$N_0 O^+$ 离子 A^2^- ⁺ 电子态的光解动力学研究 ^{*}

徐海峰 李奇峰 周晓国 戴静华 刘世林 马兴孝

(中国科学院选键化学研究实验室,中国科学技术大学化学物理系,合肥 230026) (2003 年 7 月 24 日收到;2003 年 10 月 13 日收到修改稿)

用一束波长为 360.55mm 的激光,通过 N₂O 分子的 (3 + 1) 共振多光子电离 (REMPI) 过程制备纯净且布居完全处于 X² (000) 态的母体离子 N₂O⁺,然后用另一束波长在 275—328nm 范围内的可调谐激光将制备的 N₂O⁺离子激发 至预解离电子态 A^{2-+} .实验发现,由于解离碎片 NO⁺所具有的一定的反冲速度,其 TOF 质谱峰明显比 N₂O⁺ 母体 宽.通过分析 NO⁺碎片 TOF 质谱峰形状,得到了解离产物的总平均平动能 E_{T} ;通过考察 E_{T} 随光解能量的变化,发现光解能量在 32000cm⁻¹附近约 250cm⁻¹的变化范围内, E_{T} 值由约 8000cm⁻¹突然减小至约 1600cm⁻¹.通过分析,在光解能量小于 32000cm⁻¹的区域,解离通道为 NO⁺(X^{1-+}) + N(⁴S);而在光解能量大于 32000cm⁻¹的区域,另 一个具有较高解离限的解离通道,NO⁺(X^{1-+}) + N(²D),开启并完全取代 N(⁴S) 通道成为解离的惟一通道.根据实 验结果,对在所研究的光解能量范围内的 N₂O⁺离子 A^{2-+} 电子态预解离机理进行了探讨.

关键词: N₂O⁺ 离子 A² ⁺态, TOF 质谱峰, 预解离机理 PACC: 3380G, 8250G, 3320L

1.引 言

在地球大气电离层中,有一个非常重要的离子 分子反应^[1-2],

 $O^{+}(^{4}S) + N_{2}(X^{1}^{+}) NO^{+}(X^{1}^{+}, v) + N(^{4}S)$ + 1.10 eV (1)

实验^[1]和理论^[2]研究表明, N_2O^+ (A^2^+)是这个离 子分子反应的中间产物.因此,对于 N_2O^+ 离子的研 究,尤其是第一电子激发态 A^2^+ 的光解离动力学 研究,一直受到广泛的关注^[3→6].

前人的研究结果表明^[3-6], N_2O^+ 离子 A^2^- * 电 子态只有少数几个低振动能级有荧光发射,而且除 振动基态(000) 荧光量子产率为 1,不存在解离外, 其他振动能级都存在解离过程.能级寿命的理论^[7,8] 和实验^[9-41]研究表明, A^2^- *态是一个预解离态.文 献已报道的关于 A^2^- *态是一个预解离态.文 献已报道的关于 A^2^- *态光解离的研究主要集中在 (300) 以下的振动能级,解离的主要产物为 NO⁺ (X^1^- *,v) + N(⁴S)^[12-6].Larzilliere 等人^[12,13]利用快 速离子束激光光谱(FIBLAS)方法对(100)能级、以及 Viard 等人^[14]利用光电子-离子符合(PEPICO)方法对

