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ABSTRACT: Preparing highly excited molecules is of great interest in chemistry, but it has
long been a challenge due to the high laser power required within the narrow line width to
excite a weak transition. We present a cavity-enhanced infrared excitation scheme using a
milliwatt laser. As a demonstration, about 35% of CO molecules in a ground-state rotational
level were excited to the highly excited v = 3 state in the entire pulsed supersonic beam, as
confirmed by the depletion of molecules in the ground state. The method was also applied
to excite HD molecules to the v = 2 state with a continuous-wave diode laser. This work
provides a universal approach to prepare molecules in a specific quantum state, paving the
way to study the chemical reaction dynamics of highly excited molecules.

Efficient state-selective excitation of molecules is essential
for state-to-state reaction dynamics experiments and the

elucidation of complex reaction mechanisms.1−6 Pumping
reactants into selected rovibrational states is crucial to address
core scientific theories, such as the Polanyi rules, and to
perform in-depth studies of quantum effects in key
reactions.7−14 In particular, the excitation of molecules to
higher rovibrational states stands at the forefront of current
research, providing insight into unique reaction dynamics not
observable at lower energy levels. For example, excitation to
high vibrational levels allows us to discover reaction resonances
caused by bond softening due to anharmonicity,15−17

potentially expanding our scope for observing reactive
resonances across a wider range of reactions. Furthermore, in
gas-surface scattering experiments, overtone excitation helps to
investigate nonadiabatic effect and understand the process of
vibrational relaxation on surfaces.18−23 Therefore, the drive to
deeply understand chemical reaction dynamics in areas not yet
explored has spurred the development of an effective overtone
excitation technique in a beam.24

Various optical techniques, such as stimulated emission
pumping (SEP),25−28 Raman pumping,29−32 and infrared
pumping,18,20,21,33−35 have been used for this purpose.
However, the transfer of large populations to a desired higher
quantum state often encounters significant difficulties. For
example, SEP typically requires a VUV laser for pumping to
the electronic state, resulting in successful high vibrational
excitation only for a few molecules. Additionally, the transfer
efficiency of SEP is generally limited to about 30% and often
distributes populations to unintended levels. Stark-induced
adiabatic Raman passage (SARP)30−32 can transfer nearly the
entire population between two quantum states, but it typically
requires two tightly focused pulsed lasers with high field
strength to induce a sufficient Stark shift. Due to the small

cross-section of the Raman effect, this approach can only excite
a small fraction of the molecular beam.
Infrared laser excitation offers a simpler alternative. Basically,

when molecules interact with infrared light in a nonadiabatic
scheme, the population of molecules in the excited (vibra-
tional) state within the two-level system can be expressed as
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where n* and n0 are the number of excited molecules and the
total number of molecules, respectively, s = I/Is is the
saturation parameter, I and Is denote the laser and the
saturation power intensities. The saturation power intensity

can be calculated with the formula =Is
ch k

A3

2 3

given in refs 36
and 37, which is usually very large for overtone transitions. For
example, it is 74 kW/cm2 for the (v = 3, j = 2) ← (v = 0, j = 1)
transition of CO. Therefore, it is very challenging to prepare
molecules in high vibrational states with direct IR excitation.
Nanosecond pulsed lasers with peak powers exceeding 100

kW/cm2 have been used to excite infrared transitions, as
demonstrated in the preparation of vibrationally excited CO (v
= 2)20,33 and NO (v = 2, 3).18,21 However, given the
microsecond duration of the pulsed molecular beam, only a
small fraction of the beam could be excited by the pulsed laser.
The complete excitation of the molecular beam is crucial in
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certain experiments. For example, in surface scattering
experiments,18−23 the entire pulse of the beam interacts with
a stationary surface and contributes to the overall yield.
Similarly, in ion−molecule reactions38−41 and certain scatter-
ing experiments,42−46 the interaction region often exceeds the
detection laser spot, requiring excitation of a large beam
segment.
A continuous-wave (cw) laser can cover the entire pulse of

