Fellows C E, Vervloet M 2001 Chem. Phys. 264 203
- [6] Tsuji M, Maier J 1988 Chem. Phys. 126 435
- [7] Imamura T, Imajo T, Koyano I 1995 J. Phys. Chem. 99 15465
- [8] Tokue I, Kudo T, Ito Y 1992 Chem. Phys. Lett. 199 435
- [9] Ibuki T, Sugita N 1984 J. Chem. Phys. 80 4625
- [10] Tokue I, Kobayashi M, Ito Y 1992 J. Chem. Phys. 96 7458
- [11] Lerme J , Abed S , Larzilliere M et al 1986 J. Chem. Phys. 84 2167
- [12] Lerme J, Abed S, Holt R A et al 1983 Chem. Phys. Lett. 96 403
- [13] Larzilliere M, Gragued K, Lerme J et al 1987 Chem. Phys. Lett. 134 467

4. 结 论

本文报道了 N_2O^+ 离子 A^2^- *态的光谱研究. 首 先,我们利用第一束激光通过 N_2O 分子的 (3 + 1) REMPI 过程制备纯净且布居单一的母体离子 N_2O^+ $x^2_{3/2,1/2}$ (000). 这种母体离子的制备方法在 N_2O^+ 离子的研究中作者尚未见有文献报道. 随后用另一 束可调谐激光将 N_2O^+ 激发至 A^2^- *态,在 278 — 328 nm波长范围得到了解离碎片 NO⁺ 的 PHOFEX 光 谱,通过考虑 Fermi 共振作用,我们对光谱进行了完 整标识,在所标识的 47 个电子-振动谱带中,其中 44 个是我们新观测到的. 通过 PHOFEX 光谱的标识,我 们获得了 A^2^- *态较准确和全面的光谱常数.

- [14] Abed S, Broyer M, Carre M et al 1983 Chem. Phys. 74 97
- [15] Larzillere M, Jungen C H 1989 Mol. Phys. 67 807
- [16] Frey R, Kakoschke R, Schlag E W 1982 Chem. Phys. Lett. 93 277
- [17] Frey R, Otchev B, Poatman W B et al 1978 Chem. Phys. Lett.
 54 411
- [18] Zhang L M, Chen J, Xu H F et al 2001 J. Chem. Phys. 114 10768
- [19] Zhang L M et al 1999 Acta. Phys. Sin. 48 1204 (in Chinese) [张 立敏等 1999 物理学报 48 1204]
- [20] Michael G, Wallace S C 1991 J. Chem. Phys. 95 2336
- [21] Patsilinakou E, Wiedmann R T, Fotakis C et al 1989 J. Chem. Phys. 91 3916
- [22] Scheper C R, Kuijt J, Buma WJ et al 1998 J. Chem. Phys. 109 7844
- [23] Bernath P F, Dulick M, Field R W 1981 J. Mol. Spectrosc. 86 275

The spectral assignment for the $A^2 + X^2$ transition of N₂O⁺ ions^{*}

Xu Hai-Feng Quo Ying Li Qi-Feng Dai Jing Hua Liu Shi-Lin[†] Ma Xing Xiao

(Open Laboratory of Bond Selective Chemistry, Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China)

Liang Jun Li Hai-Yang

(Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031, China) (Received 10 June 2003; revised manuscript received 9 July 2003)

Abstract

The spectra of N_2O^+ ions in A^2^{-+} state have been investigated. Pure parent N_2O^+ ions, in the $X^2_{-3/2,1/2}(000)$ state, were prepared by (3 + 1) multiphoton ionization of jet-cooled N_2O molecules using a laser beam at 360.55 nm. By introducing another laser, the parent ions were excited to the predissociative A^2^{-+} state, and the fragment NO^+ was detected by a time-of-flight mass spectrometer. The NO^+ photofragment excitation (PHOFEX) spectra were recorded by scanning the dissociation laser in the wavelength range of 278 – 328 nm. The PHOFEX spectra could be attributed completely to the $A^2^{-+} X^2^-$ transition of N_2O^+ , in which most vibronic bands were observed for the first time. By considering the Fermi resonance between the $_1$ and $_2$ modes, the spectra were assigned, and the spectral constants, such as vibrational frequencies, anharmonic constants, and Fermi interaction constant, were obtained with relatively high reliability and precision.

Keywords: N_2O^+ ions A^2^{-+} state, PHOFEX, Fermi resonance, spectral constants **PACC**: 3320L, 3310G, 3520P

^{*}Project supported by the State Key Development Program for Basic Research of China (Grant No. G1999075304) and the National Natural Science Foundation of China (Grant No. 20273063).

[†] Corresponding author. Tel:0551-3602323, E-mail:slliu @ustc.edu.cn