(100),(001)和(200)等能级的光解离研究表明,碎 片 NO⁺ 离子的最大振动分布位于 v = 4 或 5. 但是, 对干(300)能级, Viard 等人^[14]发现该处的碎片平动 能分布明显变窄,这与其他较低振动能级对应的碎 片平动能分布有明显的不同. 他们认为 $_{A^2}$ * 态在 此能级的解离通道有两种可能性 即 NO⁺ (X^{l} + ,v $=8,9) + N(^{4}S)$ 或 NO⁺ (X¹ + , $v = 0, 1) + N(^{2}D)$, 但由于缺少更多的实验数据而无法确定.此外.一些 研究小组^[8,14→6]利用理论计算探讨了 A² ⁺ 态 N_2O^+ 离子生成 NO⁺ (X¹⁺) + N(⁴S) 的解离机理. 普 遍认为,A² *态的预解离过程分为两步,即A² *态 首先与四重态 1⁴ 通过自旋-轨道耦合 .随后 .1⁴ 态再与排斥态 1^4 相互作用 21^4 态解离生成 NO⁺ (X^{1} +) + N(⁴S). 由于 A^{2} + 与 1⁴ 电子态势 能曲线的交叉位置在 A^{2 +} 态(000)和(100)能级之 间,造成 A² * 态除振动基态(000) 外所有的振动能 级都发生解离^[15].

尽管前人对 A^2 * 态低振动能级的解离过程已 有广泛的研究,但是对于高振动能级的预解离行为, 以及除 NO⁺ (X^1 *) + N (⁴S) 之外其他光解通道的 解离机理的研究,至今仍鲜有报道.为此,本文利用

[†]E mail:slliu @ustc.edu.cn;电话:0551-3602323.

7

^{*}国家重点基础研究发展规划项目(批准号 G1999075304)和国家自然科学基金(批准号 20273063)资助的课题.

中性 N₂O 分子的 (3 + 1) 共振增强多光子电离 (REMPI) 过程制备纯净且布居单一的母体离子 N₂O⁺,再用另一束可调谐激光将母体离子激发至 A^2 *态.通过对光解碎片平动能的分析,我们认为 当激发能量增加到约 3200cm⁻¹时,光解通道 NO⁺ $(X^{1-+}) + N(^{2}D)$ 开启并成为解离的主要产物.由于 本工作中所激发的 A^2 *态振动能级是迄今最多 的,因此可以对 A^2 *态更多高振动能级的预解离 行为进行研究,从而可以对 A^2 *态的预解离机理 进行较为深入的探讨.

2. 实 验

实验装置包括脉冲分子束系统、脉冲激光系统和自制的时间飞行(TOF)质谱仪组成.详见文献 [17,18].

滞止压力为 2 ×10⁵ Pa、浓度比为 1/10 的 N₂O/He 混合气在配气装置中混合均匀后,经一个喉道直径 为 0.5mm 的脉冲喷嘴 (general valve)喷出进入真空 腔体.喷嘴的开启时间宽度小于 200µs,其位置距激 光-分子束作用点约 5cm.真空腔体由束源室和电离 室组成,其真空抽运系统由两台抽速分别为 70L/s 和 15L/s 的机械泵 (2X-70 型和 2X-15 型,成都南光) 和两台抽速为 1500L/s 的涡轮分子泵 (F-400 型,成 都南光)组成.静态 (不进气)条件下,束源室和电离 室的真空度分别约为 9 ×10⁻⁵ Pa 和 1 ×10⁻⁵ Pa,动态 (进气)条件下,真空度分别约为 4 ×10⁻⁴ Pa 和 2 × 10⁻⁴ Pa.

一台 Nd: YAG(PRO-190 型, Spectra Physics) 激光 器输出的线偏振二倍频激光(532nm,能量约470mJ/ pulse)同时抽运两台染料激光器.其中一台染料激光 器(PRSC-LG18 型, Sirah)的激光输出经 KD^{*}P 晶体 倍频,由一个焦距为 30cm 的石英透镜聚焦后,进入 腔体内激光-分子束作用区,作为电离光,通过 N₂O 分子的(3+1) REMPI 过程制备母体离子 N₂O⁺.电离 光波长固定在 360.55nm,脉冲能量控制在约 3mJ,在 此实验下,电离过程不产生任何碎片离子,而且母体 离子完全布居在基电子态的基振动能级,即 $X^2_{1/2,3/2}(000)^{[19]}$.另一台染料激光器(PRSC-LG24 型,Sirah)的激光输出经 KD^{*}P 晶体倍频,由一个焦 距为 60cm 的石英透镜收束后,与电离光相向进入腔 体,作为光解光,将母体离子激发至预解离态 A^2^{*} ,光解光的脉冲能量控制在 1—2mJ,其波长扫 描由一个 A/D 转换器 (SR245 型, Stanford Research System) 发出的触发信号控制. 光解光和电离光在空间上严格重合,时间上通过光路延迟约 10ns. 扫描时,光解光的能量被同步监测,同时,用空心阴极灯 № 原子谱线实时校正染料激光波长.