the molecular beam, but the excitation efficiency is often
limited by the laser power. Using a single mode cw optical
parametric oscillator (OPO) system, preparation of intense
molecular beams of vibration fundamental quantum-states has
been realized for gas/surface reaction dynamics experi-
ments,12,14 even with 100% efficiency via rapid adiabatic
passage process.11,47,48 A high-finesse cavity can tremendously
enhance the power of a narrow-line width cw laser, and the
technique has been successfully applied to saturate overtone
transitions of molecules.49,50 Here, we propose a cavity-locked
laser excitation method to prepare molecules in highly excited
rovibrational states. As a demonstration, CO molecules were
pumped to the (v = 3, j = 1, 2) levels, and the population
transfer efficiency was determined.
A schematic setup of the experiment is shown in Figure 1. It

can be divided into three parts: the molecular beam source, the
IR laser and excitation cavity, and the REMPI (Resonance-
Enhanced Multiphoton Ionization) detection. The molecular
beam is generated by an Even-Lavie valve with a back pressure
of 1 MPa to maximize the molecular number density and
suppress the formation of CO clusters. The velocity of the CO
beam has been measured to be 780 m/s, with a rotational
temperature of about 4.5 K, corresponding to 44% of the
molecules in the (v = 0, j = 1) state. Two 1 mm-diameter
skimmers, 205 mm apart, are placed downstream of the
molecular beam. A 6 cm-long high-finesse (F ≈ 415000) cavity
is placed between the two skimmers. The cavity consists of two
low-loss (≈ 2.3 ppm) high-reflectivity (R ≈ 99.999% at 1500−
1600 nm) mirrors with a curvature of about 100 cm, resulting
in an intracavity Gaussian full width at half-maximum of 0.6
mm. A cw external cavity diode laser (ECDL) delivers a beam
with a few tens of milliwatts into the cavity. The laser
frequency is locked with a cavity mode (mode width ∼6 kHz)
by the Pound-Drever-Hall (PDH) method.51 When the
infrared laser (IR) is locked with the cavity and also in

resonance with the molecular transition, molecules passing
through the cavity are excited by the laser. A (2 + 1) REMPI
scheme is used to detect molecules after the second skimmer.
The ECDL laser frequency is also locked to a reference laser

by a beat-locking servo referenced to a microwave (MW)
source. In the experiment, we can either fix the MW frequency
to observe the molecular excitation for a specific IR frequency,
or scan the MW frequency to sweep the IR frequency to
characterize the molecular beam. The laser locking scheme is
similar to that described in ref.,36 and the details are described
in Supporting Information Sec 1.
To reduce vibration noise and keep the laser well locked to

the optical cavity, we implement passive vibration damping to
hold the main vacuum chamber and isolate the turbo pump
from the chamber with bellows. It is worth noting that when
the molecular beam with a duration of about 100 μs passes the
optical cavity, there would be a considerable change in the
refractive index. The locking servo must quickly follow the
change, otherwise, no IR laser power can be injected into the
cavity and the molecules cannot be excited.
First, we fixed the 2 + 1 REMPI frequency on-resonance

with the E1Π (v = 0, j = 3) ← X1Σ+ (v = 0, j = 1) transition
(107.6 nm) to detect the molecules and scanned the IR laser
frequency around the X1Σ+ (v = 3, j = 2) ← (v = 0, j = 1)
transition (1573 nm) to excite the molecules vibrationally, as
shown in Figure 2 (A). The geometrical relationship of the
excitation laser and the transverse number density distribution
of molecules in the vibrationally excited states (red shadow) in
the detection zone are shown schematically in Figure 2 (B).
The pre-cavity IR power was 21 mW, corresponding to an
intracavity power intensity of 750 kW/cm2 and a saturation
parameter s = 10 under a calculated transit-time broad-
ening37,52 of about 1.0 MHz. When we scanned the excitation
IR frequency, we obtained a depletion spectrum as illustrated
in Figure 2 (C). The signal could be well fitted with a Gaussian
function, with the amplitude indicating a maximum depletion
of 35%. The width of the dip was about 6 MHz, indicating the
Doppler broadening convoluted with the transit-time broad-
ening and power broadening. From the spectrum of scanning
the IR laser frequency, we confirmed that the best excitation
efficiency appears when the long-term frequency drift is
controlled to be less than 1 MHz.