电离产生的母体离子 N₂O⁺ 和解离生成的碎片 离子经电场引出、加速后,沿长度为 32cm 的时间飞 行(TOF)管飞行,最后被微通道板(MCP)接收.MCP 的输出信号由 Boxcar 平均器(SR250型,Stanford Research System)平均 30次后送入计算机中记录,通 过监测离子信号强度随光解光波长的变化,可获得 N₂O⁺ 的光碎片激发谱(PHOFEX).同时送入 Boxcar 平均的还有用于实时校正波长的 Ne 灯信号和同步 监测的激光能量信号.若记录飞行时间质谱,则将 MCP输出的离子信号直接接入一台存储示波器 (400MHz,TDS380,Teltronix)中.

3. 结果和分析

3.1. 碎片 NO⁺的 PHOFEX光谱

在我们所研究的光解波长范围内,观测到的碎 片离子主要是 NO⁺,只是在光解波长小于 282.7mm (~35370cm⁻¹)时,出现了另一个微弱的碎片离子 N₂⁺.通过调节光解光和电离光之间时间延迟和相 对空间位置,证实了 NO⁺碎片来自光解光作用的母 体离子 N₂O⁺的解离.这样,通过检测解离碎片 NO⁺ 信号强度随光解光波长的变化,得到了 278—328nm (30500—36000cm⁻¹)波长范围内 N₂O⁺的光碎片激 发谱(PHOFEX),如图 1 所示.图中的光谱强度已对 光解光强度进行了归一化处理.为改善信噪比,在相 同的实验条件下,每个光谱段经多次重复并累加 平均.

考虑到 A^2 *态 v_1 和 v_2 模之间的 Fermi 共振相 互作用,通过对有效哈密顿矩阵对角化,并利用最小 二乘法拟合实验数据,图 1 的 PHOFEX 谱可以很好 地归属为 N_2O^+ 离子的 A^2 *(P[i]) X^2 $_{1/2,3/2}$ (000) 电子跃迁. 这说明碎片 NO⁺ 来自 N_2O^+ 离子 A^2 *电子态的解离.图 1 注出了光谱标识的结果, 其中符号 P 代表振动能级簇量子数, $P = 2V_1 + V_2$ +4 V_3 , *i* 为该振动能级簇包含的能级按能量递增的 顺序排列的序号^[20]. 在我们观测到的跃迁谱带中, 绝大多数是前人未观测到的. 通过对 PHOFEX 光谱

图 1 30500cm⁻¹—36000cm⁻¹范围内碎片 NO⁺的 PHOFEX 光谱 及其标识,符号 *P*[*i*]的含义见文中说明

的标识,获得了 A² * 态较准确和全面的分子光谱 常数.有关光谱研究的工作我们将在另文中详细 叙述.

需要指出的是,在光谱中观察到 x^2 (000) 至 A^2 *态 P 为奇数的能级跃迁.由于 N_2O^* 离子 A^2 *态和 x^2 态皆为线性构型,零级近似下 x^2 (000) 至 A^2 *态 P 为奇数(弯曲振动量子数 V_2 为 奇数)的能级跃迁应该是禁阻的.前人的研究中也曾 观测到此类的禁阻跃迁^[21-23],并将其归结为 A^2 * 和 x^2 态之间的电子 - 振动相互作用所致^[22,23].值 得注意的是,尽管这些禁阻跃迁的 Franck-Condon 因 子很小,但从图 1 中可以看到,其谱峰强度并不是很 弱.造成这种现象的原因应该是 A^2 *态解离概率 的增加.

3.2. 碎片离子 NO⁺飞行时间(TOF) 质谱峰分析

在 PHOFEX 谱中每个振动谱带的峰位置处,我 们采集了相应的 TOF 质谱.我们发现,碎片 NO⁺的 TOF 质谱峰明显宽于母体离子 N₂O⁺ 的质谱峰.图 2 是其中的一个典型例子(光解波长为 323.4nm).图 中,碎片 NO⁺离子的质谱峰半高全宽约为 135ns,而 母体 N₂O⁺ 离子的质谱峰半高全宽只有约 44ns. 这种碎片离子质谱峰的加宽不可能是母体分子的热运动造成的,因为我们的 TOF 飞行方向垂直于分子束方向,热运动的影响较小. 同时,由于母体和碎片离子的质谱峰是同时采集的,实验对两者的影响应是一致的. 此外,直接电离中性 NO 分子,产生的 NO⁺离子质谱峰的宽度与 N₂O⁺离子相近,这说明 TOF 质谱仪本身亦不会造成如此大的峰宽差别.

图 2 光解波长为 323.41nm 时,离子飞行时间(TOF)质谱图.可 以看到,由于碎片生成时所具有的反冲速度,碎片离子 NO⁺的 TOF质谱峰明显宽于母体离子

造成碎片 NO⁺ 离子质谱峰加宽的真正原因是 其生成时所具有的反冲速度.因此,通过分析碎片 NO⁺质谱峰的加宽,便可获得其生成时的反冲速度, 从而得到解离过程所释放的总平动能.假设 NO⁺ 离 子质谱峰的半高全宽为 t,仪器峰形的宽度为 t_0 (以母体 N₂O⁺ 离子的 TOF 峰计),则碎片的总平动 能应随着 $(t)^2 - (t_0)^2$ 的增加而单调增加.更准 确地,当激光的偏振方向与 TOF 轴线(z 轴)的夹角 为 54.7 (魔角)时,碎片在 z 轴上的速度分布 $f(V_z)$ 为仪器本身的分布 G(V) 与碎片反冲速度分布 g(V)在 z 轴上的投影的卷积^[24],

$$f(V_z, 54.79 = A \quad G(V_z -) \left(\begin{array}{c} \frac{g(V)}{2V} dV \\ + \frac{g(V)}{2V} dV \end{array} \right) d \quad .$$
(2)

分布 $f(V_z)$ 与实验得到的碎片 TOF 分布 $h(t - t_0)$ 相 对应,

$$h(t - t_0) = \frac{qE}{m} f(V_z) , \qquad (3)$$

其中 m 为 NO⁺ 的质量, q 为离子电荷, E 为引出场 电场强度. 根据动量守恒, 光解碎片的总平动能分布 $P(E_{T})$ 可由下式获得:

$$P(F_{\rm T}) = \frac{g(V)}{V} \left(\frac{M_{\rm N_2O^+} - m}{mM_{\rm N_2O^+}} \right) . \tag{4}$$

6期

假设 $P(E_{\rm T})$ 为高斯分布,利用(2)—(4)式,通过拟 合魔角处碎片离子 NO⁺的 TOF 质谱峰,可大致得出 解离碎片的总平均平动能 $E_{\rm T}$.图 3 给出了光解波 长为 323.4nm 时,碎片 NO⁺离子在魔角处的 TOF 质 谱峰及其拟合的结果.拟合不同光解波长下的 TOF 质谱峰,得到 $E_{\rm T}$ 值随光解能量的变化,如图 4 所 示.图中同时给出了(t)² - (t_0)² 随光解能量的 变化.可以看到, $E_{\rm T}$ 值随光解能量的变化与(t)² - (t_0)² 的变化趋势完全一致.这说明我们对 $E_{\rm T}$ 值的估算是可靠的.在光解能量低于 32000cm⁻¹ 的 区域, $E_{\rm T}$ 值约为 8000cm⁻¹,这与 Larzilliere 等人^[13] 通过激发 A^2 ⁺ (100) 能级得到的碎片总平动能(约 8800cm⁻¹) 非常接近.