Figure 1. Schematic of the excitation experiment. Lock: Pound-Drever-Hall Locking servo; MCP: microchannel plate; PZT: piezo actuator;
REMPI: laser used for resonance-enhanced multiphoton ionization.
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Then we fixed the IR laser frequency at the center of the (v
= 3, j = 2) ← (v = 0, j = 1) transition and obtained a time-of-
flight (TOF) signal, shown in Figure 2(D), with the IR on
(red) and off (black). As shown in the figure, the pulse width
of the molecular beam was about 80 μs. The bottom panel of
Figure 2(D) shows the depletion, calculated with 1 − Signal
(IR ON)/Signal (IR OFF), and the red dashed line indicates
the depletion value of 35% averaged over the pulse duration of
about 100 μs. The result shows that the depletion ratio was
almost the same throughout the pulse. Note that the arrival of
the molecular beam pulse could change the refractive index
inside the optical cavity, which was observed from the error
signal of the cavity locking servo, but the servo can quickly
follow the change and maintain the lock.
We also observed the spatial distribution of the depletion

effect induced by the IR excitation. While keeping both IR and
REMPI lasers in resonance, we actively changed the position of
the REMPI laser beam along the X- and Y-axes, and the results
are shown in Figures 2(E) and (F), respectively. The depletion
signal remains about 20−30% within the whole molecular
beam with a radius of about 1 mm. Note that the distributions
along the X-axis and Y-axis are different. The IR laser
propagates along the X-axis, and the transit-time broadening
limits the transverse velocities of molecules that can interact
with the IR beam. In the Y-axis, the size of the IR laser beam
dominates the interaction range. The detailed calculation of
the area occupied by the excited molecules is given in the
Supporting Information Sec 2. The averaged population

transfer efficiency is estimated to be 24.4% within the part
with a 2 mm diameter portion of the molecular beam.
We have also demonstrated the selective excitation of

molecules into different rovibrational states. Figure 3 shows the

results of IR excitation through the R(0) (v = 3, j = 1) ← (v =
0, j = 0) and R(1) (v = 3, j = 2) ← (v = 0, j = 1) transitions,
respectively. The top panels are the REMPI spectra simulated
by PGOPHER and the bottom panels are the experimental
results. The IR excitation inherits the high resolution of the
CW laser. Consequently, when a selected quantum state is
excited, the others are not affected. The population transfer
efficiency is confirmed to be about 35% for both R(0) and
R(1) transitions, agreeing with the depletion measurements.
This method is essentially based on infrared transitions and

is applicable to all infrared active molecules, such as CO2, H2O,
NH3, CH4, etc. As a special example, HD molecules in the (v =
2, j = 1) state are excited by the overtone transition of (v = 2, j
= 1) ← (v = 0, j = 0) near 1395 nm. The HD transition is
extremely weak, with an Einstein-A coefficient of 2 × 10−5

s−1,53 and the saturation power intensity reaches 0.11 GW/
cm2. We achieved an intracavity IR laser power intensity of 2.6
MW/cm2 using a fiber laser with 800 mW and transferred
about 1.2% of HD molecules from the (v = 0, j = 0) state to
the (v = 2, J = 1) state. The REMPI spectrum of the excited
HD molecules is shown in Figure 4 (A). Figure 4 (B) shows
the TOF signal of the excited HD molecules, indicating that
the excitation affected the HD molecules in the entire beam.
Note that the infrared excitation efficiency is strongly
dependent on the intracavity laser power intensity. The
calculated dependence is shown in Figure 4 (C), with the
result demonstrated in this work marked with the red dot. By
using mirrors with a better coating54−56 and a more powerful
fiber amplifier, we expect a significant improvement in the near
future.
We developed a cavity-enhanced IR pumping method based

on continuous-wave lasers to generate a vibrationally excited
molecular beam. By locking a milliwatt diode laser into a high-
finesse cavity, we demonstrated an intracavity laser power