图 3 光解波长为 323.41mm,激光偏振方向与 TOF 夹角为魔角 (54.79条件下,NO⁺碎片的 TOF 质谱图(点)及其拟合结果(实 线).根据拟合结果,可得出光解过程所释放的总平均平动能 *E*_T

图 4 碎片总平均平动能 $E_{\rm T}$ (点)以及(t)²-(t_0)²(点) 随光解能量的变化.其中 t为NO⁺离子质谱峰的半高全宽, t_0 为仪器峰形的宽度.由于总平动能应随着(t)²-(t_0)²的 增加而单调增加,图中 $E_{\rm T}$ 值随光解能量的变化与(t)²-(t_0)²的变化趋势完全一致,说明对 $E_{\rm T}$ 值的估算是可靠的

值得注意的是,当光解能量增加至 32000 cm⁻¹ 附近, E_{T} 值由约 8000 cm⁻¹ 突然减小至约 1600 cm⁻¹,而对应的光解能量仅变化了~250 cm⁻¹. 此后,随着光解能量的进一步增加, $E_{\rm T}$ 值又逐渐 增加.我们认为,碎片总平动能的这种突然减小不应 是 NO⁺离子内能的增加造成的.基电子态 NO⁺离子 的振动频率为 2376cm⁻¹,而最低的电子激发态比基 态高 52190 cm⁻¹.如果 $E_{\rm T}$ 值的突变对应于 NO⁺离 子内能的增加,约 6400 cm⁻¹的 $E_{\rm T}$ 值降低对应于 NO⁺ (x^{1-+})的振动增加 2—3 个量子数.但这一变 化不太可能在仅仅 250 cm⁻¹的光解能量变化范围内 发生,而且即便发生,也很难理解为什么平动能突变 在此处发生而不在别处发生.产生 $E_{\rm T}$ 值突降的惟 一可能原因是另一个具有较高解离限的通道开启并 成为解离的主要通道.

在我们的光解能量范围,存在两个皆生成碎片 离子 NO⁺ 的能量允许的解离通道,即 NO⁺ (X^{1}) $+N(^{4}S)$ (通道 A,解离限 $D_{0A} = 10430 \text{ cm}^{-1}$)和 NO⁺ $(X^{1} +) + N(^{2}D)$ (通道 $B, D_{0B} = 29660 \text{ cm}^{-1})^{[25]}$. 显 然,在光解能量 32000cm⁻¹附近平动能发生的突变 是由于通道 B 的开启造成的,也就是说,在光解能 量小于 32000cm⁻¹的区域,N₂O⁺ (A^{2 +}) 以通道 A 解 离,在光解能量大于 32000cm⁻¹的区域应包含通道 B 的解离.前人的研究结果也表明^[12→6],处于低振 动能级的 N_2O^+ (A^2^+) 确实以通道 A 解离. 由于通 道 B 的解离限远高于通道 A, 一旦通道 B 开启, 由 于可资用能的减小,便会造成碎片总平动能的减小. 我们注意到在 32000cm⁻¹ 附近, E_T 值由约 8000cm¹减小至约 1600cm¹.这意味着通道 B 开启 时,通道 A 占的比重不会超过 20 %,也就是说,通道 B 已取代通道 A 成为解离的主要通道. 下面进一步 的分析表明,当光解能量大于 32000cm⁻¹时,通道 B 完全取代通道A,成为解离的惟一通道.

对通道 A ,利用在光解能量小于 32000cm⁻¹的区 域测得的总平动能 E_T ,我们估算出碎片总平动能 E_T 占可资用能 E_{avt} (= $h - D_{0A}$)的比例 P_A 约为 37 %.可以假设,在整个光解能量范围内,通道 A 和 B 的平动能分配, P_A 和 P_B ,皆不随光解能量的变化 而变化.则在光解能量大于 32000cm⁻¹的区域,即 32000cm⁻¹ — 35500cm⁻¹之间,实验得到的 E_T 值应 为两个通道贡献的叠加,

$$E_{\rm T} = (h - D_{0A}) P_A (1 - C_B)$$

$$+ (h - D_{0B}) P_B C_B ,$$
 (5)

其中, C_B 为通道 B 所占的比例. 利用在此区域测得的 E_T 值,我们估算出 $P_B \sim 68 \%$, $C_B \sim 100 \%$. 也就

是说,在光解能量大于 32000cm⁻¹的区域,A 通道已 经完全被 B 通道取代,使得 B 通道成为解离的惟一 通道,而这两个通道发生相互转化所对应的光解能 量仅仅变化了约 250 cm⁻¹.

3.3. №O⁺ 离子 A² ⁺ 态光解机理

如前所述,关于通道 A 的生成机理,前人已有 广泛研究^[8,14→6],普遍认为, A^2 *态的预解离分为两 步,即 A^2 *态首先与束缚态 1⁴ 通过自旋-轨道耦 合,再通过与排斥态 1⁴ 相互作用,最后沿 1⁴ 态 解离生成 NO⁺ (X^1 *) +N(⁴S).由于 A^2 *态与 1⁴ 态之间的耦合较弱,因此它们之间的相互作用大小 决定了解离速率.至于 B 通道,由于产物 NO⁺ (X^1 *) +N(²D)对应于基电子态 X^2 的绝热解离, 因此解离是在 x^2 态发生的. Dehmer 等人^[21]和 Chen 等人^[23]指出, A^2 *与 x^2 态之间可以通过电 子-振动相互作用而发生耦合. 尽管在前人所研究的 能量范围内,它们之间的耦合并不会导致 A^2 *态 沿通道 B 的解离,但当能量允许时, $N_2O^+(A^2$ *)便 可以通过这种耦合沿 X^2 态解离.

在线性构型下, A^2 * 态与 1⁴ 态的电子组态 相差两个自旋轨道量子数,而与 x^2 态仅相差一个 自旋轨道量子数,因此, A^2 * 与 x^2 态之间的耦合 应远强于与 1⁴ 态之间的耦合,即通道 *B* 的解离速 率远大于通道 *A*. 也就是说,一旦能量条件允许,通 道 *B* 便会取代通道 *A* 而成为解离的主要通道.我们 通过对碎片平动能的分析,发现在光解能量为 32000cm⁻¹附近,通道 *B* 已完全取代通道*A*.事实上, 通过图 1 的 PHOFEX 光谱,即 NO⁺ 产量随光解光波 长的变化,也可以验证上述结论.对于 N₂O⁺ 离子, 由于其 x^2 和 A^2 * 电子态均为线形构型,且平衡 键长基本相同,由 x^2 (000)至 A^2 * 态跃迁的 Franck-Condon 因子将随光解激发能的增大而减少, 从而导致 NO⁺产量的减少.但从图 1 看出,NO⁺产量 并没有减少而是基本不变,这显然是解离速率的增 大造成的.从图 1 进一步发现,NO⁺产量在光解能 32000cm⁻¹附近达到最大.这些现象证明,由于在光 解能 32000cm⁻¹处解离速率占绝对优势的 *B* 通道的 开启,使得 NO⁺ 的产量突然增大;同时,尽管高能量 处的 Franck-Condon 跃迁因子小,但由于 *B* 通道的解 离速率大,使得高能量处 NO⁺产量并不比低能量处 少.我们得到的 *B* 通道的开启位置(~ 32000cm⁻¹) 高于其解离限(29660 cm⁻¹),这说明 x^2 态势能面 在 N-NO⁺键的伸展方向存在势垒.理论研究结果表 明^[15],该势垒确实存在.