Figure 2. (A) Energy levels of CO and the depletion scheme of the
experiment. (B) The schematic drawing of the geometrical relation of
the excitation laser and the transverse number density distribution of
molecules in the vibrationally excited (red shadow) states. (C) The
REMPI depletion spectrum obtained by scanning the IR laser
frequency. (D) The TOF signal of the molecular beam with the IR
ON (red) and OFF (black). Note that the x-axis of the graph is
expressed with the speed of the molecular beam multiplied by the
delay time. (E) The REMPI signal when scanning the position of the
REMPI laser beam along the X-axis with the IR ON (red) and OFF
(black). (F) The REMPI signal when scanning the position of the
REMPI laser beam along the Y-axis with the IR ON (red) and OFF
(black). Data in (D), (E), and (F) were measured with the IR
frequency locked on-resonance with the (v = 3, j = 2) ← (v = 0, j = 1)
transition, and the lower panels show the corresponding depletion
signal. The red dashed lines in (D), (E), and (F) indicate the
population transfer efficiency of 35%, corresponding to the on-
resonance population transfer efficiency shown in (C).

Figure 3. REMPI spectra of the ground vibrational state of CO. The
PGOPHER simulated spectra are presented in the upper panel, and
the experimental spectra are shown in the lower panel. Gray and red
shadow/dots indicate the signal with the IR light off and on,
respectively. (A) R(0) ex: the IR laser was on-resonance with the (v =
3, j = 1) ← (v = 0, j = 0) line. (B) R(1) ex: the IR laser was on-
resonance with the (v = 3, j = 2) ← (v = 0, j = 1) line.

The Journal of Physical Chemistry Letters pubs.acs.org/JPCL Letter

https://doi.org/10.1021/acs.jpclett.4c02396
J. Phys. Chem. Lett. 2024, 15, 9926−9931

9928

https://pubs.acs.org/doi/suppl/10.1021/acs.jpclett.4c02396/suppl_file/jz4c02396_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.jpclett.4c02396?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpclett.4c02396?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpclett.4c02396?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpclett.4c02396?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpclett.4c02396?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpclett.4c02396?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpclett.4c02396?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpclett.4c02396?fig=fig3&ref=pdf
pubs.acs.org/JPCL?ref=pdf
https://doi.org/10.1021/acs.jpclett.4c02396?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


intensity of 750 kW/cm2, which excited carbon monoxide
molecules in a pulsed beam to the v = 3 state through ro-
vibrational transitions from the ground state. The temporal and
spatial distribution of the excited molecules in the beam was
analyzed by resonance-enhanced multiphoton ionization
spectroscopy, indicating an excitation efficiency up to 35%
throughout the molecular beam. Compared to other methods,
the one presented in this work has some remarkable
advantages. The first is that the enhancement due to the
high-finesse cavity allows excitation by weak transitions. As
shown in the excitation of HD molecules to the v = 2 state, the
infrared transition of HD is extremely weak, characterized by
an Einstein A-coefficient approximately 6 orders of magnitude
smaller than that of a typical fundamental transition of CO.
This advantage allows us to excite molecules to very high
vibrational states, with energies exceeding 0.8 eV, that are
inaccessible by other methods. The second advantage is the
use of continuous-wave lasers instead of pulsed lasers. With
proper geometrical alignment of the excitation cavity and the
molecular beam, one can excite molecules in the entire beam
instead of just a small portion in space/time. This is
particularly advantageous when the entire beam contributes
to the experimental signal. In addition, since the excitation uses
relatively simple dipole transitions, the excitation efficiency can
be easily quantified, which is essential for many quantitative
studies.
The presented approach paves the way for a number of

important fundamental studies and applications. It provides an
opportunity to study the dynamics of state-selected molecular
reactions, especially when the vibrational excited states are
needed, to search for novel quantum effects in chemical
reactions and reveal the quantum nature of chemical
reactions.57,58 Moreover, the significant change in the
population of quantum states enables coherent measurements,
such as Ramsey spectroscopy59 of molecular vibrational
transitions, leading to the development of molecular

interferometers, which will greatly improve the precision
measurements of molecules.60−62 Since the infrared transitions
are distinguishable for different molecular isotopologues, this
method can also be applied to study isotopic effects such as
isotope separation and enrichment.63,64
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