在本研究的光解能量范围内, N_2O^+ (A^{2-+})离 子的主要解离产物为 NO⁺,但当光解能量增加至 35370cm⁻¹左右时,我们观测到另一个微弱的碎片离 子, N_2^+ .我们得到的 N_2^+ 出现势(35370cm⁻¹)与通道 N_2^+ ($X^2_{g^+}$)+O(³P₂)的解离限(35140cm⁻¹)^[25]非常 接近.与通道 *B* 一样,该通道亦对应于基电子态 X^2 的绝热解离,因此也应是 A^2^- *态与基电子态 X^2 耦合的结果.

综上所述, N_2O^+ 离子 A^2^+ 态在所研究的 30500 —36000cm⁻¹ 光解能量范围内, 解离通道为 NO⁺ (X^{1-+}) + N(⁴S), NO⁺ (X^{1-+}) + N(²D) 和少量 的 N_2^+ ($X^2_{g^+}$) + O(³P₂). 进一步, 当光解能量小于 32000cm⁻¹ 时, 解离产物为通道 A, 而当大于 32000cm⁻¹时, 解离产物为通道 B; 当光解能量大于 35370cm⁻¹时, 碎片 N_2^+ 离子出现. 图 5 给出了各通 道的解离机理的示意图.

图 5 N_2O^+ 离子 A^2^+ 态的预解离机理示意图

4. 结 论

本文工作研究了 N_2O^+ 离子 A^2^- *态在 30500 — 36000cm⁻¹范围内的光解离动力学. 通过对碎片 NO^+ 离子 TOF 质谱峰的分析,我们估计了解离产物的总 平动能 E_T ,发现当光解能量增加至 32000cm⁻¹附 近, E_T 值由约 8000cm⁻¹突然减小至约 1600cm⁻¹, 而光解能量的变化范围Q ~ 250 cm⁻¹. 通过分析,我 们认为,当光解能量小于 32000cm⁻¹时,解离主要为 A 通道,而当能量增加至 32000cm⁻¹时,解离主要为 A 通道,而当能量增加至 32000cm⁻¹时,A 通道完 全转化为 B 通道,使 B 通道成为解离的惟一通道. 当光解能量大于 35370cm⁻¹时,实验还观测到另一 个解离产物 N_2^+ .

根据实验结果我们讨论了 N_2O^+ 离子 A^2^+ 态 的预解离机理. 对于 A 通道 A^2^+ 态首先与四重态 1^4 通过电子-振动和自旋-轨道耦合 ,其后 1^4 态 再与排斥态 1^4 相互作用 ,沿 1^4 态解离生成 $NO^+(X^{1-+}) + N(^4S)$. 对于 B 通道和 N_2^+ 通道 , A^2^- *态直接与基电子态 X^2 通过电子-振动耦合 , 沿 X^2 态解离生成 $NO^+(X^{1-+}) + N(^2D)$ 和 $N_2^+(X^2_g^+) + O(^3P_2)$. 由于 A^2^- 与 X^2 态之间的耦 合要远强于 A^2^- * 与 1^4 态之间的耦合 ,使得沿 X^2 态的解离速率远大于经 1^4 态的解离速率 ,一 旦能量允许 ,沿 X^2 态的解离通道的转换.

- Burley J D, Evin KM and Armentrout P B 1987 J. Chem. Phys. 86 1944
- [2] Komiha N 1994 J. Mol. Struct. 306 313
- [3] Fellows C E and Vervloet M 2001 Chem. Phys. 264 203
- [4] Tsuji M and Maier J 1988 Chem. Phys. **126** 435
- [5] Imamura T, Imajo T and Koyano I 1995 J. Phys. Chem. 99 15465
- [6] Tokue I, Kudo T and Ito Y 1992 Chem. Phys. Lett. 199 435
- [7] Artes S M, Barrio D, Atabek O and Beswick J A 1983 Chem. Phys. Lett. 98 554
- [8] Beswick J A and Horani M 1981 Chem. Phys. Lett. 78 4
- [9] Ibuki T and Sugita N 1984 J. Chem. Phys. 80 4625
- [10] Klapstein D and Maier J P 1981 Chem. Phys. Lett. 83 590
- [11] Frey R, Otchev B, Poatman W B, Pollak H and Schlag E W 1978 Chem. Phys. Lett. 54 411
- [12] Abed S, Broyer M, Carre M, Gaillard ML and Larzilliere M 1983 Chem. Phys. 74 97
- [13] Lerme J, Abed S, Larzilliere M, Holt R A and Carre M 1986 J. Chem. Phys. 84 2167
- [14] Viard M R, Atabek O, Dutuit O and Guyon P M 1990 J. Chem. Phys. 93 8881

- [15] Chambaud G, Gritli H, Rosmus P, Werner HJ and Knowles PJ 2000 Mol. Phys. 98 1793
- [16] Hopper D G 1978 J. Am. Chem. Soc. 100 109
 Hopper D G 1980 J. Chem. Phys. 73 126
- [17] Zhang L M, Chen J, Xu H F, Dai J H, Liu S L and Ma X X 2001 J. Chem. Phys. **114** 10768
- [18] Zhang L M et al 1999 Acta. Phys. Sin. 48 1204 (in Chinese) [张 立敏等 1999 物理学报 48 1204]
- [19] Scheper C R, Kuijt J, Buma WJ and deLange C A 1998 J. Chem. Phys. 109 7844
- [20] Teffo J L , Perevalov V I and Lyulin O M 1994 J. Mol. Spectrosc. 168 390
- [21] Aarts J F M and Callomon J H 1982 Chem. Phys. Lett. 91 419
- [22] Dehmer P M, Dehmer J L and Chupka W A 1980 J. Chem. Phys. 73 126
- [23] Chen W, Liu J, Ng C Y 2003 J. Phys. Chem. A 107 8086
- [24] Vasudev R, Zare R N and Dixon R N 1984 J. Chem. Phys. 80 4863
- [25] Callomon J H and Creutzberg F 1974 Philis. Trans. Roy. Soc. Lond. Ser. A 277 157

0

Photodissociation study of $N_2O^+(A^2^+)$ ions *

Xu Hai-Feng Li Qi-Feng Zhou Xiao-Guo Dai Jing-Hua Liu Shi-Lin[†] Ma Xing-Xiao

 (Laboratory of Bond Selective Chemistry, Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China)
 (Received 24 July 2003; revised manuscript received 13 October 2003)

Abstract

Pure parent ions, N_2O^+ , populated at X^2 (000), were prepared by (3 + 1) multiphoton ionization of jet-cooled N_2O molecules at 360.55nm, and then were excited to different vibrational levels of predissociative A^2^- state by another laser in the wavelength range of 275 – 328nm. The total released translational energies E_T at different excitation energies were measured with a time-of-flight (TOF) spectrometer from the TOF broadenings of the NO⁺ fragment. The E_T value drops abruptly from ~ 8000cm⁻¹ to ~ 1600cm⁻¹ at excitation energy of ~ 32000cm⁻¹. Further analysis shows that at the excitation energies below $32000cm^{-1}$, the dissociation channel is NO⁺ (X^1^-) + N(⁴S) , and at the energies above $32000cm^{-1}$ a new channel , NO⁺ (X^1^-) + N(²D) , is opened and replaces completely the N(⁴S) channel. The predissociation mechanism of the N₂O⁺ (A^2^-) ions was discussed based on the experimental results.

Keywords: N_2O^+ (A^2^-), translational energy, predissociation dynamics **PACC**: 3380G, 8250G, 3320L

^{*}Project supported by the State Key Development Program for Basic Research of China (Grant No. 1999075304) and the National Natural Science Foundation of China (Grant No. 20273063).

[†] Email : slliu @ustc. edu. cn ; Tel :0551-3602323.